Abstract
This historical perspective integrates 50 years of research on SOS mutagenesis in Escherichia coli with the proverbial '3R' functions—replication, repair and recombination—that feature DNA polymerase V. Genetic and biochemical data are assimilated to arrive at a current picture of UV-damage-induced mutagenesis. An unprecedented DNA polymerase V transactivation mechanism, which involves the RecA protein, sheds new light on unresolved issues that have persisted over time, prompting us to reflect on evolving molecular concepts regarding DNA structures and polymerase-switching mechanisms.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Environmental stress perception activates structural remodeling of extant Streptococcus mutans biofilms
npj Biofilms and Microbiomes Open Access 27 March 2020
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout


References
Weigle, J. J. Induction of mutation in a bacterial virus. Proc. Natl Acad. Sci. USA 39, 628–636 (1953).
Witkin, E. M. The radiation sensitivity of Escherichia coli B: a hypothesis relating filament formation and prophage induction. Proc. Natl Acad. Sci. USA 57, 1275–1279 (1967).
Radman, M. in Molecular and Environmental Aspects of Mutagenesis (eds Prakash, L., Sherman, F., Miller, M., Lawrence, C. & Tabor, H. W.) 128–142 (Thomas, Springfield, 1974).
Courcelle, J., Khodursky, A., Peter, B., Brown, P. O. & Hanawalt, P. C. Comparative gene expression profiles following UV exposure in wild-type and SOS-deficient Escherichia coli. Genetics 158, 41–64 (2001).
Kenyon, C. J. & Walker, G. C. DNA-damaging agents stimulate gene expression at specific loci in Escherichia coli. Proc. Natl Acad. Sci. USA 77, 2819–2823 (1980).
Bagg, A., Kenyon, C. J. & Walker, G. C. Inducibility of a gene product required for UV and chemical mutagenesis in Escherichia coli. Proc. Natl Acad. Sci. USA 78, 5749–5753 (1981).
Bonner, C. A. et al. Purification and characterization of an inducible Escherichia coli DNA polymerase capable of insertion and bypass at abasic lesions in DNA. J. Biol. Chem. 263, 18946–18952 (1988).
Bonner, C. A., Hays, S., McEntee, K. & Goodman, M. F. DNA polymerase II is encoded by the DNA damage-inducible dinA gene of Escherichia coli. Proc. Natl Acad. Sci. USA 87, 7663–7667 (1990).
Iwasaki, H., Nakata, A., Walker, G. C. & Shinagawa, H. The Escherichia coli polB gene, which encodes DNA polymerase II, is regulated by the SOS system. J. Bacteriol. 172, 6268–6273 (1990).
Wagner, J. et al. The dinB gene encodes a novel E. coli DNA polymerase, DNA pol IV, involved in mutagenesis. Mol. Cell 4, 281–286 (1999).
Kato, T. & Shinoura, Y. Isolation and characterization of mutants of Escherichia coli deficient in induction of mutations by ultraviolet light. Mol. Gen. Genet. 156, 121–131 (1977).
Steinborn, G. Uvm mutants of Escherichia coli K12 deficient in UV mutagenesis. I. Isolation of uvm mutants and their phenotypical characterization in DNA repair and mutagenesis. Mol. Gen. Genet. 165, 87–93 (1978).
Steinborn, G. Uvm mutants of Escherichia coli K12 deficient in UV mutagenesis. II. Further evidence for a novel function in error-prone repair. Mol. Gen. Genet. 175, 203–208 (1979).
Tang, M. J. et al. UmuD′2C is an error-prone DNA polymerase, Escherichia coli pol V. Proc. Natl Acad. Sci. USA 96, 8919–8924 (1999).
Reuven, N. B., Arad, G., Maor-Shoshani, A. & Livneh, Z. The mutagenesis protein UmuC is a DNA polymerase activated by UmuD′, RecA, and SSB and is specialized for translesion replication. J. Biol. Chem. 274, 31763–31766 (1999).
Witkin, E. M. Ultraviolet mutagenesis and inducible DNA repair in Escherichia coli. Bacteriol. Rev. 40, 869–907 (1976).
Cox, M. M. Motoring along with the bacterial RecA protein. Nature Rev. Mol. Cell Biol. 8, 127–138 (2007).
Heller, R. C. & Marians, K. J. Replisome assembly and the direct restart of stalled replication forks. Nature Rev. Mol. Cell Biol. 7, 932–943 (2006).
Mahdi, A. A., Buckman, C., Harris, L. & Lloyd, R. G. Rep and PriA helicase activities prevent RecA from provoking unnecessary recombination during replication fork repair. Genes Dev. 20, 2135–2147 (2006).
Foster, P. L. Adaptive mutation in Escherichia coli. Cold Spring Harb. Symp. Quant. Biol. 65, 21–29 (2000).
Yeiser, B., Pepper, E. D., Goodman, M. F. & Finkel, S. E. SOS-induced DNA polymerases enhance long-term survival and evolutionary fitness. Proc. Natl Acad. Sci. USA 99, 8737–8741 (2002).
Gudas, L. J. & Pardee, A. B. DNA synthesis inhibition and the induction of protein X in Escherichia coli. J. Mol. Biol. 101, 459–477 (1976).
Gudas, L. J. & Pardee, A. B. Model for regulation of Escherichia coli DNA repair functions. Proc. Natl Acad. Sci. USA 72, 2330–2334 (1975).
Walker, G. C. & Dobson, P. P. Mutagenesis and repair deficiencies of Escherichia coli umuC mutants are suppressed by the plasmid pKM101. Mol. Gen. Genet. 172, 17–24 (1979).
Bridges, B. A., Mottershead, R. P. & Sedgwick, S. G. Mutagenic DNA repair in Escherichia coli. III. Requirement for a function of DNA polymerase III in ultraviolet-light mutagenesis. Mol. Gen. Genet. 144, 53–58 (1976).
Bridges, B. A. & Woodgate, R. The two-step model of bacterial UV mutagenesis. Mutation Research 150, 133–139 (1985).
Nohmi, T., Battista, J. R., Dodson, L. A. & Walker, G. C. RecA-mediated cleavage activates UmuD for mutagenesis: mechanistic relationship between transcriptional derepression and posttranslational activation. Proc. Natl Acad. Sci. USA 85, 1816–1820 (1988).
Burckhardt, S. E., Woodgate, R., Scheuermann, R. H. & Echols, H. UmuD mutagenesis protein of Escherichia coli: overproduction, purification, and cleavage by RecA. Proc. Natl Acad. Sci. USA 85, 1811–1815 (1988).
Shinagawa, H., Iwasaki, H., Kato, T. & Nakata, A. RecA protein-dependent cleavage of UmuD protein and SOS mutagenesis. Proc. Natl Acad. Sci. USA 85, 1806–1810 (1988).
Dutreix, M. et al. New recA mutations that dissociate the various RecA protein activities in Escherichia coli provide evidence for an additional role for RecA protein in UV mutagenesis. J. Bacteriol. 171, 2415–2423 (1989).
Sweasy, J. B., Witkin, E. M., Sinha, N. & Roegner-Maniscalco, V. RecA protein of Escherichia coli has a third essential role in SOS mutator activity. J. Bacteriol. 172, 3030–3036 (1990).
Woodgate, R., Rajagopalan, M., Lu, C. & Echols, H. UmuC mutagenesis protein of Escherichia coli: purification and interaction with UmuD and UmuD′. Proc. Natl Acad. Sci. USA 86, 7301–7305 (1989).
Rajagopalan, M. et al. Activity of the purified mutagenesis proteins UmuC, UmuD′, and RecA in replicative bypass of an abasic DNA lesion by DNA polymerase III. Proc. Natl Acad. Sci. USA 89, 10777–10781 (1992).
Bruck, I., Woodgate, R., McEntee, K. & Goodman, M. F. Purification of a soluble UmuD′C complex from Escherichia coli: cooperative binding of UmuD′C to single-stranded DNA. J. Biol. Chem. 271, 10767–10774 (1996).
Shen, X., Woodgate, R. & Goodman, M. F. Escherichia coli DNA polymerase V subunit exchange: a post-SOS mechanism to curtail error-prone DNA synthesis. J. Biol. Chem. 278, 52546–52550 (2003).
Tang, M. et al. Biochemical basis of SOS-induced mutagenesis in Escherichia coli: reconstitution of in vitro lesion bypass dependent on the UmuD′2C mutagenic complex and RecA protein. Proc. Natl Acad. Sci. USA 95, 9755–9760 (1998).
Kuzminov, A. Recombinational repair of DNA damage in Escherichia coli and bacteriophage l. Microbiol. Mol. Biol. Rev. 63, 751–813 (1999).
Reuven, N. B., Arad, G., Stasiak, A. Z., Stasiak, A. & Livneh, Z. Lesion bypass by the Escherichia coli DNA polymerase V requires assembly of a RecA nucleoprotein filament. J. Biol. Chem. 276, 5511–5517 (2001).
Fujii, S., Gasser, V. & Fuchs, R. P. The biochemical requirements of DNA polymerase V-mediated translesion synthesis revisited. J. Mol. Biol. 341, 405–417 (2004).
Schlacher, K. et al. DNA polymerase V and RecA protein, a minimal mutasome. Mol. Cell 17, 561–572 (2005).
Schlacher, K., Cox, M. M., Woodgate, R. & Goodman, M. F. RecA acts in trans to allow replication of damaged DNA by DNA polymerase V. Nature 442, 883–887 (2006).
Moore, P. D., Bose, K. K., Rabkin, S. D. & Strauss, B. S. Sites of termination of in vitro DNA synthesis on ultraviolet- and N-acetylaminofluorene-treated phi X174 templates by prokaryotic and eukaryotic DNA polymerases. Proc. Natl Acad. Sci. USA 78, 110–114 (1981).
Echols, H. & Goodman, M. F. Mutation induced by DNA damage: a many protein affair. Mutat. Res. 236, 301–311 (1990).
Dutreix, M., Burnett, B., Bailone, A., Radding, C. M. & Devoret, R. A partially deficient mutant, RecA1730, that fails to form normal nucleoprotein filaments. Mol. Gen. Genet. 232, 489–497 (1992).
Pham, P., Bertram, J. G., O'Donnell, M., Woodgate, R. & Goodman, M. F. A model for SOS-lesion targeted mutations in E. coli involving pol V, RecA, SSB and β sliding clamp. Nature 409, 366–370 (2001).
Bailone, A., Sommer, S., Knezevic, J., Dutreix, M. & Devoret, R. A RecA protein mutant deficient in its interaction with the UmuDC complex. Biochemie 73, 479–484 (1991).
Doudney, C. O. Complexity of the ultraviolet mutation frequency response curve in Escherichia coli B/r: SOS induction, one-lesion and two-lesion mutagenesis. J. Bacteriol. 128, 815–826 (1976).
Sedgwick, S. G. Misrepair of overlapping daughter strand gaps as a possible mechanism for UV induced mutagenesis in UVR strains of Escherichia coli: a general model for induced mutagenesis by misrepair (SOS repair) of closely spaced DNA lesions. Mutat. Res. 41, 185–200 (1976).
Svoboda, D. L., Smith, C. A., Taylor, J. S. & Sancar, A. Effect of sequence, adduct type, and opposing lesions on the binding and repair of ultraviolet photodamage by DNA photolyase and (A)BC excinuclease. J. Biol. Chem. 268, 10694–10700 (1993).
Rupp, W. D. & Howard-Flanders, P. Discontinuities in the DNA synthesized in an excision-defective strain of Escherichia coli following ultraviolet irradiation. J. Mol. Biol. 31, 291–304 (1968).
Cox, M. M. et al. The importance of repairing stalled replication forks. Nature 404, 37–41 (2000).
Postow, L., Crisona, N. J., Peter, B. J., Hardy, C. D. & Cozzarelli, N. R. Topological challenges to DNA replication: conformations at the fork. Proc. Natl Acad. Sci. USA 98, 8219–8226 (2001).
Higgins, N. P., Kato, K. & Strauss, B. A model for replication repair in mammalian cells. J. Mol. Biol. 101, 417–425 (1976).
Courcelle, J. Recs preventing wrecks. Mutat. Res. 577, 217–227 (2005).
Caillet-Fauquet, P. & Maenhaut-Michel, G. Nature of the SOS mutator activity: genetic characterization of untargeted mutagenesis in Escherichia coli. Mol. Gen. Genet. 213, 491–498 (1988).
Fijalkowska, I. J., Dunn, R. L. & Schaaper, R. M. Genetic requirements and mutational specificity of the Escherichia coli SOS mutator activity. J. Bacteriol. 179, 7435–7445 (1997).
Kawamoto, T. et al. Dual roles for DNA polymerase η in homologous DNA recombination and translesion DNA synthesis. Mol. Cell 20, 793–799 (2005).
McIlwraith, M. J. et al. Human DNA polymerase η promotes DNA synthesis from strand invasion intermediates of homologous recombination. Mol. Cell 20, 783–792 (2005).
Friedberg, E. C., Lehmann, A. R. & Fuchs, R. P. Trading places: how do DNA polymerases switch during translesion DNA synthesis? Mol. Cell 18, 499–505 (2005).
Bunting, K. A., Roe, S. M. & Pearl, L. H. Structural basis for recruitment of translesion DNA polymerase Pol IV/DinB to the β-clamp. EMBO J. 22, 5883–5892 (2003).
Indiani, C., McInerney, P., Georgescu, R., Goodman, M. F. & O'Donnell, M. A sliding-clamp toolbelt binds high- and low-fidelity DNA polymerases simultaneously. Mol. Cell 19, 805–815 (2005).
Napolitano, R., Janel-Bintz, R., Wagner, J. & Fuchs, R. P. All three SOS-inducible DNA polymerases (Pol II, Pol IV and Pol V) are involved in induced mutagenesis. EMBO J. 19, 6259–6265 (2000).
Little, J. W., Edmiston, S. H., Pacelli, L. Z. & Mount, D. W. Cleavage of the Escherichia coli LexA protein by the RecA protease. Proc. Natl Acad. Sci. USA 77, 3225–3229 (1980).
Fernandez de Henestrosa, A. R. et al. Identification of additional genes belonging to the LexA-regulon in Escherichia coli. Mol. Microbiol. 35, 1560–1572 (2000).
Opperman, T., Murli, S., Smith, B. T. & Walker, G. C. A model for umuDC-dependent prokaryotic DNA damage checkpoint. Proc. Natl Acad. Sci. USA 96, 9218–9223 (1999).
Sommer, S., Boudsocq, F., Devoret, R. & Bailone, A. Specific RecA amino acid changes affect RecA-UmuD′C interaction. Mol. Microbiol. 28, 281–291 (1998).
Goodman, M. F. & Tippin, B. The expanding polymerase universe. Nature Rev. Mol. Cell Biol. 1, 101–109 (2000).
Ling, H., Boudsocq, F., Woodgate, R. & Yang, W. Crystal structure of a Y-family DNA polymerase in action: a mechanism for error-prone and lesion-bypass replication. Cell 107, 91–102 (2001).
Tang, M. et al. Roles of E. coli DNA polymerases IV and V in lesion-targeted and untargeted SOS mutagenesis. Nature 404, 1014–1018 (2000).
Shen, X. et al. Efficiency and accuracy of SOS-induced DNA polymerases replicating benzo[a]pyrene-7,8-diol 9,10-epoxide A and G adducts. J. Biol. Chem. 277, 5265–5274 (2002).
LeClerc, J. E., Borden, A. & Lawrence, C. W. The thymine-thymine pyrimidine-pyrimidone(6-4) ultraviolet light photoproduct is highly mutagenic and specifically induces 3′ thymine-to-cytosine transitions in Escherichia coli. Proc. Natl Acad. Sci. USA 88, 9685–9689 (1991).
Register, J. C. & Griffith, J. The direction of RecA protein assembly onto single strand DNA is the same as the direction of strand assimilation during strand exchange. J. Biol. Chem. 260, 12308–12312 (1985).
Egelman, E. H. & Stasiak, A. Structure of helical RecA–DNA complexes. Complexes formed in the presence of ATP-γ-S or ATP. J. Mol. Biol. 191, 677–697 (1986).
Spies, M. & Kowalczykowski, S. C. The RecA binding locus of RecBCD is a general domain for recruitment of DNA strand exchange proteins. Mol. Cell 21, 573–580 (2006).
VanLoock, M. S. et al. Complexes of RecA with LexA and RecX differentiate between active and inactive RecA nucleoprotein filaments. J. Mol. Biol. 333, 345–354 (2003).
Schlacher, K., Pham, P., Cox, M. M. & Goodman, M. F. Roles of DNA polymerase V and RecA protein in SOS damage-induced mutation. Chem. Rev. 106, 406–419 (2006).
Flores, M. J., Sanchez, N. & Michel, B. A fork-clearing role for UvrD. Mol. Microbiol. 57, 1664–1675 (2005).
Bridges, B. A. Error-prone DNA repair and translesion DNA synthesis. II: The inducible SOS hypothesis. DNA Repair 4, 725–739 (2005).
Perry, K. L., Elledge, S. J., Mitchell, B. B., Marsh, L. & Walker, G. C. umuDC and mucAB operons whose products are required for UV light- and chemical-induced mutagenesis: UmuD, MucA, and LexA proteins share homology. Proc. Natl Acad. Sci. USA 82, 4331–4335 (1985).
Acknowledgements
The authors' work on SOS mutagenesis carried out from 1988 onwards is supported by grants from the National Institutes of Health. We are indebted to the many contributors to the SOS field and would like to single out a few of the 'old timers': E. Witkin, M. Radman, G. Walker and R. Devoret, with a special heartfelt thanks to H. Echols. E. Witkin kindly provided reminiscences of how SOS began and evolved. We thank J. Petruska for comments on the manuscript. We especially thank students and colleagues I. Bruck, M. Tang, X. Shen, P. Pham, M. Cox and R. Woodgate, who devoted much effort and creative thinking to these studies.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Related links
Rights and permissions
About this article
Cite this article
Schlacher, K., Goodman, M. Lessons from 50 years of SOS DNA-damage-induced mutagenesis. Nat Rev Mol Cell Biol 8, 587–594 (2007). https://doi.org/10.1038/nrm2198
Issue Date:
DOI: https://doi.org/10.1038/nrm2198
This article is cited by
-
Fosfomycin and nitrofurantoin: classic antibiotics and perspectives
The Journal of Antibiotics (2021)
-
Single-molecule imaging of LexA degradation in Escherichia coli elucidates regulatory mechanisms and heterogeneity of the SOS response
Nature Microbiology (2021)
-
Environmental stress perception activates structural remodeling of extant Streptococcus mutans biofilms
npj Biofilms and Microbiomes (2020)
-
Microbiological effects of sublethal levels of antibiotics
Nature Reviews Microbiology (2014)