Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Ratchets and clocks: the cell cycle, ubiquitylation and protein turnover

Key Points

  • Many important cell-cycle regulatory proteins are regulated post-translationally by ubiquitin-mediated proteolysis. These include both positive and negative regulators of the cell cycle.

  • One central role of regulated proteolysis in the context of cell-cycle control is to enforce irreversible cell-cycle phase transitions. This is often accomplished by the rapid and concerted turnover of a negative regulatory protein that impedes a cell-cycle phase transition.

  • Another important role of regulated proteolysis is to restrict the window of accumulation of a cell-cycle regulatory protein to the specific time when the function of that protein is required. Such a strategy prevents significant cell-cycle events occurring out of context.

  • There are two general classes of protein ubiquitin ligase that target cell-cycle regulatory proteins for destruction: APC/C and SCF. Whereas cell-cycle regulation of APC/C activity is intrinsic to the ligase itself, cell-cycle regulation of SCF activity is usually mediated by substrate phosphorylation.

  • SCF protein ubiquitin ligases consist of three core invariant subunits plus one of several variable specificity factors known as F-box proteins. SCFCdc4, which is conserved from yeast to humans, is the SCF protein ubiquitin ligase designated by the F-box-protein Cdc4.

  • In yeast, SCFCdc4 targets a cyclin-dependent-kinase inhibitor Sic1, thereby promoting a timely and irreversible transition from G1 to S-phase. In mammalian cells, the homologous protein ubiquitin ligase targets the positive cell-cycle-regulator cyclin E. Mutations in the human CDC4 gene are linked to cancer, presumably because they lead to deregulation of cyclin E through the cell cycle.

Abstract

Both the cell-cycle and ubiquitin-mediated-proteolysis fields have come of age over the past ten years. One byproduct of the impressive progress in these areas of investigation is the realization that they are intricately related: cell-cycle control is crucially dependent on the ubiquitin-mediated degradation of key regulatory proteins. Very recent advances have allowed an understanding of protein degradation and cell-cycle control at greatly enhanced levels of resolution. Consolidating these advances is likely to provide new insights into the regulatory biology of cell-cycle transitions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Key cell-cycle regulatory proteins targeted by ubiquitin-mediated proteolysis.
Figure 2: Creating an irreversible cell-cycle transition.
Figure 3: Limiting the interval of expression to the interval of required function.
Figure 4: Architecture and subunit composition of the APC/C and SCF complexes.
Figure 5: Sic1 phosphorylation sets a threshold for the G1–S transition in yeast.

Similar content being viewed by others

References

  1. Evans, T., Rosenthal, E. T., Youngblom, J., Distel, D. & Hunt, T. Cyclin: a protein specified by maternal mRNA in sea urchin eggs that is destroyed at each cleavage division. Cell 33, 389–396 (1983). This was the original paper describing regulated proteolysis of cyclin as a function of cell-cycle progression. These observations were largely responsible for Tim Hunt receiving the Nobel Prize.

    Article  CAS  PubMed  Google Scholar 

  2. Hershko, A. Ubiquitin: roles in protein modification and breakdown. Cell 34, 11–12 (1983).

    Article  CAS  PubMed  Google Scholar 

  3. Schimke, R. T. & Doyle, D. Control of enzyme levels in animal tissues. Annu. Rev. Biochem. 39, 929–976 (1970).

    Article  CAS  PubMed  Google Scholar 

  4. Rossow, P. W., Riddle, V. G. & Pardee, A. B. Synthesis of labile, serum-dependent protein in early G1 controls animal cell growth. Proc. Natl Acad. Sci. USA 76, 4446–4450 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Glotzer, M., Murray, A. W. & Kirschner, M. W. Cyclin is degraded by the ubiquitin pathway. Nature 349, 132–138 (1991). Shows that cyclins are degraded by the ubiquitin–proteasome pathway and defines the D-box degron.

    Article  CAS  PubMed  Google Scholar 

  6. Nugroho, T. T. & Mendenhall, M. D. An inhibitor of yeast cyclin-dependent protein kinase plays an important role in ensuring the genomic integrity of daughter cells. Mol. Cell. Biol. 14, 3320–3328 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Donovan, J. D., Toyn, J. H., Johnson, A. L. & Johnston, L. H. P40SDB25, a putative CDK inhibitor, has a role in the M/G1 transition in Saccharomyces cerevisiae. Genes Dev. 8, 1640–1653 (1994).

    Article  CAS  PubMed  Google Scholar 

  8. Toyn, J. H., Johnson, A. L., Donovan, J. D., Toone, W. M. & Johnston, L. H. The Swi5 transcription factor of Saccharomyces cerevisiae has a role in exit from mitosis through induction of the cdk-inhibitor Sic1 in telophase. Genetics 145, 85–96 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Schwob, E., Bohm, T., Mendenhall, M. D. & Nasmyth, K. The B-type cyclin kinase inhibitor p40SIC1 controls the G1 to S transition in S. cerevisiae. Cell 79, 233–244 (1994). Shows how regulated proteolysis of the Cdk inhibitor Sic1 controls the G1–S transition.

    Article  CAS  PubMed  Google Scholar 

  10. Verma, R. et al. Phosphorylation of Sic1p by G1 Cdk required for its degradation and entry into S phase. Science 278, 455–460 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Lengronne, A. & Schwob, E. The yeast CDK inhibitor Sic1 prevents genomic instability by promoting replication origin licensing in late G(1). Mol. Cell 9, 1067–1078 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Coats, S., Flanagan, W. M., Nourse, J. & Roberts, J. M. Requirement of p27Kip1 for restriction point control of the fibroblast cell cycle. Science 272, 877–880 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Koff, A., Ohtsuki, M., Polyak, K., Roberts, J. M. & Massague, J. Negative regulation of G1 in mammalian cells: inhibition of cyclin E-dependent kinase by TGF-β. Science 260, 536–539 (1993).

    Article  CAS  PubMed  Google Scholar 

  14. Hengst, L. & Reed, S. I. Inhibitors of the Cip/Kip family. Curr. Top. Microbiol. Immunol. 227, 25–41 (1998).

    CAS  PubMed  Google Scholar 

  15. Harper, J. W. & Elledge, S. J. Cdk inhibitors in development and cancer. Curr. Opin. Genet. Dev. 6, 56–64 (1996).

    Article  CAS  PubMed  Google Scholar 

  16. Carrano, A. C., Eytan, E., Hershko, A. & Pagano, M. SKP2 is required for ubiquitin-mediated degradation of the CDK inhibitor p27. Nature Cell Biol. 1, 193–199 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Montagnoli, A. et al. Ubiquitination of p27 is regulated by Cdk-dependent phosphorylation and trimeric complex formation. Genes Dev. 13, 1181–1189 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Shirane, M. et al. Downregulation of p27(Kip1) by two mechanisms, ubiquitin-mediated degradation and proteolytic processing. J. Biol. Chem. 274, 13886–13893 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Tsvetkov, L. M., Yeh, K. H., Lee, S. J., Sun, H. & Zhang, H. p27(Kip1) ubiquitination and degradation is regulated by the SCF(Skp2) complex through phosphorylated Thr187 in p27. Curr. Biol. 9, 661–664 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Erlandsson, F., Linnman, C., Ekholm, S., Bengtsson, E. & Zetterberg, A. A detailed analysis of cyclin A accumulation at the G(1)/S border in normal and transformed cells. Exp. Cell Res. 259, 86–95 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Harper, J. W. et al. Inhibition of cyclin-dependent kinases by p21. Mol. Biol. Cell 6, 387–400 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sherr, C. J. & Roberts, J. M. Inhibitors of mammalian G1 cyclin-dependent kinases. Genes Dev. 9, 1149–1163 (1995).

    Article  CAS  PubMed  Google Scholar 

  23. Sherr, C. J. & Roberts, J. M. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev. 13, 1501–1512 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Classon, M. & Dyson, N. p107 and p130: versatile proteins with interesting pockets. Exp. Cell Res. 264, 135–147 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Claudio, P. P., Tonini, T. & Giordano, A. The retinoblastoma family: twins or distant cousins? Genome Biol. 3, reviews 3012 (2002).

    Article  Google Scholar 

  26. Sheaff, R. J. et al. Proteasomal turnover of p21Cip1 does not require p21Cip1 ubiquitination. Mol. Cell 5, 403–410 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Tedesco, D., Lukas, J. & Reed, S. I. The pRb-related protein p130 is regulated by phosphorylation-dependent proteolysis via the protein-ubiquitin ligase SCFSkp2. Genes Dev. 16, 2946–2957 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bornstein, G. et al. Role of SCFSkp2 ubiquitin ligase in the degradation of p21Cip1 during S-phase. J. Biol. Chem. (2003).

  29. Bloom, J. & Pagano, M. Deregulated degradation of the cdk inhibitor p27 and malignant transformation. Semin. Cancer Biol. 13, 41–47 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Sandhu, C. & Slingerland, J. Deregulation of the cell cycle in cancer. Cancer Detect. Prev. 24, 107–118 (2000).

    CAS  PubMed  Google Scholar 

  31. Slingerland, J. & Pagano, M. Regulation of the cdk inhibitor p27 and its deregulation in cancer. J. Cell Physiol. 183, 10–17 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Nasmyth, K. Segregating sister genomes: the molecular biology of chromosome separation. Science 297, 559–565 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Agarwal, R. & Cohen-Fix, O. Mitotic regulation: the fine tuning of separase activity. Cell Cycle 1, 255–257 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Ciosk, R. et al. An ESP1/PDS1 complex regulates loss of sister chromatid cohesion at the metaphase to anaphase transition in yeast. Cell 93, 1067–1076 (1998).

    Article  CAS  PubMed  Google Scholar 

  35. Jensen, S., Segal, M., Clarke, D. J. & Reed, S. I. A novel role of the budding yeast separin Esp1 in anaphase spindle elongation: evidence that proper spindle association of Esp1 is regulated by Pds1. J. Cell Biol. 152, 27–40 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yamamoto, A., Guacci, V. & Koshland, D. Pds1p is required for faithful execution of anaphase in the yeast, Saccharomyces cerevisiae. J. Cell Biol. 133, 85–97 (1996).

    Article  CAS  PubMed  Google Scholar 

  37. Jallepalli, P. V. et al. Securin is required for chromosomal stability in human cells. Cell 105, 445–457 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Irniger, S. Cyclin destruction in mitosis: a crucial task of Cdc20. FEBS Lett. 532, 7–11 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Morgan, D. O. Regulation of the APC and the exit from mitosis. Nature Cell Biol. 1, E47–E53 (1999).

    Article  CAS  PubMed  Google Scholar 

  40. Townsley, F. M. & Ruderman, J. V. Proteolytic ratchets that control progression through mitosis. Trends Cell Biol. 8, 238–244 (1998).

    Article  CAS  PubMed  Google Scholar 

  41. Schwab, M., Lutum, A. S. & Seufert, W. Yeast Hct1 is a regulator of Clb2 cyclin proteolysis. Cell 90, 683–693 (1997).

    Article  CAS  PubMed  Google Scholar 

  42. Visintin, R., Prinz, S. & Amon, A. CDC20 and CDH1: a family of substrate-specific activators of APC-dependent proteolysis. Science 278, 460–463 (1997). Shows the activation of APC/C by alternative cofactors Cdc20 and Cdh1.

    Article  CAS  PubMed  Google Scholar 

  43. Lei, M. & Tye, B. K. Initiating DNA synthesis: from recruiting to activating the MCM complex. J. Cell Sci. 114, 1447–1454 (2001).

    CAS  PubMed  Google Scholar 

  44. Nishitani, H. & Lygerou, Z. Control of DNA replication licensing in a cell cycle. Genes Cells 7, 523–534 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Woo, R. A., Poon, R. Y. Cylin-dependent kinases and S phase control in mammalian cells. Cell Cycle 2, 316–324 (2003).

    Article  CAS  PubMed  Google Scholar 

  46. Keyomarsi, K. & Herliczek, T. W. The role of cyclin E in cell proliferation, development and cancer. Prog. Cell Cycle Res. 3, 171–191 (1997).

    Article  CAS  PubMed  Google Scholar 

  47. Donnellan, R. & Chetty, R. Cyclin E in human cancers. FASEB J. 13, 773–780 (1999).

    Article  CAS  PubMed  Google Scholar 

  48. Dulic, V., Lees, E. & Reed, S. I. Association of human cyclin E with a periodic G1–S phase protein kinase. Science 257, 1958–1961 (1992).

    Article  CAS  PubMed  Google Scholar 

  49. Koff, A. et al. Formation and activation of a cyclin E–cdk2 complex during the G1 phase of the human cell cycle. Science 257, 1689–1694 (1992).

    Article  CAS  PubMed  Google Scholar 

  50. Ekholm, S. V., Zickert, P., Reed, S. I. & Zetterberg, A. Accumulation of cyclin E is not a prerequisite for passage through the restriction point. Mol. Cell. Biol. 21, 3256–3265 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lew, D. J., Dulic, V. & Reed, S. I. Isolation of three novel human cyclins by rescue of G1 cyclin (Cln) function in yeast. Cell 66, 1197–1206 (1991).

    Article  CAS  PubMed  Google Scholar 

  52. Won, K. A. & Reed, S. I. Activation of cyclin E/CDK2 is coupled to site-specific autophosphorylation and ubiquitin-dependent degradation of cyclin E. EMBO J. 15, 4182–4193 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Clurman, B. E., Sheaff, R. J., Thress, K., Groudine, M. & Roberts, J. M. Turnover of cyclin E by the ubiquitin-proteasome pathway is regulated by cdk2 binding and cyclin phosphorylation. Genes Dev. 10, 1979–1990 (1996).

    Article  CAS  PubMed  Google Scholar 

  54. Koepp, D. M. et al. Phosphorylation-dependent ubiquitination of cyclin E by the SCFFbw7 ubiquitin ligase. Science 294, 173–177 (2001).

    Article  CAS  PubMed  Google Scholar 

  55. Moberg, K. H., Bell, D. W., Wahrer, D. C., Haber, D. A. & Hariharan, I. K. Archipelago regulates Cyclin E levels in Drosophila and is mutated in human cancer cell lines. Nature 413, 311–316 (2001).

    Article  CAS  PubMed  Google Scholar 

  56. Strohmaier, H. et al. Human F-box protein hCdc4 targets cyclin E for proteolysis and is mutated in a breast cancer cell line. Nature 413, 316–322 (2001). References 54–56 show that cyclin E is targeted for proteolysis by an SCF ligase containing an F-box protein homologous to yeast Cdc4.

    Article  CAS  PubMed  Google Scholar 

  57. Spruck, C. et al. hCDC4 gene mutations in endometrial cancer. Cancer Res. 62, 4535–4539 (2002). Shows that Cdc4 in humans is a true tumour suppressor.

    CAS  PubMed  Google Scholar 

  58. Spruck, C. H., Won, K. A. & Reed, S. I. Deregulated cyclin E induces chromosome instability. Nature 401, 297–300 (1999).

    Article  CAS  PubMed  Google Scholar 

  59. Brandeis, M. & Hunt, T. The proteolysis of mitotic cyclins in mammalian cells persists from the end of mitosis until the onset of S phase. EMBO J. 15, 5280–5289 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zachariae, W., Schwab, M., Nasmyth, K. & Seufert, W. Control of cyclin ubiquitination by CDK-regulated binding of Hct1 to the anaphase promoting complex. Science 282, 1721–1724 (1998).

    Article  CAS  PubMed  Google Scholar 

  61. Kramer, E. R., Scheuringer, N., Podtelejnikov, A. V., Mann, M. & Peters, J. M. Mitotic regulation of the APC activator proteins CDC20 and CDH1. Mol. Biol. Cell 11, 1555–1569 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Golan, A., Yudkovsky, Y. & Hershko, A. The cyclin-ubiquitin ligase activity of cyclosome/APC is jointly activated by protein kinases Cdk1-cyclin B and Plk. J. Biol. Chem. 277, 15552–15557 (2002).

    Article  CAS  PubMed  Google Scholar 

  63. Rudner, A. D. & Murray, A. W. Phosphorylation by Cdc28 activates the Cdc20-dependent activity of the anaphase-promoting complex. J. Cell Biol. 149, 1377–1390 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Fang, G., Yu, H. & Kirschner, M. W. Direct binding of CDC20 protein family members activates the anaphase-promoting complex in mitosis and G1. Mol. Cell 2, 163–171 (1998).

    Article  CAS  PubMed  Google Scholar 

  65. Musacchio, A. & Hardwick, K. G. The spindle checkpoint: structural insights into dynamic signalling. Nature Rev. Mol. Cell Biol. 3, 731–741 (2002).

    Article  CAS  Google Scholar 

  66. Pfleger, C. M. & Kirschner, M. W. The KEN box: an APC recognition signal distinct from the D box targeted by Cdh1. Genes Dev. 14, 655–665 (2000). Compares the two APC/C degron motifs, the D-box and the KEN-box.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Prinz, S., Hwang, E. S., Visintin, R. & Amon, A. The regulation of Cdc20 proteolysis reveals a role for APC components Cdc23 and Cdc27 during S phase and early mitosis. Curr. Biol. 8, 750–760 (1998).

    Article  CAS  PubMed  Google Scholar 

  68. Shirayama, M., Zachariae, W., Ciosk, R. & Nasmyth, K. The Polo-like kinase Cdc5p and the WD-repeat protein Cdc20p/fizzy are regulators and substrates of the anaphase promoting complex in Saccharomyces cerevisiae. EMBO J. 17, 1336–1349 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lukas, C. et al. Accumulation of cyclin B1 requires E2F and cyclin-A-dependent rearrangement of the anaphase-promoting complex. Nature 401, 815–818 (1999).

    Article  CAS  PubMed  Google Scholar 

  70. Jaspersen, S. L., Charles, J. F. & Morgan, D. O. Inhibitory phosphorylation of the APC regulator Hct1 is controlled by the kinase Cdc28 and the phosphatase Cdc14. Curr. Biol. 9, 227–236 (1999).

    Article  CAS  PubMed  Google Scholar 

  71. Burton, J. L. & Solomon, M. J. D box and KEN box motifs in budding yeast Hsl1p are required for APC-mediated degradation and direct binding to Cdc20p and Cdh1p. Genes Dev. 15, 2381–2395 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Gieffers, C., Dube, P., Harris, J. R., Stark, H. & Peters, J. M. Three-dimensional structure of the anaphase-promoting complex. Mol. Cell 7, 907–913 (2001).

    Article  CAS  PubMed  Google Scholar 

  73. Zachariae, W. et al. Mass spectrometric analysis of the anaphase-promoting complex from yeast: identification of a subunit related to cullins. Science 279, 1216–1219 (1998). Describes a mass spectrometric analysis of the yeast APC/C that defines the constituent subunits.

    Article  CAS  PubMed  Google Scholar 

  74. Skowyra, D. et al. Reconstitution of G1 cyclin ubiquitination with complexes containing SCFGrr1 and Rbx1. Science 284, 662–665 (1999).

    Article  CAS  PubMed  Google Scholar 

  75. Seol, J. H. et al. Cdc53/cullin and the essential Hrt1 RING-H2 subunit of SCF define a ubiquitin ligase module that activates the E2 enzyme Cdc34. Genes Dev. 13, 1614–1626 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ohta, T., Michel, J. J., Schottelius, A. J. & Xiong, Y. ROC1, a homolog of APC11, represents a family of cullin partners with an associated ubiquitin ligase activity. Mol. Cell 3, 535–541 (1999).

    Article  CAS  PubMed  Google Scholar 

  77. Yoon, H. J. et al. Proteomics analysis identifies new components of the fission and budding yeast anaphase-promoting complexes. Curr. Biol. 12, 2048–2054 (2002).

    Article  CAS  PubMed  Google Scholar 

  78. Bai, C. et al. SKP1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the F-box. Cell 86, 263–274 (1996). Defines the F-box motif.

    Article  CAS  PubMed  Google Scholar 

  79. Cenciarelli, C. et al. Identification of a family of human F-box proteins. Curr. Biol. 9, 1177–1179 (1999).

    Article  CAS  PubMed  Google Scholar 

  80. Winston, J. T., Koepp, D. M., Zhu, C., Elledge, S. J. & Harper, J. W. A family of mammalian F-box proteins. Curr. Biol. 9, 1180–1182 (1999).

    Article  CAS  PubMed  Google Scholar 

  81. Skowyra, D., Craig, K. L., Tyers, M., Elledge, S. J. & Harper, J. W. F-box proteins are receptors that recruit phosphorylated substrates to the SCF ubiquitin-ligase complex. Cell 91, 209–219 (1997).

    Article  CAS  PubMed  Google Scholar 

  82. Feldman, R. M., Correll, C. C., Kaplan, K. B. & Deshaies, R. J. A complex of Cdc4p, Skp1p, and Cdc53p/cullin catalyzes ubiquitination of the phosphorylated CDK inhibitor Sic1p. Cell 91, 221–230 (1997). References 81 and 82 show the first in vitro reconstitution of active SCF.

    Article  CAS  PubMed  Google Scholar 

  83. Verma, R., Feldman, R. M. & Deshaies, R. J. SIC1 is ubiquitinated in vitro by a pathway that requires CDC4, CDC34, and cyclin/CDK activities. Mol. Biol. Cell 8, 1427–1437 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Patton, E. E. et al. Cdc53 is a scaffold protein for multiple Cdc34/Skp1/F-box protein complexes that regulate cell division and methionine biosynthesis in yeast. Genes Dev. 12, 692–705 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Li, F. N. & Johnston, M. Grr1 of Saccharomyces cerevisiae is connected to the ubiquitin proteolysis machinery through Skp1: coupling glucose sensing to gene expression and the cell cycle. EMBO J. 16, 5629–5638 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Kaiser, P., Sia, R. A., Bardes, E. G., Lew, D. J. & Reed, S. I. Cdc34 and the F-box protein Met30 are required for degradation of the Cdk-inhibitory kinase Swe1. Genes Dev. 12, 2587–2597 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Patton, E. E. et al. SCFMet30-mediated control of the transcriptional activator Met4 is required for the G(1)–S transition. EMBO J. 19, 1613–1624 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Guardavaccaro, D. et al. Control of meiotic and mitotic progression by the F box protein β-Trcp1 in vivo. Dev. Cell 4, 799–812 (2003).

    Article  CAS  PubMed  Google Scholar 

  89. Margottin-Goguet, F. et al. Prophase destruction of Emi1 by the SCFβTrCP/Slimb ubiquitin ligase activates the anaphase promoting complex to allow progression beyond prometaphase. Dev. Cell 4, 813–826 (2003).

    Article  CAS  PubMed  Google Scholar 

  90. Schulman, B. A. et al. Insights into SCF ubiquitin ligases from the structure of the Skp1–Skp2 complex. Nature 408, 381–386 (2000).

    Article  CAS  PubMed  Google Scholar 

  91. Zheng, N. et al. Structure of the Cul1–Rbx1–Skp1– F-boxSkp2 SCF ubiquitin ligase complex. Nature 416, 703–709 (2002). References 90 and 91 describe the X-ray crystallographic structure of human SCFSkp2.

    Article  CAS  PubMed  Google Scholar 

  92. Spruck, C. et al. A CDK-independent function of mammalian Cks1: targeting of SCFSkp2 to the CDK inhibitor p27Kip1. Mol. Cell 7, 639–650 (2001).

    Article  CAS  PubMed  Google Scholar 

  93. Ganoth, D. et al. The cell-cycle regulatory protein Cks1 is required for SCFSkp2-mediated ubiquitinylation of p27. Nature Cell Biol. 3, 321–324 (2001).

    Article  CAS  PubMed  Google Scholar 

  94. Orlicky, S., Tang, X., Willems, A., Tyers, M. & Sicheri, F. Structural basis for phosphodependent substrate selection and orientation by the SCFCdc4 ubiquitin ligase. Cell 112, 243–256 (2003). Describes the X-ray crystallographic structure of Cdc4 bound to a phosphodegron peptide.

    Article  CAS  PubMed  Google Scholar 

  95. Gagne, J. M., Downes, B. P., Shiu, S. H., Durski, A. M. & Vierstra, R. D. The F-box subunit of the SCF E3 complex is encoded by a diverse superfamily of genes in Arabidopsis. Proc. Natl Acad. Sci. USA 99, 11519–11524 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Meimoun, A. et al. Degradation of the transcription factor Gcn4 requires the kinase Pho85 and the SCFCDC4 ubiquitin-ligase complex. Mol. Biol. Cell 11, 915–927 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Henchoz, S. et al. Phosphorylation- and ubiquitin-dependent degradation of the cyclin-dependent kinase inhibitor Far1p in budding yeast. Genes Dev. 11, 3046–3060 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Oberg, C. et al. The Notch intracellular domain is ubiquitinated and negatively regulated by the mammalian Sel-10 homolog. J. Biol. Chem. 276, 35847–35853 (2001).

    Article  CAS  PubMed  Google Scholar 

  99. Gupta-Rossi, N. et al. Functional interaction between SEL-10, an F-box protein, and the nuclear form of activated Notch1 receptor. J. Biol. Chem. 276, 34371–34378 (2001).

    Article  CAS  PubMed  Google Scholar 

  100. Drury, L. S., Perkins, G. & Diffley, J. F. The Cdc4/34/53 pathway targets Cdc6p for proteolysis in budding yeast. EMBO J. 16, 5966–5976 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Hartwell, L. H., Culotti, J., Pringle, J. R. & Reid, B. J. Genetic control of the cell division cycle in yeast. Science 183, 46–51 (1974).

    Article  CAS  PubMed  Google Scholar 

  102. Hubbard, E. J., Wu, G., Kitajewski, J. & Greenwald, I. sel-10, a negative regulator of lin-12 activity in Caenorhabditis elegans, encodes a member of the CDC4 family of proteins. Genes Dev. 11, 3182–3193 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Nash, P. et al. Multisite phosphorylation of a CDK inhibitor sets a threshold for the onset of DNA replication. Nature 414, 514–521 (2001). Describes how multiple inefficient Cdc4 degrons in Sic1 can be used to set a threshold linking phosphorylation to ubiquitylation and turnover.

    Article  CAS  PubMed  Google Scholar 

  104. Teicher, B. A., Ara, G., Herbst, R., Palombella, V. J. & Adams, J. The proteasome inhibitor PS-341 in cancer therapy. Clin. Cancer Res. 5, 2638–2645 (1999).

    CAS  PubMed  Google Scholar 

  105. Zou, H., McGarry, T. J., Bernal, T. & Kirschner, M. W. Identification of a vertebrate sister-chromatid separation inhibitor involved in transformation and tumorigenesis. Science 285, 418–422 (1999).

    Article  CAS  PubMed  Google Scholar 

  106. Shirayama, M., Toth, A., Galova, M. & Nasmyth, K. APCCdc20 promotes exit from mitosis by destroying the anaphase inhibitor Pds1 and cyclin Clb5. Nature 402, 203–207 (1999).

    Article  CAS  PubMed  Google Scholar 

  107. Dawson, I. A., Roth, S. & Artavanis-Tsakonas, S. The Drosophila cell cycle gene fizzy is required for normal degradation of cyclins A and B during mitosis and has homology to the CDC20 gene of Saccharomyces cerevisiae. J. Cell Biol. 129, 725–737 (1995).

    Article  CAS  PubMed  Google Scholar 

  108. Sigrist, S., Jacobs, H., Stratmann, R. & Lehner, C. F. Exit from mitosis is regulated by Drosophila fizzy and the sequential destruction of cyclins A, B and B3. EMBO J. 14, 4827–4838 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Sudakin, V. et al. The cyclosome, a large complex containing cyclin-selective ubiquitin ligase activity, targets cyclins for destruction at the end of mitosis. Mol. Biol. Cell 6, 185–197 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. King, R. W. et al. A 20S complex containing CDC27 and CDC16 catalyzes the mitosis-specific conjugation of ubiquitin to cyclin B. Cell 81, 279–288 (1995).

    Article  CAS  PubMed  Google Scholar 

  111. Yu, H., King, R. W., Peters, J. M. & Kirschner, M. W. Identification of a novel ubiquitin-conjugating enzyme involved in mitotic cyclin degradation. Curr. Biol. 6, 455–466 (1996).

    Article  CAS  PubMed  Google Scholar 

  112. Kramer, E. R., Gieffers, C., Holzl, G., Hengstschlager, M. & Peters, J. M. Activation of the human anaphase-promoting complex by proteins of the CDC20/Fizzy family. Curr. Biol. 8, 1207–1210 (1998).

    Article  CAS  PubMed  Google Scholar 

  113. Charles, J. F. et al. The Polo-related kinase Cdc5 activates and is destroyed by the mitotic cyclin destruction machinery in S. cerevisiae. Curr. Biol. 8, 497–507 (1998).

    Article  CAS  PubMed  Google Scholar 

  114. Castro, A. et al. APC/Fizzy-Related targets Aurora-A kinase for proteolysis. EMBO Rep. 3, 457–462 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Taguchi, S. et al. Degradation of human Aurora-A protein kinase is mediated by hCdh1. FEBS Lett. 519, 59–65 (2002).

    Article  CAS  PubMed  Google Scholar 

  116. Ferreira, M. F., Santocanale, C., Drury, L. S. & Diffley, J. F. Dbf4p, an essential S phase-promoting factor, is targeted for degradation by the anaphase-promoting complex. Mol. Cell Biol. 20, 242–248 (2000).

    Article  CAS  PubMed  Google Scholar 

  117. Juang, Y. L. et al. APC-mediated proteolysis of Ase1 and the morphogenesis of the mitotic spindle. Science 275, 1311–1314 (1997).

    Article  CAS  PubMed  Google Scholar 

  118. Petersen, B. O. et al. Cell cycle- and cell growth-regulated proteolysis of mammalian CDC6 is dependent on APC-CDH1. Genes Dev. 14, 2330–2343 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Bastians, H., Topper, L. M., Gorbsky, G. L. & Ruderman, J. V. Cell cycle-regulated proteolysis of mitotic target proteins. Mol. Biol. Cell 10, 3927–3941 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. McGarry, T. J. & Kirschner, M. W. Geminin, an inhibitor of DNA replication, is degraded during mitosis. Cell 93, 1043–1053 (1998).

    Article  CAS  PubMed  Google Scholar 

  121. Hildebrandt, E. R. & Hoyt, M. A. Cell cycle-dependent degradation of the Saccharomyces cerevisiae spindle motor Cin8p requires APCCdh1 and a bipartite destruction sequence. Mol. Biol. Cell 12, 3402–3416 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Gordon, D. M. & Roof, D. M. Degradation of the kinesin Kip1p at anaphase onset is mediated by the anaphase-promoting complex and Cdc20p. Proc. Natl Acad. Sci. USA 98, 12515–12520 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Funabiki, H. & Murray, A. W. The Xenopus chromokinesin Xkid is essential for metaphase chromosome alignment and must be degraded to allow anaphase chromosome movement. Cell 102, 411–424 (2000).

    Article  CAS  PubMed  Google Scholar 

  124. Burton, J. L. & Solomon, M. J. Hsl1p, a Swe1p inhibitor, is degraded via the anaphase-promoting complex. Mol. Cell Biol. 20, 4614–4625 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Kominami, K. & Toda, T. Fission yeast WD-repeat protein pop1 regulates genome ploidy through ubiquitin-proteasome-mediated degradation of the CDK inhibitor Rum1 and the S-phase initiator Cdc18. Genes Dev. 11, 1548–1560 (1997).

    Article  CAS  PubMed  Google Scholar 

  126. Wolf, D. A., McKeon, F. & Jackson, P. K. F-box/WD-repeat proteins pop1p and Sud1p/Pop2p form complexes that bind and direct the proteolysis of cdc18p. Curr. Biol. 9, 373–376 (1999).

    Article  CAS  PubMed  Google Scholar 

  127. Jaquenoud, M., Gulli, M. P., Peter, K. & Peter, M. The Cdc42p effector Gic2p is targeted for ubiquitin-dependent degradation by the SCFGrr1 complex. EMBO J. 17, 5360–5373 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Bhattacharya, S. et al. SKP2 associates with p130 and accelerates p130 ubiquitylation and degradation in human cells. Oncogene 22, 2443–2451 (2003).

    Article  CAS  PubMed  Google Scholar 

  129. Mendez, J. et al. Human origin recognition complex large subunit is degraded by ubiquitin-mediated proteolysis after initiation of DNA replication. Mol. Cell 9, 481–491 (2002).

    Article  CAS  PubMed  Google Scholar 

  130. Ayad, N. G. et al. Tome-1, a trigger of mitotic entry, is degraded during G1 via the APC. Cell 113, 101–113 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

FlyBase

Archipelago

LocusLink

Cullin

F-box

Saccharomyces genome database

Cdc4

CDH1

Cdk1

Esp1

Grr1

Met30

Pds1

Sic1

Swe1

SwissProt

APC/C2

APC/C11

CDC4

Cdc20

Cdk2

CKS1

Cul-1

cyclin E

EMI1

p21cip1

p27Kip1

Roc1

Securin

Skp1

β-TrCP

ubiquitin

Glossary

CYCLIN

The positive regulatory subunits of cyclin-dependent kinases, usually regulated by ubiquitin-mediated proteolysis.

UBIQUITIN

A 76-amino-acid polypeptide that is conjugated through an isopeptide linkage to other proteins. Most commonly, such conjugates are targeted for degradation by the proteasome.

HETEROCHRONIC EXPRESSION

Expression of a protein at an inappropriate or abnormal time.

PROTEIN-UBIQUITIN LIGASE

An enzyme, or enzyme complex, responsible for transferring ubiquitin to a target protein.

SCF

A class of protein-ubiquitin ligase containing three core subunits (Cul1/Cdc53, Skp1 and Roc1/Rbx1) and a variable substrate-recognition subunit, which is known as an F-box protein.

ANEUPLOIDY

The ploidy of a cell refers to the number of sets of chromosomes that it contains. Aneuploid karyotypes are those whose chromosome complements are not a simple multiple of the haploid set.

CLB

Yeast cyclins with structural homology to metazoan cyclin B.

CLN

Yeast G1 cyclins that lack strong structural homology to any metazoan cyclins.

p130

A member of the pocket protein family of cell-cycle inhibitors. p130 has two modes of action: establishing transcriptional repression complexes with E2F transcription factors and inhibiting cyclin-E–Cdk2 complexes.

PROTEASOME

A large intracellular protease assembly that targets ubiquitylated proteins.

SPINDLE

A highly dynamic, bipolar array of microtubules that forms during mitosis or meiosis and serves to move the duplicated chromosomes apart.

DEGRON

A sequence required for destabilization of a protein, usually by functioning as a recognition signal for a protein-ubiquitin ligase.

D-BOX

One of two degron sequences recognized by the APC/C.

KEN-BOX

One of two degron sequences recognized by the APC/C.

CRYO-ELECTRON MICROSCOPY

A technique by which, using a special cryoholder, cryofixed biological samples are directly imaged in the transmission-electron microscope under low-dose conditions and at low temperature (at least −170 °C). The sample can be either a frozen layer or a suspension.

RING-FINGER PROTEINS

A family of proteins structurally defined by the presence of the zinc-binding ring-finger motif. The ring consensus sequence is: CX2CX(9–39)CX(1–3)HX(2–3)C/HX2CX(4–48)CX2C. The cysteines and histidines represent metal-binding sites. The first, second, fifth and sixth of these bind one zinc ion and the third, fourth, seventh and eighth bind the second zinc ion.

PHOSPHODEGRON

The phosphorylated sequence on a protein recognized by an SCF ligase.

WD40 β-PROPELLER

A protein-interaction domain consisting of 40 amino-acid repeats that form a propeller-like structure, in which each repeat contributes a blade.

DOMINANT-NEGATIVE

A defective protein that retains interaction capabilities and so distorts or competes with normal proteins.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reed, S. Ratchets and clocks: the cell cycle, ubiquitylation and protein turnover. Nat Rev Mol Cell Biol 4, 855–864 (2003). https://doi.org/10.1038/nrm1246

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm1246

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing