Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The Cbl interactome and its functions

Key Points

  • Cbl proteins are multifunctional adaptor proteins that are implicated in the regulation of signal transduction in response to different stimuli. Cbl-associated proteins form interactomes that can generate signal-competent networks that control many physiological processes. These interactomes determine the functional outcome of Cbl interactions.

  • Cbl proteins have been implicated in receptor-tyrosine kinase (RTK) regulation by mediating receptor internalization and downregulation. This function largely depends on Cbl-interacting proteins, which cause negative membrane curvature and the E3-ligase activity of Cbl that leads to target ubiquitylation. The latter is an important step in sorting receptor cargo towards lysosomal degradation.

  • Similarly, Cbl molecules have been implicated in T-cell receptor regulation. Activation of the T-cell-receptor complex (TCR) by an antigen-presenting cell (APC) eventually leads to degradation of the activated TCR. This function largely depends on Cbl molecules.

  • The function of the Cbl proteins is also negatively regulated by various molecular mechanisms, including sequestration of Cbl away from the activated receptor or inefficient coupling of Cbl binding to receptors with a low-phosphorylation status.

  • Cbl fulfils adaptor functions in focal adhesions. Subsequent to activation of integrins, for example, adhesion of macrophages to fibronectin or vitronectin, Cbl is attracted into focal adhesion structures and supports the stability of the multiprotein complex by its modular structure.

Abstract

Cbl proteins are ubiquitin ligases and multifunctional adaptor proteins that are implicated in the regulation of signal transduction in various cell types and in response to different stimuli. Cbl-associated proteins can assemble together at a given time or space inside the cell, and such an interactome can form signal competent networks that control many physiological processes. Dysregulation of spatial or temporal constraints in the Cbl interactome results in the development of human pathologies such as immune diseases, diabetes and cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The domain structure of Cbl proteins.
Figure 2: The Cbl interactome.
Figure 3: Inhibitors of Cbl functions.
Figure 4: Selective roles of c-Cbl and Cbl-b interactomes in T-cell receptor signalling.
Figure 5: The Cbl interactome in the regulation of the actin cytoskeleton.

Similar content being viewed by others

References

  1. Schlessinger, J. Cell signaling by receptor tyrosine kinases. Cell 103, 211–225 (2000).

    CAS  PubMed  Google Scholar 

  2. Yarden, Y. & Sliwkowski, M. X. Untangling the ErbB signalling network. Nature Rev. Mol. Cell Biol. 2, 127–137 (2001).

    CAS  Google Scholar 

  3. Jordan, J. D., Landau, E. M. & Iyengar, R. Signaling networks: the origins of cellular multitasking. Cell 103, 193–200 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Hoeller, D., Volarevic, S. & Dikic, I. Compartmentalization of growth factor receptor signalling. Curr. Opin. Cell Biol. 17, 107–111 (2005).

    CAS  PubMed  Google Scholar 

  5. Thien, C. B. & Langdon, W. Y. Cbl: many adaptations to regulate protein tyrosine kinases. Nature Rev. Mol. Cell Biol. 2, 294–307 (2001). An important review on Cbl proteins that provides details on their identification and their functions in tyrosine kinase signalling pathways.

    CAS  Google Scholar 

  6. Langdon, W. Y., Hartley, J. W., Klinken, S. P., Ruscetti, S. K. & Morse, H. C. 3rd. v-cbl, an oncogene from a dual-recombinant murine retrovirus that induces early B-lineage lymphomas. Proc. Natl Acad. Sci. USA 86, 1168–1172 (1989).

    CAS  PubMed  Google Scholar 

  7. Keane, M. M., Rivero-Lezcano, O. M., Mitchell, J. A., Robbins, K. C. & Lipkowitz, S. Cloning and characterization of cbl-b: a SH3 binding protein with homology to the c-cbl proto-oncogene. Oncogene 10, 2367–2377 (1995).

    CAS  PubMed  Google Scholar 

  8. Keane, M. M. et al. Cbl-3: a new mammalian cbl family protein. Oncogene 18, 3365–3375 (1999).

    CAS  PubMed  Google Scholar 

  9. Kim, M. et al. Molecular cloning and characterization of a novel cbl-family gene, cbl-c. Gene 239, 145–154 (1999).

    CAS  PubMed  Google Scholar 

  10. Griffiths, E. K. et al. Cbl-3-deficient mice exhibit normal epithelial development. Mol. Cell. Biol. 23, 7708–7718 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Weissman, A. M. Themes and variations on ubiquitylation. Nature Rev. Mol. Cell Biol. 2, 169–178 (2001).

    CAS  Google Scholar 

  12. Ciechanover, A. Proteolysis: from the lysosome to ubiquitin and the proteasome. Nature Rev. Mol. Cell Biol. 6, 79–87 (2005).

    CAS  Google Scholar 

  13. Hicke, L. Protein regulation by monoubiquitin. Nature Rev. Mol. Cell Biol. 2, 195–201 (2001).

    CAS  Google Scholar 

  14. Di Fiore, P. P., Polo, S. & Hofmann, K. When ubiquitin meets ubiquitin receptors: a signalling connection. Nature Rev. Mol. Cell Biol. 4, 491–497 (2003).

    CAS  Google Scholar 

  15. Dikic, I., Szymkiewicz, I. & Soubeyran, P. Cbl signaling networks in the regulation of cell function. Cell. Mol. Life Sci. 60, 1805–1827 (2003).

    CAS  PubMed  Google Scholar 

  16. Tanaka, S., Neff, L., Baron, R. & Levy, J. B. Tyrosine phosphorylation and translocation of the c-cbl protein after activation of tyrosine kinase signaling pathways. J. Biol. Chem. 270, 14347–14351 (1995).

    CAS  PubMed  Google Scholar 

  17. Galisteo, M. L., Dikic, I., Batzer, A. G., Langdon, W. Y. & Schlessinger, J. Tyrosine phosphorylation of the c-cbl proto-oncogene protein product and association with epidermal growth factor (EGF) receptor upon EGF stimulation. J. Biol. Chem. 270, 20242–20245 (1995).

    CAS  PubMed  Google Scholar 

  18. Bowtell, D. D. & Langdon, W. Y. The protein product of the c-cbl oncogene rapidly complexes with the EGF receptor and is tyrosine phosphorylated following EGF stimulation. Oncogene 11, 1561–1567 (1995).

    CAS  PubMed  Google Scholar 

  19. Meisner, H. & Czech, M. P. Coupling of the proto-oncogene product c-Cbl to the epidermal growth factor receptor. J. Biol. Chem. 270, 25332–25335 (1995).

    CAS  PubMed  Google Scholar 

  20. Levkowitz, G. et al. Coupling of the c-Cbl proto-oncogene product to ErbB-1/EGF-receptor but not to other ErbB proteins. Oncogene 12, 1117–1125 (1996).

    CAS  PubMed  Google Scholar 

  21. Jongeward, G. D., Clandinin, T. R. & Sternberg, P. W. sli-1, a negative regulator of LET-23-mediated signaling in C. elegans. Genetics 139, 1553–1566 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Sternberg, P. W. et al. LET-23-mediated signal transduction during Caenorhabditis elegans development. Mol. Reprod. Dev. 42, 523–528 (1995).

    CAS  PubMed  Google Scholar 

  23. Yoon, C. H., Lee, J., Jongeward, G. D. & Sternberg, P. W. Similarity of SLI-1, a regulator of vulval development in C. elegans, to the mammalian proto-oncogene c-cbl. Science 269, 1102–1105 (1995). Describes how the C. elegans orthologue of Cbl, SLI-1, negatively regulates functions of the EGFR orthologue, LET-23. This paper took the view on Cbl beyond the adaptor horizon.

    CAS  PubMed  Google Scholar 

  24. Langdon, W. Y. The cbl oncogene: a novel substrate of protein tyrosine kinases. Aust. N. Z. J. Med. 25, 859–864 (1995).

    CAS  PubMed  Google Scholar 

  25. Schlessinger, J. Ligand-induced, receptor-mediated dimerization and activation of EGF receptor. Cell 110, 669–672 (2002).

    CAS  PubMed  Google Scholar 

  26. Jiang, X., Huang, F., Marusyk, A. & Sorkin, A. Grb2 regulates internalization of EGF receptors through clathrin-coated pits. Mol. Biol. Cell 14, 858–870 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Fukazawa, T., Miyake, S., Band, V. & Band, H. Tyrosine phosphorylation of Cbl upon epidermal growth factor (EGF) stimulation and its association with EGF receptor and downstream signaling proteins. J. Biol. Chem. 271, 14554–14559 (1996).

    CAS  PubMed  Google Scholar 

  28. Margolis, B. L. et al. All autophosphorylation sites of epidermal growth factor (EGF) receptor and HER2/neu are located in their carboxyl-terminal tails. Identification of a novel site in EGF receptor. J. Biol. Chem. 264, 10667–10671 (1989).

    CAS  PubMed  Google Scholar 

  29. Grovdal, L. M., Stang, E., Sorkin, A. & Madshus, I. H. Direct interaction of Cbl with pTyr 1045 of the EGF receptor (EGFR) is required to sort the EGFR to lysosomes for degradation. Exp. Cell Res. 300, 388–395 (2004).

    CAS  PubMed  Google Scholar 

  30. Joazeiro, C. A. et al. The tyrosine kinase negative regulator c-Cbl as a RING-type, E2-dependent ubiquitin-protein ligase. Science 286, 309–312 (1999).

    CAS  PubMed  Google Scholar 

  31. Levkowitz, G. et al. Ubiquitin ligase activity and tyrosine phosphorylation underlie suppression of growth factor signaling by c-Cbl/Sli-1. Mol. Cell 4, 1029–1040 (1999). The studies in references 30 and 31 present the identification of Cbl as an ubiquitin-ligase for receptor tyrosine kinases.

    CAS  PubMed  Google Scholar 

  32. Dikic, I. & Giordano, S. Negative receptor signalling. Curr. Opin Cell Biol. 15, 128–135 (2003).

    CAS  PubMed  Google Scholar 

  33. Dikic, I. CIN85/CMS family of adaptor molecules. FEBS Lett. 529, 110–115 (2002).

    CAS  PubMed  Google Scholar 

  34. Petrelli, A. et al. The endophilin–CIN85–Cbl complex mediates ligand-dependent downregulation of c-Met. Nature 416, 187–190 (2002).

    CAS  PubMed  Google Scholar 

  35. Soubeyran, P., Kowanetz, K., Szymkiewicz, I., Langdon, W. Y. & Dikic, I. Cbl-CIN85-endophilin complex mediates ligand-induced downregulation of EGF receptors. Nature 416, 183–187 (2002). The studies in references 33 and 34 describe how Cbl mediates internalization of activated growth factor receptors independently of its ubiquitin ligase activity. Phosphorylated Cbl functions as an adaptor to recruit CIN85/endophilins into active receptor complexes and thereby promotes endocytosis of EGF and HGF receptors.

    CAS  PubMed  Google Scholar 

  36. Lynch, D. K. et al. A Cortactin-CD2-associated protein (CD2AP) complex provides a novel link between epidermal growth factor receptor endocytosis and the actin cytoskeleton. J. Biol. Chem. 278, 21805–21813 (2003).

    CAS  PubMed  Google Scholar 

  37. Holler, D. & Dikic, I. Receptor endocytosis via ubiquitin-dependent and -independent pathways. Biochem. Pharmacol. 67, 1013–1017 (2004).

    CAS  PubMed  Google Scholar 

  38. Sigismund, S. et al. From the cover: clathrin-independent endocytosis of ubiquitinated cargos. Proc. Natl Acad. Sci. USA 102, 2760–2765 (2005).

    CAS  PubMed  Google Scholar 

  39. Duan, L. et al. Cbl-mediated ubiquitinylation is required for lysosomal sorting of epidermal growth factor receptor but is dispensable for endocytosis. J. Biol. Chem. 278, 28950–28960 (2003).

    CAS  PubMed  Google Scholar 

  40. Simonsen, A., Wurmser, A. E., Emr, S. D. & Stenmark, H. The role of phosphoinositides in membrane transport. Curr. Opin Cell Biol. 13, 485–492 (2001).

    CAS  PubMed  Google Scholar 

  41. Gout, I. et al. Negative regulation of PI 3-kinase by Ruk, a novel adaptor protein. EMBO J. 19, 4015–4025 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Choi, J. H. et al. Cbl competitively inhibits epidermal growth factor-induced activation of phospholipase C-χ1. Mol. Cells 15, 245–255 (2003).

    CAS  PubMed  Google Scholar 

  43. Raucher, D. et al. Phosphatidylinositol 4,5-bisphosphate functions as a second messenger that regulates cytoskeleton-plasma membrane adhesion. Cell 100, 221–228 (2000).

    CAS  PubMed  Google Scholar 

  44. Kowanetz, K. et al. CIN85 associates with multiple effectors controlling intracellular trafficking of epidermal growth factor receptors. Mol. Biol. Cell 15, 3155–3166 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Stenmark, H. Cycling lipids. Curr. Biol. 10, R57–R59 (2000).

    CAS  PubMed  Google Scholar 

  46. Zerial, M. & McBride, H. Rab proteins as membrane organizers. Nature Rev. Mol. Cell Biol. 2, 107–117 (2001).

    CAS  Google Scholar 

  47. Uddin, S., Gardziola, C., Dangat, A., Yi, T. & Platanias, L. C. Interaction of the c-cbl proto-oncogene product with the Tyk-2 protein tyrosine kinase. Biochem. Biophys. Res. Commun. 225, 833–838 (1996).

    CAS  PubMed  Google Scholar 

  48. Magnifico, A. et al. WW domain HECT E3s target Cbl RING finger E3s for proteasomal degradation. J. Biol. Chem. 278, 43169–43177 (2003).

    CAS  PubMed  Google Scholar 

  49. Bao, J., Gur, G. & Yarden, Y. Src promotes destruction of c-Cbl: implications for oncogenic synergy between Src and growth factor receptors. Proc. Natl Acad. Sci. USA 100, 2438–2443 (2003).

    CAS  PubMed  Google Scholar 

  50. Yokouchi, M. et al. Src-catalyzed phosphorylation of c-Cbl leads to the interdependent ubiquitination of both proteins. J. Biol. Chem. 276, 35185–35193 (2001).

    CAS  PubMed  Google Scholar 

  51. Schmidt, M. H., Furnari, F. B., Cavenee, W. K. & Bogler, O. Epidermal growth factor receptor signaling intensity determines intracellular protein interactions, ubiquitination, and internalization. Proc. Natl Acad. Sci. USA 100, 6505–6510 (2003).

    CAS  PubMed  Google Scholar 

  52. Kim, H. J. & Bar-Sagi, D. Modulation of signalling by Sprouty: a developing story. Nature Rev. Mol. Cell Biol. 5, 441–450 (2004).

    CAS  Google Scholar 

  53. Haglund, K., Schmidt, M. H., Wong, E. S., Guy, G. R. & Dikic, I. Sprouty2 acts at the Cbl/CIN85 interface to inhibit epidermal growth factor receptor downregulation. EMBO Rep. 6, 635–641 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Wu, W. J., Tu, S. & Cerione, R. A. Activated Cdc42 sequesters c-Cbl and prevents EGF receptor degradation. Cell 114, 715–725 (2003).

    CAS  PubMed  Google Scholar 

  55. Kowanetz, K. et al. Suppressors of T-cell receptor signaling Sts-1 and Sts-2 bind to Cbl and inhibit endocytosis of receptor tyrosine kinases. J. Biol. Chem. 279, 32786–32795 (2004).

    CAS  PubMed  Google Scholar 

  56. Feshchenko, E. A. et al. TULA: an SH3- and UBA-containing protein that binds to c-Cbl and ubiquitin. Oncogene 23, 9449 (2004).

    CAS  Google Scholar 

  57. Carpino, N. et al. Regulation of ZAP-70 activation and TCR signaling by two related proteins, Sts-1 and Sts-2. Immunity 20, 37–46 (2004).

    CAS  PubMed  Google Scholar 

  58. Schmidt, M. H., Dikic, I. & Bogler, O. Src phosphorylation of Alix/AIP1 modulates its interaction with binding partners and antagonizes its activities. J. Biol. Chem. 280, 3414–3425 (2005).

    CAS  PubMed  Google Scholar 

  59. Schmidt, M. H. et al. Alix/AIP1 antagonizes epidermal growth factor receptor downregulation by the Cbl-SETA/CIN85 complex. Mol. Cell Biol. 24, 8981–8993 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Strack, B., Calistri, A., Craig, S., Popova, E. & Gottlinger, H. G. AIP1/ALIX is a binding partner for HIV-1 p6 and EIAV p9 functioning in virus budding. Cell 114, 689–699 (2003).

    CAS  PubMed  Google Scholar 

  61. Lee, K. H. et al. The immunological synapse balances T cell receptor signaling and degradation. Science 302, 1218–1222 (2003).

    CAS  PubMed  Google Scholar 

  62. Jun, J. E. & Goodnow, C. C. Scaffolding of antigen receptors for immunogenic versus tolerogenic signaling. Nature Immunol. 4, 1057–1064 (2003).

    CAS  Google Scholar 

  63. Janssen, E. & Zhang, W. Adaptor proteins in lymphocyte activation. Curr. Opin. Immunol. 15, 269–276 (2003).

    CAS  PubMed  Google Scholar 

  64. Tang, J., Sawasdikosol, S., Chang, J. H. & Burakoff, S. J. SLAP, a dimeric adapter protein, plays a functional role in T cell receptor signaling. Proc. Natl Acad. Sci. USA 96, 9775–9780 (1999).

    CAS  PubMed  Google Scholar 

  65. Chu, J., Liu, Y., Koretzky, G. A. & Durden, D. L. SLP-76–Cbl–Grb2–Shc interactions in FcχRI signaling. Blood 92, 1697–1706 (1998).

    CAS  PubMed  Google Scholar 

  66. Watanabe, S. et al. Characterization of the CIN85 adaptor protein and identification of components involved in CIN85 complexes. Biochem. Biophys. Res. Commun. 278, 167–174 (2000).

    CAS  PubMed  Google Scholar 

  67. Bonita, D. P., Miyake, S., Lupher, M. L. Jr., Langdon, W. Y. & Band, H. Phosphotyrosine binding domain-dependent upregulation of the platelet-derived growth factor receptor a signaling cascade by transforming mutants of Cbl: implications for Cbl's function and oncogenicity. Mol. Cell Biol. 17, 4597–4610 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Kong, G. et al. Distinct tyrosine phosphorylation sites in ZAP-70 mediate activation and negative regulation of antigen receptor function. Mol. Cell Biol. 16, 5026–5035 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Rao, N. et al. The non-receptor tyrosine kinase Syk is a target of Cbl-mediated ubiquitylation upon B-cell receptor stimulation. EMBO J. 20, 7085–7095 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Sohn, H. W., Gu, H. & Pierce, S. K. Cbl-b negatively regulates B cell antigen receptor signaling in mature B cells through ubiquitination of the tyrosine kinase Syk. J. Exp. Med. 197, 1511–1524 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Wang, H. Y. et al. Cbl promotes ubiquitination of the T cell receptor zeta through an adaptor function of Zap-70. J. Biol. Chem. 276, 26004–26011 (2001).

    CAS  PubMed  Google Scholar 

  72. Liu, Y. et al. Protein kinase C activation inhibits tyrosine phosphorylation of Cbl and its recruitment of Src homology 2 domain-containing proteins. J. Immunol. 162, 7095–7101 (1999).

    CAS  PubMed  Google Scholar 

  73. Fang, D. et al. Cbl-b, a RING-type E3 ubiquitin ligase, targets phosphatidylinositol 3-kinase for ubiquitination in T cells. J. Biol. Chem. 276, 4872–4878 (2001).

    CAS  PubMed  Google Scholar 

  74. Naramura, M. et al. c-Cbl and Cbl-b regulate T cell responsiveness by promoting ligand-induced TCR down-modulation. Nature Immunol. 3, 1192–1199 (2002). This report describes a functional analysis of cell specific deletions of c-Cbl and Cbl-b. The c-Cbl −/−, Cbl-b −/− double knockout is embryonic lethal, whereas conditional knockout of c-Cbl in Cbl-b −/− T cells inhibits downmodulation of surface T-cell receptors after ligand engagement, indicating that Cbl proteins negatively regulate cell activation.

    CAS  Google Scholar 

  75. Murphy, M. A. et al. Tissue hyperplasia and enhanced T-cell signalling via ZAP-70 in c-Cbl-deficient mice. Mol. Cell Biol. 18, 4872–4882 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Naramura, M., Kole, H. K., Hu, R. J. & Gu, H. Altered thymic positive selection and intracellular signals in Cbl-deficient mice. Proc. Natl Acad. Sci. USA 95, 15547–15552 (1998).

    CAS  PubMed  Google Scholar 

  77. Bachmaier, K. et al. Negative regulation of lymphocyte activation and autoimmunity by the molecular adaptor Cbl-b. Nature 403, 211–216 (2000).

    CAS  PubMed  Google Scholar 

  78. Chiang, Y. J. et al. Cbl-b regulates the CD28 dependence of T-cell activation. Nature 403, 216–220 (2000).

    CAS  PubMed  Google Scholar 

  79. Thien, C. B. et al. A mouse with a loss-of-function mutation in the c-Cbl TKB domain shows perturbed thymocyte signaling without enhancing the activity of the ZAP-70 tyrosine kinase. J. Exp. Med. 197, 503–513 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Krawczyk, C. et al. Cbl-b is a negative regulator of receptor clustering and raft aggregation in T cells. Immunity 13, 463–473 (2000).

    CAS  PubMed  Google Scholar 

  81. Krawczyk, C. & Penninger, J. M. Molecular controls of antigen receptor clustering and autoimmunity. Trends Cell Biol. 11, 212–220 (2001).

    CAS  PubMed  Google Scholar 

  82. Graham, L. J. et al. 70Z/3 Cbl induces PLC χ1 activation in T lymphocytes via an alternate Lat- and Slp-76-independent signaling mechanism. Oncogene 22, 2493–2503 (2003).

    CAS  PubMed  Google Scholar 

  83. Yasuda, T. et al. Cbl suppresses B cell receptor-mediated phospholipase C (PLC)-χ2 activation by regulating B cell linker protein-PLC-χ2 binding. J. Exp. Med. 191, 641–650 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Yasuda, T. et al. Cbl-b positively regulates Btk-mediated activation of phospholipase C-χ2 in B cells. J. Exp. Med. 196, 51–63 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Mueller, D. L. E3 ubiquitin ligases as T cell anergy factors. Nature Immunol. 5, 883–890 (2004).

    CAS  Google Scholar 

  86. Jeon, M. S. et al. Essential role of the E3 ubiquitin ligase Cbl-b in T cell anergy induction. Immunity 21, 167–177 (2004).

    CAS  PubMed  Google Scholar 

  87. Liu, Y. C. et al. Serine phosphorylation of Cbl induced by phorbol ester enhances its association with 14–3-3 proteins in T cells via a novel serine-rich 14–3-3-binding motif. J. Biol. Chem. 272, 9979–9985 (1997).

    CAS  PubMed  Google Scholar 

  88. Irvine, R. F. 20 years of Ins(1,4,5)P3, and 40 years before. Nature Rev. Mol. Cell Biol. 4, 586–590 (2003).

    CAS  Google Scholar 

  89. Irvine, R. F. Nuclear lipid signalling. Nature Rev. Mol. Cell Biol. 4, 349–360 (2003).

    CAS  Google Scholar 

  90. Davies, G. C. et al. Cbl-b interacts with ubiquitinated proteins; differential functions of the UBA domains of c-Cbl and Cbl-b. Oncogene 23, 7104–7115 (2004).

    CAS  PubMed  Google Scholar 

  91. Scaife, R. M. & Langdon, W. Y. c-Cbl localizes to actin lamellae and regulates lamellipodia formation and cell morphology. J. Cell Sci. 113, 215–226 (2000).

    CAS  PubMed  Google Scholar 

  92. Scaife, R. M., Courtneidge, S. A. & Langdon, W. Y. The multi-adaptor proto-oncoprotein Cbl is a key regulator of Rac and actin assembly. J. Cell Sci. 116, 463–473 (2003).

    CAS  PubMed  Google Scholar 

  93. Fernandez, J. A. et al. Phosphorylation- and activation-independent association of the tyrosine kinase Syk and the tyrosine kinase substrates Cbl and Vav with tubulin in B-cells. J. Biol. Chem. 274, 1401–1406 (1999).

    CAS  PubMed  Google Scholar 

  94. Scaife, R. M., Job, D. & Langdon, W. Y. Rapid microtubule-dependent induction of neurite-like extensions in NIH 3T3 fibroblasts by inhibition of ROCK and Cbl. Mol. Biol. Cell 14, 4605–4617 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Gruenberg, J. & Stenmark, H. The biogenesis of multivesicular endosomes. Nature Rev. Mol. Cell Biol. 5, 317–323 (2004).

    CAS  Google Scholar 

  96. Ojaniemi, M., Martin, S. S., Dolfi, F., Olefsky, J. M. & Vuori, K. The proto-oncogene product p120(cbl) links c-Src and phosphatidylinositol 3'-kinase to the integrin signaling pathway. J. Biol. Chem. 272, 3780–3787 (1997).

    CAS  PubMed  Google Scholar 

  97. Manie, S. N. et al. Tyrosine phosphorylation of the product of the c-cbl protooncogene is induced after integrin stimulation. Exp. Hematol. 25, 45–50 (1997).

    CAS  PubMed  Google Scholar 

  98. Zell, T. et al. Regulation of b 1-integrin-mediated cell adhesion by the Cbl adaptor protein. Curr. Biol. 8, 814–822 (1998).

    CAS  PubMed  Google Scholar 

  99. Meng, F. & Lowell, C. A. A β1 integrin signaling pathway involving Src-family kinases, Cbl and PI-3 kinase is required for macrophage spreading and migration. EMBO J. 17, 4391–4403 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Tanaka, S. et al. c-Cbl is downstream of c-Src in a signalling pathway necessary for bone resorption. Nature 383, 528–531 (1996).

    CAS  PubMed  Google Scholar 

  101. Deckert, M., Elly, C., Altman, A. & Liu, Y. C. Coordinated regulation of the tyrosine phosphorylation of Cbl by Fyn and Syk tyrosine kinases. J. Biol. Chem. 273, 8867–8874 (1998).

    CAS  PubMed  Google Scholar 

  102. Feshchenko, E. A., Langdon, W. Y. & Tsygankov, A. Y. Fyn, Yes, and Syk phosphorylation sites in c-Cbl map to the same tyrosine residues that become phosphorylated in activated T cells. J. Biol. Chem. 273, 8323–8331 (1998).

    CAS  PubMed  Google Scholar 

  103. Tezuka, T. et al. Physical and functional association of the cbl protooncogen product with an src-family protein tyrosine kinase, p53/56lyn, in the B cell antigen receptor-mediated signaling. J. Exp. Med. 183, 675–680 (1996).

    CAS  PubMed  Google Scholar 

  104. Miura-Shimura, Y. et al. Cbl-mediated ubiquitinylation and negative regulation of Vav. J. Biol. Chem. 278, 38495–38504 (2003).

    CAS  PubMed  Google Scholar 

  105. Liu, J., Kimura, A., Baumann, C. A. & Saltiel, A. R. APS facilitates c-Cbl tyrosine phosphorylation and GLUT4 translocation in response to insulin in 3T3-L1 adipocytes. Mol. Cell Biol. 22, 3599–3609 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Standaert, M. L., Sajan, M. P., Miura, A., Bandyopadhyay, G. & Farese, R. V. Requirements for pYXXM motifs in Cbl for binding to the p85 subunit of phosphatidylinositol 3-kinase and Crk, and activation of atypical protein kinase C and glucose transport during insulin action in 3T3/L1 adipocytes. Biochemistry 43, 15494–15502 (2004).

    CAS  PubMed  Google Scholar 

  107. Miura, A. et al. Cbl PYXXM motifs activate the P85 subunit of phosphatidylinositol 3-kinase, Crk, atypical protein kinase C, and glucose transport during thiazolidinedione action in 3T3/L1 and human adipocytes. Biochemistry 42, 14335–14341 (2003).

    CAS  PubMed  Google Scholar 

  108. Ribon, V., Herrera, R., Kay, B. K. & Saltiel, A. R. A role for CAP, a novel, multifunctional Src homology 3 domain-containing protein in formation of actin stress fibers and focal adhesions. J. Biol. Chem. 273, 4073–4080 (1998).

    CAS  PubMed  Google Scholar 

  109. Soubeyran, P., Barac, A., Szymkiewicz, I. & Dikic, I. Cbl-ArgBP2 complex mediates ubiquitination and degradation of c-Abl. Biochem. J. 370, 29–34 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Schmidt, M. H., Chen, B., Randazzo, L. M. & Bogler, O. SETA/CIN85/Ruk and its binding partner AIP1 associate with diverse cytoskeletal elements, including FAKs, and modulate cell adhesion. J. Cell Sci. 116, 2845–2855 (2003).

    CAS  PubMed  Google Scholar 

  111. Kirsch, K. H. et al. The adapter type protein CMS/CD2AP binds to the proto-oncogenic protein c-Cbl through a tyrosine phosphorylation-regulated Src homology 3 domain interaction. J. Biol. Chem. 276, 4957–4963 (2001).

    CAS  PubMed  Google Scholar 

  112. Haglund, K., Ivankovic-Dikic, I., Shimokawa, N., Kruh, G. D. & Dikic, I. Recruitment of Pyk2 and Cbl to lipid rafts mediates signals important for actin reorganization in growing neurites. J. Cell Sci. 117, 2557–2568 (2004).

    CAS  PubMed  Google Scholar 

  113. Polte, T. R. & Hanks, S. K. Complexes of focal adhesion kinase (FAK) and Crk-associated substrate (p130(Cas)) are elevated in cytoskeleton-associated fractions following adhesion and Src transformation. Requirements for Src kinase activity and FAK proline-rich motifs. J. Biol. Chem. 272, 5501–5509 (1997).

    CAS  PubMed  Google Scholar 

  114. Sanjay, A. et al. Cbl associates with Pyk2 and Src to regulate Src kinase activity, αβv β3 integrin-mediated signaling, cell adhesion, and osteoclast motility. J. Cell Biol. 152, 181–195 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Frame, M. C. Newest findings on the oldest oncogene; how activated src does it. J. Cell Sci. 117, 989–998 (2004).

    CAS  PubMed  Google Scholar 

  116. Salgia, R., Sattler, M., Pisick, E., Li, J. L. & Griffin, J. D. p210BCR/ABL induces formation of complexes containing focal adhesion proteins and the protooncogene product p120c-Cbl. Exp. Hematol. 24, 310–313 (1996).

    CAS  PubMed  Google Scholar 

  117. Gotoh, T. et al. Activation of R-Ras by Ras-guanine nucleotide-releasing factor. J. Biol. Chem. 272, 18602–18607 (1997).

    CAS  PubMed  Google Scholar 

  118. Chiang, S. H. et al. Insulin-stimulated GLUT4 translocation requires the CAP-dependent activation of TC10. Nature 410, 944–948 (2001). Shows how Cbl and its interacting partners can regulate translocation of GLUT4.

    CAS  PubMed  Google Scholar 

  119. Kanzaki, M. & Pessin, J. E. Insulin-stimulated GLUT4 translocation in adipocytes is dependent upon cortical actin remodeling. J. Biol. Chem. 276, 42436–42444 (2001).

    CAS  PubMed  Google Scholar 

  120. Pickart, C. M. Mechanisms underlying ubiquitination. Annu. Rev. Biochem. 70, 503–533 (2001).

    CAS  PubMed  Google Scholar 

  121. Amit, I. et al. Tal, a Tsg101-specific E3 ubiquitin ligase, regulates receptor endocytosis and retrovirus budding. Genes Dev. 18, 1737–1752 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Breitkreutz, B. J., Stark, C. & Tyers, M. The GRID: the general repository for interaction datasets. Genome Biol. 4, R23 (2003).

    PubMed  PubMed Central  Google Scholar 

  123. Breitkreutz, B. J., Stark, C. & Tyers, M. Osprey: a network visualization system. Genome Biol. 4, R22 (2003).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are very grateful to B.-J. Breitkreutz and M. Tyers for critical advice in creating Cbl interaction maps and for making the Osprey version of the Cbl interactome presented in Figure 2. We also thank V. Heissmeyer, D. Höller, W. Langdon, K. Rittinger, I. Szymkiewicz and S. Urbe for critical comments on the manuscript. We apologize to colleagues whose work could not be cited owing to space limitations. M.H.H.S. is a fellow of the European Molecular Biology Organization. I.D. gratefully acknowledges support from the Deutsche Forschungsgemeinschaft and the Boehringer Ingelheim Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Dikic.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Related links

Related links

DATABASES

Swiss-Prot

Alix1

Cbl-b

Cbl-c

c-Cbl

CD2AP

CD4

CD8

Cdc42

CIN85

EEA1

EGFR

EPS15

Grb2

PKC

Sprouty2

VAV

ZAP70

FURTHER INFORMATION

The Cbl interactome

The Cbl-b interactome

GRID

Osprey

BIND

Ivan Dikic's laboratory

Glossary

SIGNALOSOME

A supramolecular-protein assembly that initiates signalling cascades and promotes signal transduction within the cell.

TKB DOMAIN

The TKB domain of Cbl proteins is a modified SH2 domain and mediates binding to phosphorylated tyrosines in Cbl-target molecules.

RING FINGER

A protein domain that consists of two loops that are held together at their base by cysteine and histidine residues that form a complex with two zinc ions. Many RING fingers function in protein degradation by facilitating protein ubiquitylation.

LEUCINE ZIPPER MOTIF

A leucine-rich protein domain that mediates interactions with other proteins that have a similar domain.

E3 UBIQUITIN PROTEIN LIGASE

An enzyme that functions together with a ubiquitin-conjugating enzyme (E2) to couple the small protein ubiquitin to Lys residues on a target protein. This marks that protein for destruction by the proteasome.

INTERACTOME

A protein network that surrounds a certain protein at a given time and space in a cell.

FOCAL ADHESION

An integrin-mediated cell–substrate adhesion structure that anchors the ends of actin filaments (stress fibres) and mediates strong attachments to substrates. It also functions as an integrin-signalling platform.

SH3 DOMAIN

(Src-homology-3 domain). A protein–protein interaction domain that recognizes a unique proline-rich peptide motif. This domain is found in many proteins that are involved in signal transduction and membrane–cytoskeleton interactions.

ENDOSOME

A membranous transport vesicle that is involved in endocytosis.

ARP2/3 COMPLEX

(actin-related protein 2/3). A multi-protein complex that consists of seven different proteins and initiates new actin filaments on pre-existing ones.

DYNAMIN

A mechanical GTPase that promotes the detachment of clathrin-coated vesicles from the plasma membrane.

MULTIVESICULAR BODY

(MVB). An endocytic intermediate organelle in the lysosomal-degradative pathway that contains small vesicles (often containing ubiquitylated cargo) and is surrounded by a limiting membrane.

SH2 DOMAIN

(Src-homology-2 domain). A protein motif that recognizes and binds tyrosine-phosphorylated sequences, and therefore has a key role in relaying cascades of signal transduction.

FYVE DOMAIN

(Fab1, YOTB, Vac1, EEA1 domain). A zinc-finger-containing protein motif that binds the membrane lipid phosphatidylinositol-3-phosphate. The protein that contains FYVE is therefore targeted to the membrane.

RHO-FAMILY GTPASES

A subfamily of small (21 kDa) GTP-binding proteins that are related to Ras, and that regulate the cytoskeleton.

ESCRT

(endosomal sorting complex required for transport). The multiprotein ESCRT machinery (ESCRT-I, -II and -III) promotes inward vesiculation at the limiting membrane of the sorting endosome, and selects cargo proteins for delivery to the intralumenal vesicles of multivesicular bodies.

MAJOR HISTOCOMPATIBILITY COMPLEX

(MHC). A complex of genetic loci in higher vertebrates that encodes a family of cellular antigens that allow the immune system to recognize self from non-self.

THYMOCYTES

Lymphocytes that are found in the thymus.

GUANINE NUCLEOTIDE-EXCHANGE FACTOR

(GEF). A protein that facilitates the exchange of GDP for GTP in the nucleotide-binding pocket of a GTP-binding protein.

ANERGY

A state in which T cells cannot respond to antigen.

14-3-3 PROTEINS

A family of proteins and protein domains that bind to serine/threonine-phosphorylated residues in a context-specific manner. They bind and regulate key proteins that are involved in various physiological processes.

LAMELLIPODIA

Thin, flat extensions at the cell periphery that are filled with a branching meshwork of actin filaments.

PSEUDOPODIA

Temporary projections of the cytoplasm of certain cells, such as neutrophils, or of certain unicellular organisms, especially amoebae, that function in locomotion.

GROWTH CONE

Motile tip of the axon or dendrite of a growing nerve cell, which spreads out into a large cone-shaped appendage.

LEADING EDGE

The thin margin of a lamellipodium that spans the area of the cell from the plasma membrane to a depth of about 1 μm into the lamellipodium.

OSTEOCLAST

A mesenchymal cell that can differentiate into a bone-degrading cell.

LIPID RAFTS

Membrane microdomains that are enriched in cholesterol, sphingolipids and lipid-modified proteins such as GPI-linked proteins and palmitoylated proteins. These microdomains often function as platforms for signalling events.

CAVEOLAE

Specialized membrane domains that contain high amounts of cholesterol and sphingolipids. They represent one starting point of non-clathrin-mediated endocytosis.

SORBIN HOMOLOGY (SOHO) DOMAIN

A motif within a protein that targets the molecule to lipid rafts.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmidt, M., Dikic, I. The Cbl interactome and its functions. Nat Rev Mol Cell Biol 6, 907–919 (2005). https://doi.org/10.1038/nrm1762

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm1762

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing