Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Helping Wingless take flight: how WNT proteins are secreted

Abstract

How functional WNT proteins are made and how their secretion is regulated is becoming a focal point for the WNT-signalling field. Recently, lipoprotein particles, WNT lipid modifications, the conserved transmembrane protein Wntless (WLS; also known as EVI and SRT) and the retromer complex have been implicated in WNT secretion. Our aim is to synthesize ideas from these new findings for the mechanisms that underlie WNT secretion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of the localization and trafficking of WNT proteins.
Figure 2: Hypothetical routes for WNT exocytosis.
Figure 3: WNT exocytosis requires endocytosis.

Similar content being viewed by others

References

  1. Logan, C. Y. & Nusse, R. The Wnt signaling pathway in development and disease. Annu. Rev. Cell Dev. Biol. 20, 781–810 (2004).

    Article  CAS  Google Scholar 

  2. Veeman, M. T., Axelrod, J. D. & Moon, R. T. A second canon. Functions and mechanisms of β-catenin-independent Wnt signaling. Dev. Cell 5, 367–377 (2003).

    Article  CAS  Google Scholar 

  3. Clevers, H. Wnt/β-catenin signaling in development and disease. Cell 127, 469–480 (2006).

    Article  CAS  Google Scholar 

  4. Kusserow, A. et al. Unexpected complexity of the Wnt gene family in a sea anemone. Nature 433, 156–160 (2005).

    Article  CAS  Google Scholar 

  5. Nusse, R. & Varmus, H. E. Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell 31, 99–109 (1982).

    Article  CAS  Google Scholar 

  6. Cabrera, C. V., Alonso, M. C., Johnston, P., Phillips, R. G. & Lawrence, P. A. Phenocopies induced with antisense RNA identify the wingless gene. Cell 50, 659–663 (1987).

    Article  CAS  Google Scholar 

  7. Rijsewijk, F. et al. The Drosophila homolog of the mouse mammary oncogene int-1 is identical to the segment polarity gene wingless. Cell 50, 649–657 (1987).

    Article  CAS  Google Scholar 

  8. Lawrence, P. A. Morphogens: how big is the big picture? Nature Cell Biol. 3, E151–E154 (2001).

    Article  CAS  Google Scholar 

  9. Neumann, C. J. & Cohen, S. M. Long-range action of Wingless organizes the dorsal-ventral axis of the Drosophila wing. Development 124, 871–880 (1997).

    CAS  PubMed  Google Scholar 

  10. Zecca, M., Basler, K. & Struhl, G. Direct and long-range action of a Wingless morphogen gradient. Cell 87, 833–844 (1996).

    Article  CAS  Google Scholar 

  11. Kiecker, C. & Niehrs, C. A morphogen gradient of Wnt/β-catenin signalling regulates anteroposterior neural patterning in Xenopus. Development 128, 4189–4201 (2001).

    CAS  PubMed  Google Scholar 

  12. Sancho, E., Batlle, E. & Clevers, H. Signaling pathways in intestinal development and cancer. Annu. Rev. Cell Dev. Biol. 20, 695–723 (2004).

    Article  CAS  Google Scholar 

  13. Panakova, D., Sprong, H., Marois, E., Thiele, C. & Eaton, S. Lipoprotein particles are required for Hedgehog and Wingless signalling. Nature 435, 58–65 (2005).

    Article  CAS  Google Scholar 

  14. Coudreuse, D. Y., Roel, G., Betist, M. C., Destree, O. & Korswagen, H. C. Wnt gradient formation requires retromer function in Wnt-producing cells. Science 312, 921–924 (2006).

    Article  CAS  Google Scholar 

  15. Prasad, B. C. & Clark, S. G. Wnt signaling establishes anteroposterior neuronal polarity and requires retromer in C. elegans. Development 133, 1757–1766 (2006).

    Article  CAS  Google Scholar 

  16. Banziger, C. et al. Wntless, a conserved membrane protein dedicated to the secretion of Wnt proteins from signaling cells. Cell 125, 509–522 (2006).

    Article  CAS  Google Scholar 

  17. Bartscherer, K., Pelte, N., Ingelfinger, D. & Boutros, M. Secretion of Wnt ligands requires Evi, a conserved transmembrane protein. Cell 125, 523–533 (2006).

    Article  CAS  Google Scholar 

  18. Goodman, R. M. et al. Sprinter: a novel transmembrane protein required for Wg secretion and signaling. Development 133, 4901–4911 (2006).

    Article  CAS  Google Scholar 

  19. Miller, J. R. The Wnts. Genome Biol. 3, reviews3001.1–reviews3001.15 (2002).

    Google Scholar 

  20. Tanaka, K., Kitagawa, Y. & Kadowaki, T. Drosophila segment polarity gene product porcupine stimulates the posttranslational N-glycosylation of Wingless in the endoplasmic reticulum. J. Biol. Chem. 277, 12816–12823 (2002).

    Article  CAS  Google Scholar 

  21. Vincent, J. P. & Dubois, L. Morphogen transport along epithelia, an integrated trafficking problem. Dev. Cell 3, 615–623 (2002).

    Article  CAS  Google Scholar 

  22. Eaton, S. Release and trafficking of lipid-linked morphogens. Curr. Opin. Genet. Dev. 16, 17–22 (2006).

    Article  CAS  Google Scholar 

  23. Willert, K. et al. Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature 423, 448–452 (2003).

    Article  CAS  Google Scholar 

  24. Zhai, L., Chaturvedi, D. & Cumberledge, S. Drosophila Wnt-1 undergoes a hydrophobic modification and is targeted to lipid rafts, a process that requires Porcupine. J. Biol. Chem. 279, 33220–33227 (2004).

    Article  CAS  Google Scholar 

  25. Takada, R. et al. Mono-unsaturated fatty acid modification of Wnt protein: its role in Wnt secretion. Dev. Cell 11, 791–801 (2006).

    Article  CAS  Google Scholar 

  26. Hofmann, K. A superfamily of membrane-bound O-acyltransferases with implications for Wnt signaling. Trends Biochem. Sci. 25, 111–112 (2000).

    Article  CAS  Google Scholar 

  27. Kadowaki, T., Wilder, E., Klingensmith, J., Zachary, K. & Perrimon, N. The segment polarity gene porcupine encodes a putative multitransmembrane protein involved in Wingless processing. Genes Dev. 10, 3116–3128 (1996).

    Article  CAS  Google Scholar 

  28. Caricasole, A., Ferraro, T., Rimland, J. M. & Terstappen, G. C. Molecular cloning and initial characterization of the MG61 / PORC gene, the human homologue of the Drosophila segment polarity gene Porcupine. Gene 288, 147–157 (2002).

    Article  CAS  Google Scholar 

  29. Thorpe, C. J., Schlesinger, A., Carter, J. C. & Bowerman, B. Wnt signaling polarizes an early C. elegans blastomere to distinguish endoderm from mesoderm. Cell 90, 695–705 (1997).

    Article  CAS  Google Scholar 

  30. Tanaka, K., Okabayashi, K., Asashima, M., Perrimon, N. & Kadowaki, T. The evolutionarily conserved porcupine gene family is involved in the processing of the Wnt family. Eur. J. Biochem. 267, 4300–4311 (2000).

    Article  CAS  Google Scholar 

  31. van den Heuvel, M., Harryman-Samos, C., Klingensmith, J., Perrimon, N. & Nusse, R. Mutations in the segment polarity genes wingless and porcupine impair secretion of the wingless protein. EMBO J. 12, 5293–5302 (1993).

    Article  CAS  Google Scholar 

  32. van den Heuvel, M., Nusse, R., Johnston, P. & Lawrence, P. A. Distribution of the wingless gene product in Drosophila embryos: a protein involved in cell–cell communication. Cell 59, 739–749 (1989).

    Article  CAS  Google Scholar 

  33. Marois, E., Mahmoud, A. & Eaton, S. The endocytic pathway and formation of the Wingless morphogen gradient. Development 133, 307–317 (2006).

    Article  CAS  Google Scholar 

  34. Strigini, M. & Cohen, S. M. Wingless gradient formation in the Drosophila wing. Curr. Biol. 10, 293–300 (2000).

    Article  CAS  Google Scholar 

  35. Pfeiffer, S., Ricardo, S., Manneville, J. B., Alexandre, C. & Vincent, J. P. Producing cells retain and recycle Wingless in Drosophila embryos. Curr. Biol. 12, 957–962 (2002).

    Article  CAS  Google Scholar 

  36. Futter, C. E., Connolly, C. N., Cutler, D. F. & Hopkins, C. R. Newly synthesized transferrin receptors can be detected in the endosome before they appear on the cell surface. J. Biol. Chem. 270, 10999–11003 (1995).

    Article  CAS  Google Scholar 

  37. Ang, A. L. et al. Recycling endosomes can serve as intermediates during transport from the Golgi to the plasma membrane of MDCK cells. J. Cell. Biol. 167, 531–543 (2004).

    Article  CAS  Google Scholar 

  38. Pfeffer, S. R. Membrane transport: retromer to the rescue. Curr. Biol. 11, R109–R111 (2001).

    Article  CAS  Google Scholar 

  39. Seaman, M. N. Recycle your receptors with retromer. Trends Cell Biol. 15, 68–75 (2005).

    Article  CAS  Google Scholar 

  40. Arighi, C. N., Hartnell, L. M., Aguilar, R. C., Haft, C. R. & Bonifacino, J. S. Role of the mammalian retromer in sorting of the cation-independent mannose 6-phosphate receptor. J. Cell Biol. 165, 123–133 (2004).

    Article  CAS  Google Scholar 

  41. Verges, M. et al. The mammalian retromer regulates transcytosis of the polymeric immunoglobulin receptor. Nature Cell Biol. 6, 763–769 (2004).

    Article  CAS  Google Scholar 

  42. Gleeson, P. A., Lock, J. G., Luke, M. R. & Stow, J. L. Domains of the TGN: coats, tethers and G proteins. Traffic 5, 315–326 (2004).

    Article  CAS  Google Scholar 

  43. Wistrand, M., Kall, L. & Sonnhammer, E. L. A general model of G protein-coupled receptor sequences and its application to detect remote homologs. Protein Sci. 15, 509–521 (2006).

    Article  CAS  Google Scholar 

  44. Bard, F. & Malhotra, V. The formation of TGN-to-plasma-membrane transport carriers. Annu. Rev. Cell Dev. Biol. 22, 439–455 (2006).

    Article  CAS  Google Scholar 

  45. Burke, R. et al. Dispatched, a novel sterol-sensing domain protein dedicated to the release of cholesterol-modified Hedgehog from signaling cells. Cell 99, 803–815 (1999).

    Article  CAS  Google Scholar 

  46. Traub, L. M. Common principles in clathrin-mediated sorting at the Golgi and the plasma membrane. Biochim. Biophys. Acta 1744, 415–437 (2005).

    Article  CAS  Google Scholar 

  47. McNiven, M. A. & Thompson, H. M. Vesicle formation at the plasma membrane and trans-Golgi network: the same but different. Science 313, 1591–1594 (2006).

    Article  CAS  Google Scholar 

  48. Nusse, R. Wnts and Hedgehogs: lipid-modified proteins and similarities in signaling mechanisms at the cell surface. Development 130, 5297–5305 (2003).

    Article  CAS  Google Scholar 

  49. Mann, R. K. & Beachy, P. A. Novel lipid modifications of secreted protein signals. Annu. Rev. Biochem. 73, 891–923 (2004).

    Article  CAS  Google Scholar 

  50. Chen, M. H., Li, Y. J., Kawakami, T., Xu, S. M. & Chuang, P. T. Palmitoylation is required for the production of a soluble multimeric Hedgehog protein complex and long-range signaling in vertebrates. Genes Dev. 18, 641–659 (2004).

    Article  CAS  Google Scholar 

  51. Bard, F. et al. Functional genomics reveals genes involved in protein secretion and Golgi organization. Nature 439, 604–607 (2006).

    Article  CAS  Google Scholar 

  52. Pelkmans, L. Secrets of caveolae- and lipid raft-mediated endocytosis revealed by mammalian viruses. Biochim. Biophys. Acta 1746, 295–304 (2005).

    Article  CAS  Google Scholar 

  53. Oving, I. M. & Clevers, H. C. Molecular causes of colon cancer. Eur. J. Clin. Invest. 32, 448–457 (2002).

    Article  CAS  Google Scholar 

  54. Hackam, A. S. The Wnt signaling pathway in retinal degenerations. IUBMB Life 57, 381–388 (2005).

    Article  CAS  Google Scholar 

  55. Niemann, S. et al. Homozygous WNT3 mutation causes tetra-amelia in a large consanguineous family. Am. J. Hum. Genet. 74, 558–563 (2004).

    Article  CAS  Google Scholar 

  56. Hartmann, C. A Wnt canon orchestrating osteoblastogenesis. Trends Cell Biol. 16, 151–158 (2006).

    Article  CAS  Google Scholar 

  57. Janssens, N., Janicot, M. & Perera, T. The Wnt-dependent signaling pathways as target in oncology drug discovery. Invest. New Drugs 24, 263–280 (2006).

    Article  CAS  Google Scholar 

  58. Wong, G. T., Gavin, B. J. & McMahon, A. P. Differential transformation of mammary epithelial cells by Wnt genes. Mol. Cell. Biol. 14, 6278–6286 (1994).

    Article  CAS  Google Scholar 

  59. van Vliet, C., Thomas, E. C., Merino-Trigo, A., Teasdale, R. D. & Gleeson, P. A. Intracellular sorting and transport of proteins. Prog. Biophys. Mol. Biol. 83, 1–45 (2003).

    Article  CAS  Google Scholar 

  60. Rodriguez-Boulan, E., Kreitzer, G. & Musch, A. Organization of vesicular trafficking in epithelia. Nature Rev. Mol. Cell Biol. 6, 233–247 (2005).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konrad Basler.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Konrad Basler's homepage

The Wnt Homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hausmann, G., Bänziger, C. & Basler, K. Helping Wingless take flight: how WNT proteins are secreted. Nat Rev Mol Cell Biol 8, 331–336 (2007). https://doi.org/10.1038/nrm2141

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm2141

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing