Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Proteolysis: from the lysosome to ubiquitin and the proteasome

Abstract

How the genetic code is translated into proteins was a key focus of biological research before the 1980s, but how these proteins are degraded remained a neglected area. With the discovery of the lysosome, it was suggested that cellular proteins are degraded in this organelle. However, several independent lines of experimental evidence strongly indicated that non-lysosomal pathways have an important role in intracellular proteolysis, although their identity and mechanisms of action remained obscure. The discovery of the ubiquitin–proteasome system resolved this enigma.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: The lysosome.
Figure 2: Some of the various functions of modification by ubiquitin and ubiquitin-like proteins.

References

  1. 1

    Schoenheimer, R. The Dynamic State of Body Constitutents (Harvard University Press, Cambridge, Massachusetts, USA, 1942).

    Google Scholar 

  2. 2

    Hogness, D. S., Cohn, M. & Monod, J. Studies on the induced synthesis of β-galactosidase in Escherichia coli: the kinetics and mechanism of sulfur incorporation. Biochim. Biophys. Acta 16, 99–116 (1955).

    CAS  Article  Google Scholar 

  3. 3

    de Duve, C., Gianetto, R., Appelmans, F. & Wattiaux, R. Enzymic content of the mitochondria fraction. Nature 172, 1143–1144 (1953).

    CAS  Article  Google Scholar 

  4. 4

    Gianetto, R. & de Duve, C. Tissue fractionation studies 4. Comparative study of the binding of acid phosphatase, β-glucoronidase and cathepsin by rat liver particles. Biochem. J. 59, 433–438 (1955).

    CAS  Article  Google Scholar 

  5. 5

    Simpson, M. V. The release of labeled amino acids from proteins in liver slices. J. Biol. Chem. 201, 143–154 (1953).

    CAS  PubMed  Google Scholar 

  6. 6

    Ashford, T. P. & Porter, K. R. Cytoplasmic components in hepatic cell lysosomes. J. Cell Biol. 12, 198–202 (1962).

    CAS  Article  Google Scholar 

  7. 7

    Schimke, R. T. & Doyle, D. Control of enzyme levels in animal tissues. Annu. Rev. Biochem. 39, 929–976 (1970).

    CAS  Article  Google Scholar 

  8. 8

    Goldberg, A. L. & St John, A. C. Intracellular protein degradation in mammalian and bacterial cells: part 2. Annu. Rev. Biochem. 45, 747–803 (1976).

    CAS  Article  Google Scholar 

  9. 9

    Dice, J. F., Chiang, H. L., Spencer, E. P. & Backer, J. M. Regulation of catabolism of microinjected ribonuclease A. Identification of residues 7–11 as the essential pentapeptide. J. Biol. Chem. 261, 6853–6859 (1986).

    CAS  PubMed  Google Scholar 

  10. 10

    Segal, H. L., Winkler, J. R. & Miyagi, M. P. Relationship between degradation rates of proteins in vivo and their susceptibility to lysosomal proteases. J. Biol. Chem. 249, 6364–6365 (1974).

    CAS  PubMed  Google Scholar 

  11. 11

    Haider, M. & Segal, H. L. Some characteristics of the alanine-aminotransferase and arginase-inactivating system of lysosomes. Arch. Biochem. Biophys. 148, 228–237 (1972).

    CAS  Article  Google Scholar 

  12. 12

    Dean, R. T. Lysosomes and protein degradation. Acta Biol. Med. Ger. 36, 1815–1820 (1977).

    CAS  PubMed  Google Scholar 

  13. 13

    Hayashi, M., Hiroi, Y. & Natori, Y. Effect of ATP on protein degradation in rat liver lysosomes. Nature New Biol. 242, 163–166 (1973).

    CAS  Article  Google Scholar 

  14. 14

    Schneider, D. L. ATP-dependent acidification of intact and disrupted lysosomes: evidence for an ATP-driven proton pump. J. Biol. Chem. 256, 3858–3864 (1981).

    CAS  PubMed  Google Scholar 

  15. 15

    de Duve, C. & Wattiaux, R. Functions of lysosomes. Annu. Rev. Physiol. 28, 435–492 (1966).

    CAS  Article  Google Scholar 

  16. 16

    Rabinovitz, M. & Fisher, J. M. Characteristics of the inhibition of hemoglobin synthesis in rabbit reticulocytes by threo-α-amino-β-chlorobutyric acid. Biochim. Biophys. Acta 91, 313–322 (1964).

    CAS  PubMed  Google Scholar 

  17. 17

    Etlinger, J. D. & Goldberg, A. L. A soluble ATP-dependent proteolytic system responsible for the degradation of abnormal proteins in reticulocytes. Proc. Natl Acad. Sci. USA 74, 54–58 (1977).

    CAS  Article  Google Scholar 

  18. 18

    Hershko, A., Heller, H., Ganoth, D. & Ciechanover, A. in Protein Turnover and Lysosome Function (Segal, H. L. & Doyle, D. J., eds) 149–169 (Academic Press, New York, 1978).

    Book  Google Scholar 

  19. 19

    Knowles, S. E. & Ballard, F. J. Selective control of the degradation of normal and aberrant proteins in Reuber H35 hepatoma cells. Biochem. J. 156, 609–617 (1976).

    CAS  Article  Google Scholar 

  20. 20

    Neff, N. T., DeMartino, G. N. & Goldberg, A. L. The effect of protease inhibitors and decreased temperature on the degradation of different classes of proteins in cultured hepatocytes. J. Cell Physiol. 101, 439–457 (1979).

    CAS  Article  Google Scholar 

  21. 21

    Poole, B., Ohkuma, S. & Warburton, M. J. The accumulation of weakly basic substances in lysosomes and the inhibition of intracellular protein degradation. Acta Biol. Med. Germ. 36, 1777–1788 (1977).

    CAS  PubMed  Google Scholar 

  22. 22

    Poole, B., Ohkuma, S. & Warburton, M. J. in Protein Turnover and Lysosome Function (Segal, H. L. & Doyle, D. J., eds) 43–58 (Academic Press, New York, 1978).

    Book  Google Scholar 

  23. 23

    Mandelstam, J. Turnover of protein in growing and non-growing populations of Escherichia coli. Biochem. J. 69, 110–119 (1958).

    CAS  Article  Google Scholar 

  24. 24

    Hershko, A. & Tomkins, G. M. Studies on the degradation of tyrosine aminotransferase in hepatoma cells in culture: influence of the composition of the medium and adenosine triphosphate dependence. J. Biol. Chem. 246, 710–714 (1971).

    CAS  PubMed  Google Scholar 

  25. 25

    Goldberg, A. L., Kowit, J. D. & Etlinger, J. D. in Proteolysis and Physiological Regulation (Ribbons, D. W. & Brew, K., eds) 313–337 (Academic Press, New York, 1976).

    Book  Google Scholar 

  26. 26

    Ciechanover, A., Hod, Y. & Hershko, A. A heat-stable polypeptide component of an ATP-dependent proteolytic system from reticulocytes. Biochem. Biophys. Res. Commun. 81, 1100–1105 (1978).

    Article  Google Scholar 

  27. 27

    Ciechanover, A., Heller, H., Elias, S., Haas, A. L. & Hershko, A. ATP-dependent conjugation of reticulocyte proteins with the polypeptide required for protein degradation. Proc. Natl Acad. Sci. USA 77, 1365–1368 (1980).

    CAS  Article  Google Scholar 

  28. 28

    Hershko, A., Ciechanover, A., Heller, H., Haas, A. L. & Rose, I. A. Proposed role of ATP in protein breakdown: conjugation of proteins with multiple chains of the polypeptide of ATP-dependent proteolysis. Proc. Natl Acad. Sci. USA 77, 1783–1786 (1980).

    CAS  Article  Google Scholar 

  29. 29

    Ciechanover, A., Elias, S., Heller, H., Ferber, S. & Hershko, A. Characterization of the heat-stable polypeptide of the ATP-dependent proteolytic system from reticulocytes. J. Biol. Chem. 255, 7525–7528 (1980).

    CAS  PubMed  Google Scholar 

  30. 30

    Wilkinson, K. D., Urban, M. K. & Haas, A. L. Ubiquitin is the ATP-dependent proteolysis factor I of rabbit reticulocytes. J. Biol. Chem. 255, 7529–7532 (1980).

    CAS  PubMed  Google Scholar 

  31. 31

    Hershko, A., Ciechanover, A. & Rose, I. A. Identification of the active amino acid residue of the polypeptide of ATP-dependent protein breakdown. J. Biol. Chem. 256, 1525–1528 (1981).

    CAS  PubMed  Google Scholar 

  32. 32

    Ciechanover, A., Heller, H., Katz-Etzion, R. & Hershko, A. Activation of the heat-stable polypeptide of the ATP-dependent proteolytic system. Proc. Natl Acad. Sci. USA 78, 761–765 (1981).

    CAS  Article  Google Scholar 

  33. 33

    Ciechanover, A., Elias, S., Heller, H. & Hershko, A. 'Covalent affinity' purification of ubiquitin-activating enzyme. J. Biol. Chem. 257, 2537–2542 (1982).

    CAS  PubMed  Google Scholar 

  34. 34

    Hershko, A., Heller, H., Elias, S. & Ciechanover, A. Components of ubiquitin-protein ligase system: resolution, affinity purification and role in protein breakdown. J. Biol. Chem. 258, 8206–8214 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35

    Chin, D. T., Kuehl, L. & Rechsteiner, M. Conjugation of ubiquitin to denatured hemoglobin is proportional to the rate of hemoglobin degradation in HeLa cells. Proc. Natl Acad. Sci. USA 79, 5857–5861 (1982).

    CAS  Article  Google Scholar 

  36. 36

    Hershko, A., Eytan, E., Ciechanover, A. & Haas, A. L. Immunochemical analysis of the turnover of ubiquitin-protein conjugates in intact cells: relationship to the breakdown of abnormal proteins. J. Biol. Chem. 257, 13964–13970 (1982).

    CAS  PubMed  Google Scholar 

  37. 37

    Finley, D., Ciechanover, A. & Varshavsky, A. Thermolability of ubiquitin-activating enzyme from the mammalian cell cycle mutant ts85. Cell 37, 43–55 (1984).

    CAS  Article  Google Scholar 

  38. 38

    Ciechanover, A., Finley D. & Varshavsky, A. Ubiquitin dependence of selective protein degradation demonstrated in the mammalian cell cycle mutant ts85. Cell 37, 57–66 (1984).

    CAS  Article  Google Scholar 

  39. 39

    Tanaka, K., Waxman, L. & Goldberg, A. L. ATP serves two distinct roles in protein degradation in reticulocytes, one requiring and one independent of ATP. J. Cell Biol. 96, 1580–1585 (1983).

    CAS  Article  Google Scholar 

  40. 40

    Hershko, A., Leshinsky, E., Ganoth, D. & Heller, H. ATP-dependent degradation of ubiquitin-protein conjugates. Proc. Natl Acad. Sci. USA 81, 1619–1623 (1984).

    CAS  Article  Google Scholar 

  41. 41

    Hough, R., Pratt, G. & Rechsteiner, M. Ubiquitin–lysozyme conjugates. Identification and characterization of an ATP-dependent protease from rabbit reticulocyte lysates. J. Biol. Chem. 261, 2400–2408 (1986).

    CAS  PubMed  Google Scholar 

  42. 42

    Waxman, L., Fagan, J. & Goldberg, A. L. Demonstration of two distinct high molecular weight proteases in rabbit reticulocytes, one of which degrades ubiquitin conjugates. J. Biol. Chem. 262, 2451–2457 (1987).

    CAS  PubMed  Google Scholar 

  43. 43

    Hough, R., Pratt, G. & Rechsteiner M. Purification of two high molecular weight proteases from rabbit reticulocyte lysate. J. Biol. Chem. 262, 8303–8313 (1987).

    CAS  PubMed  Google Scholar 

  44. 44

    Wilk, S. & Orlowski, M. Cation-sensitive neutral endopeptidase: isolation and specificity of the bovine pituitary enzyme. J. Neurochem. 35, 1172–1182 (1980).

    CAS  Article  Google Scholar 

  45. 45

    Eytan, E., Ganoth, D., Armon, T. & Hershko, A. ATP–dependent incorporation of 20S protease into the 26S complex that degrades proteins conjugated to ubiquitin. Proc. Natl Acad. Sci. USA 86, 7751–7755 (1989).

    CAS  Article  Google Scholar 

  46. 46

    Driscoll, J. & Goldberg, A. L. The proteasome (multicatalytic protease) is a component of the 1500-kDa proteolytic complex which degrades ubiquitin-conjugated proteins. J. Biol. Chem. 265, 4789–4792 (1990).

    CAS  PubMed  Google Scholar 

  47. 47

    Hoffman, L., Pratt, G. & Rechsteiner, M. Multiple forms of the 20S multicatalytic and the 26S ubiquitin/ATP-dependent proteases from rabbit reticulocyte lysate. J. Biol. Chem. 267, 22362–22368 (1992).

    CAS  Google Scholar 

  48. 48

    Shanklin, J., Jaben, M. & Vierstra, R. D. Red light-induced formation of ubiquitin–phytochrome conjugates: identification of possible intermediates of phytochrome degradation. Proc. Natl Acad. Sci. USA 84, 359–363 (1987).

    CAS  Article  Google Scholar 

  49. 49

    Hochstrasser, M. & Varshavsky, A. In vivo degradation of a transcriptional regulator: the yeast α2 repressor. Cell 61, 697–708 (1990).

    CAS  Article  Google Scholar 

  50. 50

    Scheffner, M., Werness, B. A., Huibregtse, J. M., Levine, A. J. & Howley, P. M. The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell 63, 1129–1136 (1990).

    CAS  Article  Google Scholar 

  51. 51

    Glotzer, M., Murray, A. W. & Kirschner, M. W. Cyclin is degraded by the ubiquitin pathway. Nature 349, 132–138 (1991).

    CAS  Article  Google Scholar 

  52. 52

    Ciechanover, A. et al. Degradation of nuclear oncoproteins by the ubiquitin system in vitro. Proc. Natl Acad. Sci. USA 88, 139–143 (1991).

    CAS  Article  Google Scholar 

  53. 53

    Mizushima, N. et al. A protein conjugation system essential for autophagy. Nature 395, 395–398 (1998).

    CAS  Article  Google Scholar 

  54. 54

    Hicke, L. & Riezman, H. Ubiquitination of a yeast plasma membrane receptor signals its ligand-stimulated endocytosis. Cell 84, 277–287 (1996).

    CAS  Article  Google Scholar 

  55. 55

    Katzmann, D. J., Babst, M. & Emr, S. D. Ubiquitin-dependent sorting into the multivesicular body pathway requires the function of a conserved endosomal protein sorting complex, ESCRT-I. Cell 106, 45–155 (2001).

    Article  Google Scholar 

  56. 56

    Goldstein, G. Isolation of bovine thymin, a polypeptide hormone of the thymus. Nature 247, 11–14 (1974).

    CAS  Article  Google Scholar 

  57. 57

    Goldstein, G. et al. Isolation of a polypeptide that has lymphocyte-differentiating properties and is probably represented universally in living cells. Proc. Natl Acad. Sci. USA 72, 11–15 (1975).

    CAS  Article  Google Scholar 

  58. 58

    Schlessinger, D. H., Goldstein, G. & Niall, H. D. The complete amino acid sequence of ubiquitin, an adenylate cyclase stimulating polypeptide probably universal in living cells. Biochemistry 14, 2214–2218 (1975).

    Article  Google Scholar 

  59. 59

    Low, T. L. K. & Goldstein, A. L. The chemistry and biology of thymosin: amino acid analysis of thymosin α1 and polypeptide β1. J. Biol. Chem. 254, 987–995 (1979).

    CAS  PubMed  Google Scholar 

  60. 60

    Goldknopf, I. L. & Busch, H. Remarkable similarities of peptide fingerprints of histone 2A and nonhistone chromosomal protein A24. Biochem. Biophys. Res. Commun. 65, 951–955 (1975).

    CAS  Article  Google Scholar 

  61. 61

    Goldknopf, I. L. & Busch, H. Isopeptide linkage between nonhistone and histone 2A polypeptides of chromosome conjugate-protein A24. Proc. Natl Acad. Sci. USA 74, 864–868 (1977).

    CAS  Article  Google Scholar 

  62. 62

    Hunt, L. T. & Dayhoff, M. O. Amino-terminal sequence identity of ubiquitin and the nonhistone component of nuclear protein A24. Biochim. Biophys. Res. Commun. 74, 650–655 (1977).

    CAS  Article  Google Scholar 

  63. 63

    Hershko, A. & Heller, H. Occurrence of a polyubiquitin structure in ubiquitin–protein conjugates. Biochem. Biophys. Res. Commun. 128, 1079–1086 (1985).

    CAS  Article  Google Scholar 

  64. 64

    Chau, V. et al. A multiubiquitin chain is confined to specific lysine in a targeted short-lived protein. Science 243, 1576–1583 (1989).

    CAS  Article  Google Scholar 

  65. 65

    Osley, M. A. H2B ubiquitylation: the end is in sight. Biochim. Biophys. Acta 1677, 74–78 (2004).

    CAS  Article  Google Scholar 

  66. 66

    Pickart, C. M. & Cohen, R. E. Proteasomes and their kin: proteases in the machine age. Nature Rev. Mol. Cell Biol. 5, 177–187 (2004).

    CAS  Article  Google Scholar 

  67. 67

    Glickman, M. H. et al. A subcomplex of the proteasome regulatory particle required for ubiquitin-conjugate degradation and related to the COP9–signalosome and eIF3. Cell 94, 615–623 (1998).

    CAS  Article  Google Scholar 

  68. 68

    Ciechanover, A. & Iwai, K. The ubiquitin system: from basic mechanisms to the patient bed. IUBMB Life 56, 193–201 (2004).

    CAS  Article  Google Scholar 

  69. 69

    Glickman, M. H. & Ciechanover, A. The ubiquitin-proteasome pathway: destruction for the sake of construction. Physiol. Rev. 82, 373–428 ( 2002).

    CAS  Article  Google Scholar 

  70. 70

    Mayer, R. J. The meteoric rise of regulated intracellular proteolysis. Nature Rev. Mol. Cell Biol. 1, 145–148 (2000).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

A.C. is supported by: the Prostate Cancer Foundation (PCF) Israel — Centers of Excellence Program; the Israel Science Foundation — Centers of Excellence Program; a Professorship that is funded by the Israel Cancer Research Fund (ICRF) USA; and the Foundation for Promotion of Research in the Technion. Infrastructural equipment for experimental work in the Cancer and Vascular Biology Center, Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, Israel, has been purchased with the support of the Wolfson Charitable Fund — Center of Excellence for studies on the turnover of cellular proteins and its implications to human diseases.

Author information

Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

DATABASES

Entrez

Lon

Saccharomyces genome database

Apg12

Swiss-Prot

ubiquitin

SUMO

FURTHER INFORMATION

Pfam: Ubiquitin family

Prolysis

Protein Degradation

Regulated Protein Turnover Resources Site: Ubiquitin Ligases and Diseases

The Pathway of Protein Ubiquitinylation

The Proteasome

The Proteasomes

The Ubiquitin System

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ciechanover, A. Proteolysis: from the lysosome to ubiquitin and the proteasome. Nat Rev Mol Cell Biol 6, 79–87 (2005). https://doi.org/10.1038/nrm1552

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing