Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Regulation of DNA repair by ubiquitylation

Key Points

  • Recent studies in the DNA-repair field have highlighted the expanding role of ubiquitylation and sumoylation in the regulation of diverse DNA-repair processes and pathways such as homologous recombination (HR), nucleotide-excision repair (NER), base-excision repair (BER) and translesion DNA synthesis (TLS).

  • Fanconi Anemia (FA) proteins interact in a common pathway to monoubiquitylate the downstream effector protein, FANCD2, which enables it to functionally associate with breast and ovarian cancer suppressor proteins BRCA1 and BRCA2, and other chromatin-bound DNA-repair proteins.

  • Monoubiquitylation of the replication-processivity factor PCNA activates TLS through the interaction of novel ubiquitin-binding domains of Y-family TLS polymerases with the modified PCNA.

  • COP9 signalosome (CSN) negatively regulates the function of two existing cullin-based E3-ligase complexes, DDB2 and CSA, to promote NER.

  • Reversible polyubiquitylation of XPC upon ultraviolet (UV) irradiation alters the DNA-binding properties of XPC and the DDB complex for UV photoproducts, an important property for NER.

  • Sumoylation of the thymine-DNA glycosylase (TDG) of the BER pathway reduces the affinity of TDG for the generated abasic site, thereby allowing efficient product release from the modified DNA template.

Abstract

The process of ubiquitylation is best known for its role in targeting proteins for degradation by the proteasome. However, recent studies of DNA-repair and DNA-damage-response pathways have significantly broadened the scope of the role of ubiquitylation to include non-proteolytic functions of ubiquitin. These pathways involve the monoubiquitylation of key DNA-repair proteins that have regulatory functions in homologous recombination and translesion DNA synthesis, and involve the polyubiquitylation of nucleotide-excision-repair proteins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The regulation of the Fanconi Anemia pathway by monoubiquitylation.
Figure 2: The monoubiquitylation of PCNA by RAD6–RAD18 results in a DNA polymerase switch.
Figure 3: The regulation of nucleotide-excision repair by the polyubiquitylation of XPC.
Figure 4: The regulation of base-excision repair by SUMO1 modification of human thymine-DNA glycosylase.

Similar content being viewed by others

References

  1. Sancar, A., Lindsey-Boltz, L. A., Unsal-Kacmaz, K. & Linn, S. Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu. Rev. Biochem. 73, 39–85 (2004).

    CAS  PubMed  Google Scholar 

  2. Hoeijmakers, J. H. Genome maintenance mechanisms for preventing cancer. Nature 411, 366–374 (2001). An excellent overview of mammalian DNA-repair pathways.

    CAS  PubMed  Google Scholar 

  3. Kennedy, R. D. & D'Andrea, A. D. The Fanconi Anemia/BRCA pathway: new faces in the crowd. Genes Dev. 19, 2925–2940 (2005).

    CAS  PubMed  Google Scholar 

  4. Rothfuss, A. & Grompe, M. Repair kinetics of genomic interstrand DNA cross-links: evidence for DNA double-strand break-dependent activation of the Fanconi anemia/BRCA pathway. Mol. Cell. Biol. 24, 123–134 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Niedzwiedz, W. et al. The Fanconi anaemia gene FANCC promotes homologous recombination and error-prone DNA repair. Mol. Cell 15, 607–620 (2004).

    CAS  PubMed  Google Scholar 

  6. D'Andrea, A. D. The Fanconi road to cancer. Genes Dev. 17, 1933–1936 (2003).

    CAS  PubMed  Google Scholar 

  7. D'Andrea, A. D. & Grompe, M. The Fanconi anaemia/BRCA pathway. Nature Rev. Cancer 3, 23–34 (2003).

    CAS  Google Scholar 

  8. Niedernhofer, L. J., Lalai, A. S. & Hoeijmakers, J. H. Fanconi anemia (cross)linked to DNA repair. Cell 123, 1191–1198 (2005).

    CAS  PubMed  Google Scholar 

  9. Garcia-Higuera, I. et al. Interaction of the Fanconi anemia proteins and BRCA1 in a common pathway. Mol. Cell 7, 249–262 (2001). Provides the first evidence that FA proteins are involved in a common pathway to monoubiquitylate FANCD2.

    CAS  PubMed  Google Scholar 

  10. Howlett, N. G. et al. Biallelic inactivation of BRCA2 in Fanconi anemia. Science 297, 606–609 (2002).

    CAS  PubMed  Google Scholar 

  11. Wang, X., Andreassen, P. R. & D'Andrea, A. D. Functional interaction of monoubiquitinated FANCD2 and BRCA2/FANCD1 in chromatin. Mol. Cell. Biol. 24, 5850–5862 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Meetei, A. R. et al. A novel ubiquitin ligase is deficient in Fanconi anemia. Nature Genet. 35, 165–170 (2003). Reports the identification of a ubiquitin-ligase catalytic subunit in the FA core complex.

    CAS  PubMed  Google Scholar 

  13. Matsushita, N. et al. A FancD2-monoubiquitin fusion reveals hidden functions of Fanconi anemia core complex in DNA repair. Mol. Cell 9, 841–847 (2005).

    Google Scholar 

  14. Meetei, A. R. et al. A human ortholog of archael DNA repair protein HEF is defective in Fanconi anemia complementation group M. Nature Genet. 37, 958–963 (2005).

    CAS  PubMed  Google Scholar 

  15. Mosedale, G. et al. The vertebrate Hef orthologue is a component of the Fanconi anemia tumour suppressor pathway. Nature Struct. Mol. Biol. 12, 963–971 (2005).

    Google Scholar 

  16. Andreassen, P. R., D'Andrea, A. D. & Taniguchi, T. ATR couples FANCD2 monoubiquitination to the DNA-damage response. Genes Dev. 18, 1958–1963 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Hussain, S. et al. Direct interaction of FANCD2 with BRCA2 in DNA damage response pathways. Hum. Mol. Genet. 13, 1241–1248 (2004).

    CAS  PubMed  Google Scholar 

  18. Lomonosov, M., Anand, S., Sangrithi, M., Davies, R. & Venkitaraman, A. R. Stabilization of stalled DNA replication forks by the BRCA2 breast cancer susceptibility protein. Genes Dev. 17, 3017–3022 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Montes de Oca, R. et al. Regulated interaction of the Fanconi anemia protein, FANCD2, with chromatin. Blood 105, 1003–1009 (2005).

    PubMed  Google Scholar 

  20. Taniguchi, T. et al. S-phase-specific interaction of the Fanconi anemia protein, FANCD2, with BRCA1 and RAD51. Blood 100, 2414–2420 (2002).

    CAS  PubMed  Google Scholar 

  21. Nijman, S. M. et al. The deubiquitinating enzyme USP1 regulates the Fanconi Anemia pathway. Mol. Cell 17, 331–339 (2005). Reports the results of a DUB-gene family RNAi library screen to identify negative regulators of the FA pathway.

    CAS  PubMed  Google Scholar 

  22. Vandenberg, C. J. et al. BRCA1-independent ubiquitination of FANCD2. Mol. Cell 12, 247–254 (2003).

    CAS  PubMed  Google Scholar 

  23. Mallery, D. L., Vandenberg, C. J. & Hiom, K. Activation of the E3 ligase function of the BRCA1/BARD1 complex by polyubiquitin chains. EMBO J. 21, 6755–6762 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Chiba, N. & Parvin, J. D. The BRCA1 and BARD1 association with the RNA polymerase II holoenzyme. Cancer Res. 62, 4222–4228 (2002).

    CAS  PubMed  Google Scholar 

  25. Ratner, J. N., Balasubramanian, B., Corden, J., Warren, S. L. & Bregman, D. B. Ultraviolet radiation-induced ubiquitination and proteasomal degradation of the large subunit of RNA polymerase II. Implications for transcription-coupled DNA repair. J. Biol. Chem. 273, 5184–5189 (1998).

    CAS  PubMed  Google Scholar 

  26. Hashizume, R. et al. The ring heterodimer brca1–bard1 is a ubiquitin ligase inactivated by a breast cancer-derived mutation. J. Biol. Chem. 276, 14537–14540 (2001).

    CAS  PubMed  Google Scholar 

  27. Dong, Y. et al. Regulation of BRCC, a holoenzyme complex containing BRCA1 and BRCA2, by a signalosome-like subunit and its role in DNA repair. Mol. Cell 12, 1087–1099 (2003).

    CAS  PubMed  Google Scholar 

  28. Jensen, D. E. et al. BAP1: a novel ubiquitin hydrolase which binds to the BRCA1 RING finger and enhances BRCA1-mediated cell growth suppression. Oncogene 16, 1097–1112 (1998).

    CAS  PubMed  Google Scholar 

  29. Cope, G. A. et al. Role of predicted metalloprotease motif of Jab1/Csn5 in cleavage of Nedd8 from Cul1. Science 298, 608–611 (2002). Discovery of a novel metalloprotease domain in CSN complex that is responsible for deubiquitylation and/or deneddylation activities.

    CAS  PubMed  Google Scholar 

  30. Hoege, C., Pfander, B., Moldovan, G. L., Pyrowolakis, G. & Jentsch, S. RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature 419, 135–141 (2002). Shows that PCNA in yeast can be modified by SUMO, monoubiquitin or polyubiquitin to promote RAD6-dependent error-prone or error-free post-replication repair.

    CAS  PubMed  Google Scholar 

  31. Ulrich, H. D. & Jentsch, S. Two RING finger proteins mediate cooperation between ubiquitin-conjugating enzymes in DNA repair. EMBO J. 19, 3388–3397 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Stelter, P. & Ulrich, H. D. Control of spontaneous and damage-induced mutagenesis by SUMO and ubiquitin conjugation. Nature 425, 188–191 (2003).

    CAS  PubMed  Google Scholar 

  33. Haracska, L., Torres-Ramos, C. A., Johnson, R. E., Prakash, S. & Prakash, L. Opposing effects of ubiquitin conjugation and SUMO modification of PCNA on replicational bypass of DNA lesions in Saccharomyces cerevisiae. Mol. Cell. Biol. 24, 4267–4274 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Spence, J., Sadis, S., Haas, A. L. & Finley, D. A ubiquitin mutant with specific defects in DNA repair and multiubiquitination. Mol. Cell. Biol. 15, 1265–1273 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Hofmann, R. M. & Pickart, C. M. Noncanonical MMS2-encoded ubiquitin-conjugating enzyme functions in assembly of novel polyubiquitin chains for DNA repair. Cell 96, 645–653 (1999).

    CAS  PubMed  Google Scholar 

  36. Pfander, B., Moldovan, G. L., Sacher, M., Hoege, C. & Jentsch, S. SUMO-modified PCNA recruits Srs2 to prevent recombination during S phase. Nature 436, 428–433 (2005).

    CAS  PubMed  Google Scholar 

  37. Papouli, E. et al. Crosstalk between SUMO and ubiquitin on PCNA is mediated by recruitment of the helicase Srs2p. Mol. Cell 19, 123–133 (2005).

    CAS  PubMed  Google Scholar 

  38. Kannouche, P. L., Wing, J. & Lehmann, A. R. Interaction of human DNA polymerase ε with monoubiquitinated PCNA: a possible mechanism for the polymerase switch in response to DNA damage. Mol. Cell 14, 491–500 (2004). First to show that mammalian PCNA is monoubiquitylated in order to functionally interact with a Y-family TLS polymerase.

    CAS  PubMed  Google Scholar 

  39. Watanabe, K. et al. Rad18 guides polε to replication stalling sites through physical interaction and PCNA monoubiquitination. EMBO J. 23, 3886–3896 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Masutani, C. et al. The XPV (xeroderma pigmentosum variant) gene encodes human DNA polymerase ε. Nature 399, 700–704 (1999).

    CAS  PubMed  Google Scholar 

  41. Kannouche, P. et al. Domain structure, localization, and function of DNA polymerase ε, defective in xeroderma pigmentosum variant cells. Genes Dev. 15, 158–172 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Friedberg, E. C., Wagner, R. & Radman, M. Specialized DNA polymerases, cellular survival, and the genesis of mutations. Science 296, 1627–1630 (2002).

    CAS  PubMed  Google Scholar 

  43. Murakumo, Y. et al. Interactions in the error-prone postreplication repair proteins hREV1, hREV3, and hREV7. J. Biol. Chem. 276, 35644–35651 (2001).

    CAS  PubMed  Google Scholar 

  44. Ohashi, E. et al. Interaction of hREV1 with three human Y-family DNA polymerases. Genes Cells 9, 523–531 (2004).

    CAS  PubMed  Google Scholar 

  45. Guo, C. et al. Mouse Rev1 protein interacts with multiple DNA polymerases involved in translesion DNA synthesis. EMBO J. 22, 6621–6630 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Tissier, A. et al. Co-localization in replication foci and interaction of human Y-family members, DNA polymerase pol ε and REVl protein. DNA Repair (Amst.) 3, 1503–1514 (2004).

    CAS  Google Scholar 

  47. Garg, P. & Burgers, P. M. Ubiquitinated proliferating cell nuclear antigen activates translesion DNA polymerases ε and REV1. Proc. Natl Acad. Sci. USA 102, 18361–18366 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Bienko, M. et al. Ubiquitin-binding domains in Y-family polymerases regulate translesion synthesis. Science 310, 1821–1824 (2005). Describes two novel ubiquitin binding domains, UBM and UBZ, that allow Y-family TLS polymerases to interact with monoubiquitylated PCNA.

    CAS  PubMed  Google Scholar 

  49. Kannouche, P. L. & Lehmann, A. R. Ubiquitination of PCNA and the polymerase switch in human cells. Cell Cycle 3, 1011–1013 (2004).

    CAS  PubMed  Google Scholar 

  50. Miyase, S. et al. Differential regulation of Rad18 through Rad6-dependent mono- and polyubiquitination. J. Biol. Chem. 280, 515–524 (2005).

    CAS  PubMed  Google Scholar 

  51. McCulloch, S. D. et al. Preferential cis–syn thymine dimer bypass by DNA polymerase ε occurs with biased fidelity. Nature 428, 97–100 (2004).

    CAS  PubMed  Google Scholar 

  52. Li, Z., Xiao, W., McCormick, J. J. & Maher, V. M. Identification of a protein essential for a major pathway used by human cells to avoid UV- induced DNA damage. Proc. Natl Acad. Sci. USA 99, 4459–4464 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Leach, C. A. & Michael, W. M. Ubiquitin/SUMO modification of PCNA promotes replication fork progression in Xenopus laevis egg extracts. J. Cell Biol. 171, 947–954 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Wood, R. D. et al. DNA damage recognition and nucleotide excision repair in mammalian cells. Cold Spring Harb. Symp. Quant. Biol. 65, 173–182 (2000).

    CAS  PubMed  Google Scholar 

  55. Friedberg, E. C. How nucleotide excision repair protects against cancer. Nature Rev. Cancer 1, 22–33 (2001).

    CAS  Google Scholar 

  56. Svejstrup, J. Q. Mechanisms of transcription-coupled DNA repair. Nature Rev. Mol. Cell Biol. 3, 21–29 (2002).

    CAS  Google Scholar 

  57. Fitch, M. E., Nakajima, S., Yasui, A. & Ford, J. M. In vivo recruitment of XPC to UV-induced cyclobutane pyrimidine dimers by the DDB2 gene product. J. Biol. Chem. 278, 46906–46910 (2003).

    CAS  PubMed  Google Scholar 

  58. Moser, J. et al. The UV-damaged DNA binding protein mediates efficient targeting of the nucleotide excision repair complex to UV-induced photo lesions. DNA Repair (Amst.) 4, 571–582 (2005).

    CAS  Google Scholar 

  59. Cleaver, J. E. Cancer in xeroderma pigmentosum and related disorders of DNA repair. Nature Rev. Cancer 5, 564–573 (2005).

    CAS  Google Scholar 

  60. Groisman, R. et al. The ubiquitin ligase activity in the DDB2 and CSA complexes is differentially regulated by the COP9 signalosome in response to DNA damage. Cell 113, 357–367 (2003). Provides evidence for ubiquitin ligase activity that is linked to two NER protein complexes and that is negatively regulated by the CSN.

    CAS  PubMed  Google Scholar 

  61. Cope, G. A. & Deshaies, R. J. COP9 signalosome: a multifunctional regulator of SCF and other cullin-based ubiquitin ligases. Cell 114, 663–671 (2003).

    CAS  PubMed  Google Scholar 

  62. Sugasawa, K. et al. UV-induced ubiquitylation of XPC protein mediated by UV-DDB-ubiquitin ligase complex. Cell 121, 387–400 (2005). Shows that XPC is polyubiquitylated in response to UV damage.

    CAS  PubMed  Google Scholar 

  63. Masutani, C. et al. Purification and cloning of a nucleotide excision repair complex involving the xeroderma pigmentosum group C protein and a human homologue of yeast RAD23. EMBO J. 13, 1831–1843 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Shivji, M. K., Eker, A. P. & Wood, R. D. DNA repair defect in xeroderma pigmentosum group C and complementing factor from HeLa cells. J. Biol. Chem. 269, 22749–22757 (1994).

    CAS  PubMed  Google Scholar 

  65. Sugasawa, K., Shimizu, Y., Iwai, S. & Hanaoka, F. A molecular mechanism for DNA damage recognition by the xeroderma pigmentosum group C protein complex. DNA Repair (Amst.) 1, 95–107 (2002).

    CAS  Google Scholar 

  66. Wakasugi, M. et al. DDB accumulates at DNA damage sites immediately after UV irradiation and directly stimulates nucleotide excision repair. J. Biol. Chem. 277, 1637–1640 (2002).

    CAS  PubMed  Google Scholar 

  67. Ng, J. M. et al. A novel regulation mechanism of DNA repair by damage-induced and RAD23-dependent stabilization of xeroderma pigmentosum group C protein. Genes Dev. 17, 1630–1645 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Okuda, Y. et al. Relative levels of the two mammalian Rad23 homologs determine composition and stability of the xeroderma pigmentosum group C protein complex. DNA Repair (Amst.) 3, 1285–1295 (2004).

    CAS  Google Scholar 

  69. Russell, S. J., Reed, S. H., Huang, W., Friedberg, E. C. & Johnston, S. A. The 19S regulatory complex of the proteasome functions independently of proteolysis in nucleotide excision repair. Mol. Cell 3, 687–695 (1999).

    CAS  PubMed  Google Scholar 

  70. Ortolan, T. G., Chen, L., Tongaonkar, P. & Madura, K. Rad23 stabilizes Rad4 from degradation by the Ub–proteasome pathway. Nucleic Acids Res. 32, 6490–6500 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Heessen, S., Masucci, M. G. & Dantuma, N. P. The UBA2 domain functions as an intrinsic stabilization signal that protects Rad23 from proteasomal degradation. Mol. Cell 18, 225–235 (2005).

    CAS  PubMed  Google Scholar 

  72. Bregman, D. B. et al. UV-induced ubiquitination of RNA polymerase II: a novel modification deficient in Cockayne syndrome cells. Proc. Natl Acad. Sci. USA 93, 11586–11590 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Kleiman, F. E. et al. BRCA1/BARD1 inhibition of mRNA 3′ processing involves targeted degradation of RNA polymerase II. Genes Dev. 19, 1227–1237 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Woudstra, E. C. et al. A Rad26–Def1 complex coordinates repair and RNA pol II proteolysis in response to DNA damage. Nature 415, 929–933 (2002).

    CAS  PubMed  Google Scholar 

  75. Svejstrup, J. Q. Rescue of arrested RNA polymerase II complexes. J. Cell Sci. 116, 447–451 (2003).

    CAS  PubMed  Google Scholar 

  76. Hardeland, U. et al. Thymine DNA glycosylase. Prog. Nucleic Acid Res. Mol. Biol. 68, 235–253 (2001).

    CAS  PubMed  Google Scholar 

  77. Scharer, O. D. & Jiricny, J. Recent progress in the biology, chemistry and structural biology of DNA glycosylases. Bioessays 23, 270–281 (2001).

    CAS  PubMed  Google Scholar 

  78. Hardeland, U., Steinacher, R., Jiricny, J. & Schar, P. Modification of the human thymine-DNA glycosylase by ubiquitin-like proteins facilitates enzymatic turnover. EMBO J. 21, 1456–1464 (2002). Provides evidence that TDG is modified by SUMO, which is important in facilitating BER.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Steinacher, R. & Schar, P. Functionality of human thymine DNA glycosylase requires SUMO-regulated changes in protein conformation. Curr. Biol. 15, 616–623 (2005).

    CAS  PubMed  Google Scholar 

  80. Huang, T. T., Wuerzberger-Davis, S. M., Wu, Z. H. & Miyamoto, S. Sequential modification of NEMO/IKKγ by SUMO-1 and ubiquitin mediates NF-κB activation by genotoxic stress. Cell 115, 565–576 (2003).

    CAS  PubMed  Google Scholar 

  81. Gocke, C. B., Yu, H. & Kang, J. Systematic identification and analysis of mammalian small ubiquitin-like modifier substrates. J. Biol. Chem. 280, 5004–5012 (2005).

    CAS  PubMed  Google Scholar 

  82. Pickart, C. M. Mechanisms underlying ubiquitination. Annu. Rev. Biochem. 70, 503–533 (2001).

    CAS  PubMed  Google Scholar 

  83. Pickart, C. M. Ubiquitin in chains. Trends Biochem. Sci. 25, 544–548 (2000).

    CAS  PubMed  Google Scholar 

  84. Johnson, E. S. Ubiquitin branches out. Nature Cell Biol. 4, E295–E298 (2002).

    CAS  PubMed  Google Scholar 

  85. Hicke, L., Schubert, H. L. & Hill, C. P. Ubiquitin-binding domains. Nature Rev. Mol. Cell Biol. 6, 610–621 (2005).

    CAS  Google Scholar 

  86. Sun, L. & Chen, Z. J. The novel functions of ubiquitination in signaling. Curr. Opin. Cell Biol. 16, 119–126 (2004).

    CAS  PubMed  Google Scholar 

  87. Chen, Z. J. Ubiquitin signalling in the NF-κB pathway. Nature Cell Biol. 7, 758–765 (2005).

    CAS  PubMed  Google Scholar 

  88. Amerik, A. Y. & Hochstrasser, M. Mechanism and function of deubiquitinating enzymes. Biochim. Biophys. Acta 1695, 189–207 (2004).

    CAS  PubMed  Google Scholar 

  89. Wilkinson, K. D. Regulation of ubiquitin-dependent processes by deubiquitinating enzymes. FASEB J. 11, 1245–1256 (1997).

    CAS  PubMed  Google Scholar 

  90. Di Fiore, P. P., Polo, S. & Hofmann, K. When ubiquitin meets ubiquitin receptors: a signalling connection. Nature Rev. Mol. Cell Biol. 4, 491–497 (2003).

    CAS  Google Scholar 

  91. Welchman, R. L., Gordon, C. & Mayer, R. J. Ubiquitin and ubiquitin-like proteins as multifunctional signals. Nature Rev. Mol. Cell Biol. 6, 599–609 (2005).

    CAS  Google Scholar 

  92. Gill, G. SUMO and ubiquitin in the nucleus: different functions, similar mechanisms? Genes Dev. 18, 2046–2059 (2004).

    CAS  PubMed  Google Scholar 

  93. Desterro, J. M., Rodriguez, M. S., Kemp, G. D. & Hay, R. T. Identification of the enzyme required for activation of the small ubiquitin-like protein SUMO-1. J. Biol. Chem. 274, 10618–10624 (1999).

    CAS  PubMed  Google Scholar 

  94. Hay, R. T. Protein modification by SUMO. Trends Biochem. Sci. 26, 332–333 (2001).

    CAS  PubMed  Google Scholar 

  95. Johnson, E. S. Protein modification by SUMO. Annu. Rev. Biochem. 73, 355–382 (2004).

    CAS  PubMed  Google Scholar 

  96. Hori, T. et al. Covalent modification of all members of human cullin family proteins by NEDD8. Oncogene 18, 6829–6834 (1999).

    CAS  PubMed  Google Scholar 

  97. Liu, J., Furukawa, M., Matsumoto, T. & Xiong, Y. NEDD8 modification of CUL1 dissociates p120(CAND1), an inhibitor of CUL1–SKP1 binding and SCF ligases. Mol. Cell 10, 1511–1518 (2002).

    CAS  PubMed  Google Scholar 

  98. Hanna, J., Leggett, D. S. & Finley, D. Ubiquitin depletion as a key mediator of toxicity by translational inhibitors. Mol. Cell. Biol. 23, 9251–9261 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Park, W. H. et al. Direct DNA binding activity of the fanconi anemia d2 protein. J. Biol. Chem. 280, 23593–23598 (2005).

    CAS  PubMed  Google Scholar 

  100. Guterman, A. & Glickman, M. H. Deubiquitinating enzymes are IN(trinsic to proteasome function). Curr. Protein Pept. Sci. 5, 201–211 (2004).

    CAS  PubMed  Google Scholar 

  101. Mimnaugh, E. G., Chen, H. Y., Davie, J. R., Celis, J. E. & Neckers, L. Rapid deubiquitination of nucleosomal histones in human tumor cells caused by proteasome inhibitors and stress response inducers: effects on replication, transcription, translation, and the cellular stress response. Biochemistry 36, 14418–14429 (1997).

    CAS  PubMed  Google Scholar 

  102. Voorhees, P. M. & Orlowski, R. Z. The proteasome and proteasome inhibitors in cancer therapy. Annu. Rev. Pharmacol. Toxicol. 46, 189–213 (2006).

    CAS  PubMed  Google Scholar 

  103. Mimnaugh, E. G. et al. Prevention of cisplatin-DNA adduct repair and potentiation of cisplatin-induced apoptosis in ovarian carcinoma cells by proteasome inhibitors. Biochem. Pharmacol. 60, 1343–1354 (2000).

    CAS  PubMed  Google Scholar 

  104. Huang, T. T. et al. Regulation of monoubiquitinated PCNA by DUB autocleavage. Nature Cell Biol. 8, 339–347 (2006).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank I. Dikic for sharing data prior to publication, and R. Kennedy and K. Mirchandani for critical reading of the review. This work was supported by grants from the National Institutes of Health and the Doris Duke Foundation. T.T.H. is a Blount fellow for the Damon Runyon Cancer Research foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan D. D'Andrea.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASE

DATABASE

Fanconi Anemia

Glossary

Nucleotide-excision repair

A DNA-repair process in which a small region of the DNA strand that surrounds the DNA damage (which is predominantly induced by exposure to ultraviolet light) is recognized, removed and replaced.

Global genome repair

A nucleotide-excision repair pathway that surveys the entire genome for helix-distorting DNA damage.

Transcription-coupled repair

A nucleotide-excision repair pathway that preferentially removes lesions from the coding strands of genes that are actively transcribed by RNA polymerase II.

Base-excision repair

(BER). The main DNA-repair pathway that is responsible for the repair of apurinic and apyrimidinic (AP) sites in DNA. BER is catalysed in four consecutive steps: a DNA glycosylase removes the damaged base; an AP endonuclease (APE) processes the abasic site; a DNA polymerase inserts the new nucleotide(s); and DNA ligase rejoins the DNA strand.

Mismatch repair

A DNA-repair process that removes mispaired nucleotides and insertion/deletion loops.

Homologous recombination and non-homologous end joining

(HR and NHEJ). The main pathways for the repair of DNA double-strand breaks (DSBs). Whereas HR relies on the presence of stretches of homologous, intact, double-stranded DNA as a template, NHEJ joins and seals DSBs together more indiscriminately. Especially after DNA replication when a second identical DNA copy is available, HR seems to be the preferred pathway to deal with DSBs. Otherwise, cells tend to rely on NHEJ, which is more error-prone.

Translesion DNA synthesis

Replicative DNA synthesis is a faithful process that employs high-fidelity DNA polymerases that cannot deal with damage in the DNA template. Most DNA lesions can block the progress of the replication fork. To overcome such blocks, the cell uses specialized low-fidelity DNA polymerases, which synthesize DNA past lesions.

Replication sliding clamp

A protein (or group of proteins) that encircles the DNA double helix and aids in the processivity of DNA replication by DNA polymerases.

BRCA1

A 220-kDa nuclear protein that responds to DNA damage by participating in cellular pathways that are responsible for DNA repair, mRNA transcription, cell-cycle regulation and protein ubiquitylation.

BRCA2

The product of the second breast cancer susceptibility gene that functions in the repair of DNA double-strand breaks and crosslinks through homologous recombination.

PHD domain

(Plant homeodomain). A zinc-binding domain that is a close structural relative of the RING domain whose function might include phosphoinositide binding, chromatin association and ubiquitin-ligase activity.

Triple-helix displacement assay

An assay for demonstrating translocase activity, as employed to test proteins with helicase domains that use the energy of ATP hydrolysis to translocate along DNA.

Checkpoint kinase ATR

A member of the phosphatidyl inositol 3-kinase-like kinase (PIKK) family that functions after DNA damage to initiate cell-cycle arrest to prevent further genomic instability. ATR responds to replicative stress, as caused by exposure to ultraviolet light or hydroxyurea. For example, it activates checkpoint kinases CHK1and CHK2, which, in turn, target other proteins to induce cell-cycle arrest and facilitate DNA repair.

RAD51

The main eukaryotic recombinase that is responsible for initiating DNA-strand exchange during homologous recombination.

TLS polymerase

(Translesion DNA synthesis polymerase). A low-fidelity polymerase that is used to bypass DNA lesions at the replication fork. Some TLS polymerases can be less error-prone than others, depending on the types of lesions encountered.

Metalloprotease

A peptidase that requires metal-ion chelation for its enzymatic cleavage activity.

JAMM motif

The Jab1/MPN domain metalloenzyme (JAMM) motif in the Jab1/Csn5 subunit of the COP9 signalosome (CSN), which underlies the NEDD8-isopeptidase activity of CSN. Almost all JAMM domains possess a His-X-His-X10-Asp motif (where X indicates any residue) accompanied by an upstream conserved Glu residue.

Cullin-based ubiquitin ligases

A superfamily of ubiquitin ligases that is characterized by an enzymatic core that contains a cullin-family member and a RING-domain protein.

SCF-type ubiquitin ligases

A multisubunit ubiquitin ligase (E3) complex that consists of SKP1, CUL1 and an F-box protein that confers substrate specificity, and a RING-domain protein, such as RBX1 or ROC1.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, T., D'Andrea, A. Regulation of DNA repair by ubiquitylation. Nat Rev Mol Cell Biol 7, 323–334 (2006). https://doi.org/10.1038/nrm1908

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm1908

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing