Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Phosphatases in cell–matrix adhesion and migration

Key Points

  • Phosphatases can be classified into two families — the tyrosine phosphatases and the serine/threonine phosphatases — that differ in structure, enzymatic mechanism and regulation.

  • Phosphatases dephosphorylate proteins on tyrosine, threonine and serine residues to influence protein folding, enzymatic activity and protein–protein interactions.

  • Phosphatases affect all components of the migration process including: protrusion of lamellipodia that is induced by remodelling of the actin cytoskeleton and regulated by small GTPase molecular switches; modulation of the dynamics of matrix-adhesion interaction; actin contraction; rear release; and regulation of migratory directionality.

  • Phosphatase activity can either inhibit or stimulate the processes of cell adhesion and migration; phosphatases can also influence signalling-pathway selection by dephosphorylation of specific sites on signal-transduction proteins.

  • Phosphatases have essential roles during embryonic development and in the adult through the regulation of cell–matrix adhesion and migration in diverse cell types.

  • Application of new technologies for the examination of spatio–temporal regulation of phosphatases, as well as for substrate identification, will provide opportunities to further our understanding of the role of phosphatases in adhesion and migration.

Abstract

Many proteins that have been implicated in cell–matrix adhesion and cell migration are phosphorylated, which regulates their folding, enzymatic activities and protein–protein interactions. Although modulation of cell motility by kinases is well known, increasing evidence confirms that phosphatases are essential at each stage of the migration process. Phosphatases can control the formation and maintenance of the actin cytoskeleton, regulate small GTPase molecular switches, and modulate the dynamics of matrix–adhesion interaction, actin contraction, rear release and migratory directionality.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Influence of phosphatases on cell migration.
Figure 2: Phosphatases regulate the activity of Rho-family GTPases.
Figure 3: FAK activity in integrin complexes is modulated by many phosphatases.
Figure 4: Effects of PTEN and other phosphatases on migration and directionality.

Similar content being viewed by others

References

  1. Edwards, J. G., Campbell, G., Grierson, A. W. & Kinn, S. R. Vanadate inhibits both intercellular adhesion and spreading on fibronectin of BHK21 cells and transformed derivatives. J. Cell Sci. 98, 363–368 (1991). One of the first papers to show that phosphatases affect adhesion. They showed that vanadate inhibited both attachment and spreading in cell culture.

    CAS  PubMed  Google Scholar 

  2. Wilson, A. K., Takai, A., Ruegg, J. C. & de Lanerolle, P. Okadaic acid, a phosphatase inhibitor, decreases macrophage motility. Am. J. Physiol. 260, L105–L112 (1991). One of the first papers to indicate that phosphatases affect cell migration. Using the fairly specific PP2A inhibitor okadaic acid, the authors showed that macrophage migration was inhibited. Significantly, they correlated cytoskeletal reorganization with inhibition of motility, indicating that phosphatases uncouple these highly coordinated processes.

    CAS  PubMed  Google Scholar 

  3. Neel, B. G. & Tonks, N. K. Protein tyrosine phosphatases in signal transduction. Curr. Opin. Cell Biol. 9, 193–204 (1997).

    CAS  PubMed  Google Scholar 

  4. Angers-Loustau, A., Côté, J. F. & Tremblay, M. L. Roles of protein tyrosine phosphatases in cell migration and adhesion. Biochem. Cell Biol. 77, 493–505 (1999).

    CAS  PubMed  Google Scholar 

  5. Beltran, P. J. & Bixby, J. L. Receptor protein tyrosine phosphatases as mediators of cellular adhesion. Front. Biosci. 8, D87–D99 (2003).

    CAS  PubMed  Google Scholar 

  6. Sheetz, M. P., Felsenfeld, D. P. & Galbraith, C. G. Cell migration: regulation of force on extracellular-matrix–integrin complexes. Trends Cell Biol. 8, 51–54 (1998).

    CAS  PubMed  Google Scholar 

  7. Trinkaus, J. P. in Cells Into Organs: The Forces That Shape The Embryo, 2nd Edn, 179–226 (Prentice–Hall Inc., Englewood Cliffs, New Jersey, 1984).

    Google Scholar 

  8. Zebda, N. et al. Phosphorylation of ADF/cofilin abolishes EGF-induced actin nucleation at the leading edge and subsequent lamellipod extension. J. Cell Biol. 151, 1119–1128 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Ichetovkin, I., Grant, W. & Condeelis, J. Cofilin produces newly polymerized actin filaments that are preferred for dendritic nucleation by the Arp2/3 complex. Curr. Biol. 12, 79–84 (2002).

    CAS  PubMed  Google Scholar 

  10. Dawe, H. R., Minamide, L. S., Bamburg, J. R. & Cramer, L. P. ADF/Cofilin controls cell polarity during fibroblast migration. Curr. Biol. 13, 252–257 (2003).

    CAS  PubMed  Google Scholar 

  11. Niwa, R., Nagata-Ohashi, K., Takeichi, M., Mizuno, K. & Uemura, T. Control of actin reorganization by Slingshot, a family of phosphatases that dephosphorylate ADF/cofilin. Cell 108, 233–246 (2002).

    CAS  PubMed  Google Scholar 

  12. Ambach, A. et al. The serine phosphatases PP1 and PP2A associate with and activate the actin-binding protein cofilin in human T lymphocytes. Eur. J. Immunol. 30, 3422–3431 (2000).

    CAS  PubMed  Google Scholar 

  13. Arber, S. et al. Regulation of actin dynamics through phosphorylation of cofilin by LIM-kinase. Nature 393, 805–809 (1998).

    CAS  PubMed  Google Scholar 

  14. Maekawa, M. et al. Signaling from Rho to the actin cytoskeleton through protein kinases ROCK and LIM-kinase. Science 285, 895–898 (1999).

    CAS  PubMed  Google Scholar 

  15. Ridley, A. J. & Hall, A. The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell 70, 389–399 (1992).

    Article  CAS  PubMed  Google Scholar 

  16. Ridley, A. J., Paterson, H. F., Johnston, C. L., Diekmann, D. & Hall, A. The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell 70, 401–410 (1992).

    CAS  PubMed  Google Scholar 

  17. Kozma, R., Ahmed, S., Best, A. & Lim, L. The Ras-related protein Cdc42Hs and bradykinin promote formation of peripheral actin microspikes and filopodia in Swiss 3T3 fibroblasts. Mol. Cell. Biol. 15, 1942–1952 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Roof, R. W. et al. Phosphotyrosine (p-Tyr)-dependent and -independent mechanisms of p190 RhoGAP–p120 RasGAP interaction: Tyr 1105 of p190, a substrate for c-Src, is the sole p-Tyr mediator of complex formation. Mol. Cell. Biol. 18, 7052–7063 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Kodama, A. et al. Involvement of an SHP-2-Rho small G protein pathway in hepatocyte growth factor/scatter factor-induced cell scattering. Mol. Biol. Cell 11, 2565–2575 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Schoenwaelder, S. M. et al. The protein tyrosine phosphatase SHP-2 regulates RhoA activity. Curr. Biol. 10, 1523–1526 (2000).

    CAS  PubMed  Google Scholar 

  21. Inagaki, K. et al. SHPS-1 regulates integrin-mediated cytoskeletal reorganization and cell motility. EMBO J. 19, 6721–6731 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Lacalle, R. A. et al. Specific SHP-2 partitioning in raft domains triggers integrin-mediated signaling via Rho activation. J. Cell Biol. 157, 277–289 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Motegi, S. et al. Role of the CD47–SHPS-1 system in regulation of cell migration. EMBO J. 22, 2634–2644 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Sastry, S. K., Lyons, P. D., Schaller, M. D. & Burridge, K. PTP-PEST controls motility through regulation of Rac1. J. Cell Sci. 115, 4305–4316 (2002).

    CAS  PubMed  Google Scholar 

  25. Gu, J. et al. Shc and FAK differentially regulate cell motility and directionality modulated by PTEN. J. Cell Biol. 146, 389–403 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Li, D. M. & Sun, H. TEP1, encoded by a candidate tumor suppressor locus, is a novel protein tyrosine phosphatase regulated by transforming growth factor β. Cancer Res. 57, 2124–2129 (1997).

    CAS  PubMed  Google Scholar 

  27. Liliental, J. et al. Genetic deletion of the Pten tumor suppressor gene promotes cell motility by activation of Rac1 and Cdc42 GTPases. Curr. Biol. 10, 401–404 (2000).

    CAS  PubMed  Google Scholar 

  28. Shiota, M. et al. Protein tyrosine phosphatase PTP20 induces actin cytoskeleton reorganization by dephosphorylating p190 RhoGAP in rat ovarian granulosa cells stimulated with FSH. Mol. Endocrinol. 4, 534–549 (2003).

    Google Scholar 

  29. Nimnual, A. S., Taylor, L. J. & Bar-Sagi, D. Redox-dependent downregulation of Rho by Rac. Nature Cell Biol. 5, 236–241 (2003).

    CAS  PubMed  Google Scholar 

  30. Dharmawardhane, S., Sanders, L. C., Martin, S. S., Daniels, R. H. & Bokoch, G. M. Localization of p21-activated kinase 1 (PAK1) to pinocytic vesicles and cortical actin structures in stimulated cells. J. Cell Biol. 138, 1265–1278 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Sells, M. A. et al. Human p21-activated kinase (PAK1) regulates actin organization in mammalian cells. Curr. Biol. 7, 202–210 (1997).

    CAS  PubMed  Google Scholar 

  32. Sanders, L. C., Matsumura, F., Bokoch, G. M. & de Lanerolle, P. Inhibition of myosin light chain kinase by p21-activated kinase. Science 283, 2083–2085 (1999).

    CAS  PubMed  Google Scholar 

  33. Edwards, D. C., Sanders, L. C., Bokoch, G. M. & Gill, G. N. Activation of LIM-kinase by PAK1 couples Rac/Cdc42 GTPase signalling to actin cytoskeletal dynamics. Nature Cell Biol. 1, 253–259 (1999).

    CAS  PubMed  Google Scholar 

  34. Koh, C. G., Tan, E. J., Manser, E. & Lim, L. The p21-activated kinase PAK is negatively regulated by POPX1 and POPX2, a pair of serine/threonine phosphatases of the PP2C family. Curr. Biol. 12, 317–321 (2002).

    CAS  PubMed  Google Scholar 

  35. Beningo, K. A., Dembo, M., Kaverina, I., Small, J. V. & Wang, Y. L. Nascent focal adhesions are responsible for the generation of strong propulsive forces in migrating fibroblasts. J. Cell Biol. 153, 881–888 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Galbraith, C. G. & Sheetz, M. P. A micromachined device provides a new bend on fibroblast traction forces. Proc. Natl. Acad. Sci. USA 94, 9114–9118 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. von Wichert, G. et al. RPTP-α acts as a transducer of mechanical force on αv/β3-integrin–cytoskeleton linkages. J. Cell Biol. 161, 143–153 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Schneider, G. B., Gilmore, A. P., Lohse, D. L., Romer, L. H. & Burridge, K. Microinjection of protein tyrosine phosphatases into fibroblasts disrupts focal adhesions and stress fibers. Cell Adhes. Commun. 5, 207–219 (1998).

    CAS  PubMed  Google Scholar 

  39. Angers-Loustau, A. et al. Protein tyrosine phosphatase-PEST regulates focal adhesion disassembly, migration, and cytokinesis in fibroblasts. J. Cell Biol. 144, 1019–1031 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Garton, A. J. & Tonks, N. K. Regulation of fibroblast motility by the protein tyrosine phosphatase PTP-PEST. J. Biol. Chem. 274, 3811–3818 (1999).

    CAS  PubMed  Google Scholar 

  41. Zamir, E. & Geiger, B. Molecular complexity and dynamics of cell-matrix adhesions. J. Cell Sci. 114, 3583–3590 (2001).

    CAS  PubMed  Google Scholar 

  42. Cary, L. A., Chang, J. F. & Guan, J. L. Stimulation of cell migration by overexpression of focal adhesion kinase and its association with Src and Fyn. J. Cell Sci. 109, 1787–1794 (1996).

    CAS  PubMed  Google Scholar 

  43. Ilic, D. et al. Reduced cell motility and enhanced focal adhesion contact formation in cells from FAK-deficient mice. Nature 377, 539–544 (1995).

    CAS  PubMed  Google Scholar 

  44. Yu, D. H., Qu, C. K., Henegariu, O., Lu, X. & Feng, G. S. Protein-tyrosine phosphatase SHP-2 regulates cell spreading, migration, and focal adhesion. J. Biol. Chem. 273, 21125–21131 (1998).

    CAS  PubMed  Google Scholar 

  45. Miao, H., Burnett, E., Kinch, M., Simon, E. & Wang, B. Activation of EphA2 kinase suppresses integrin function and causes focal-adhesion-kinase dephosphorylation. Nature Cell Biol. 2, 62–69 (2000).

    Article  CAS  PubMed  Google Scholar 

  46. Tamura, M. et al. PTEN interactions with focal adhesion kinase and suppression of the extracellular matrix-dependent phosphatidylinositol 3-kinase/Akt cell survival pathway. J. Biol. Chem. 274, 20693–20703 (1999).

    CAS  PubMed  Google Scholar 

  47. Fresu, M., Bianchi, M., Parsons, J. T. & Villa-Moruzzi, E. Cell-cycle-dependent association of protein phosphatase 1 and focal adhesion kinase. Biochem. J. 358, 407–414 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Brown, M. C., Perrotta, J. A. & Turner, C. E. Serine and threonine phosphorylation of the paxillin LIM domains regulates paxillin focal adhesion localization and cell adhesion to fibronectin. Mol. Biol. Cell 9, 1803–1816 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Ito, A. et al. A truncated isoform of the PP2A B56 subunit promotes cell motility through paxillin phosphorylation. EMBO J. 19, 562–571 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Jackson, J. L. & Young, M. R. Protein phosphatase-2A modulates the serine and tyrosine phosphorylation of paxillin in Lewis lung carcinoma tumor variants. Clin. Exp. Metastasis 19, 409–415 (2002).

    CAS  PubMed  Google Scholar 

  51. Pixley, F. J., Lee, P. S., Condeelis, J. S. & Stanley, E. R. Protein tyrosine phosphatase φ regulates paxillin tyrosine phosphorylation and mediates colony-stimulating factor 1-induced morphological changes in macrophages. Mol. Cell. Biol. 21, 1795–1809 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Shen, Y. et al. The noncatalytic domain of protein-tyrosine phosphatase-PEST targets paxillin for dephosphorylation in vivo. J. Biol. Chem. 275, 1405–1413 (2000).

    CAS  PubMed  Google Scholar 

  53. Côté, J. F., Turner, C. E. & Tremblay, M. L. Intact LIM 3 and LIM 4 domains of paxillin are required for the association to a novel polyproline region (Pro 2) of protein-tyrosine phosphatase-PEST. J. Biol. Chem. 274, 20550–20560 (1999).

    PubMed  Google Scholar 

  54. Zeng, L. et al. PTPα regulates integrin-stimulated FAK autophosphorylation and cytoskeletal rearrangement in cell spreading and migration. J. Cell Biol. 160, 137–146 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Young, M. R., Kolesiak, K. & Meisinger, J. Protein phosphatase-2A regulates endothelial cell motility and both the phosphorylation and the stability of focal adhesion complexes. Int. J. Cancer 100, 276–282 (2002).

    CAS  PubMed  Google Scholar 

  56. Young, M. R., Liu, S. W. & Meisinger, J. Protein phosphatase-2A restricts migration of Lewis lung carcinoma cells by modulating the phosphorylation of focal adhesion proteins. Int. J. Cancer 103, 38–44 (2003).

    CAS  PubMed  Google Scholar 

  57. Pankov, R. et al. Specific β1 integrin site selectively regulates Akt/PKB signaling via local activation of PP2A. J. Biol. Chem. 278, 18671–18681 (2003).

    CAS  PubMed  Google Scholar 

  58. Bjorge, J. D., Pang, A. & Fujita, D. J. Identification of protein-tyrosine phosphatase 1B as the major tyrosine phosphatase activity capable of dephosphorylating and activating c-Src in several human breast cancer cell lines. J. Biol. Chem. 275, 41439–41446 (2000). Reports a relatively rare role of a phosphatase in protein activation. The authors show that PTP1B directly dephosphorylates and activates Src in vitro . They identified this interaction by purifying phosphatase activity from extracts of a breast cancer cell line containing both elevated Src and phosphatase activity.

    CAS  PubMed  Google Scholar 

  59. Liu, F., Sells, M. A. & Chernoff, J. Protein tyrosine phosphatase 1B negatively regulates integrin signaling. Curr. Biol. 8, 173–176 (1998).

    CAS  PubMed  Google Scholar 

  60. Klemke, R. L. et al. CAS/Crk coupling serves as a 'molecular switch' for induction of cell migration. J. Cell Biol. 140, 961–972 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Kain, K. H. & Klemke, R. L. Inhibition of cell migration by Abl family tyrosine kinases through uncoupling of Crk-CAS complexes. J. Biol. Chem. 276, 16185–16192 (2001).

    CAS  PubMed  Google Scholar 

  62. Garton, A. J., Flint, A. J. & Tonks, N. K. Identification of p130(Cas) as a substrate for the cytosolic protein tyrosine phosphatase PTP-PEST. Mol. Cell. Biol. 16, 6408–6418 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Cong, F. et al. Cytoskeletal protein PSTPIP1 directs the PEST-type protein tyrosine phosphatase to the c-Abl kinase to mediate Abl dephosphorylation. Mol. Cell 6, 1413–1423 (2000).

    CAS  PubMed  Google Scholar 

  64. Noguchi, T. et al. Inhibition of cell growth and spreading by stomach cancer-associated protein-tyrosine phosphatase-1 (SAP-1) through dephosphorylation of p130cas. J. Biol. Chem. 276, 15216–15224 (2001).

    CAS  PubMed  Google Scholar 

  65. Sattler, M. et al. SHIP1, an SH2 domain containing polyinositol-5-phosphatase, regulates migration through two critical tyrosine residues and forms a novel signaling complex with DOK1 and CRKL. J. Biol. Chem. 276, 2451–2458 (2001).

    CAS  PubMed  Google Scholar 

  66. Tsuda, M. et al. Integrin-mediated tyrosine phosphorylation of SHPS-1 and its association with SHP-2. Roles of Fak and Src family kinases. J. Biol. Chem. 273, 13223–13229 (1998).

    CAS  PubMed  Google Scholar 

  67. Shen, Y. et al. Activation of the Jnk signaling pathway by a dual-specificity phosphatase, JSP-1. Proc. Natl Acad. Sci. USA 98, 13613–13618 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Shin, E. Y., Kim, S. Y. & Kim, E. G. c-Jun N-terminal kinase is involved in motility of endothelial cell. Exp. Mol. Med. 33, 276–283 (2001).

    CAS  PubMed  Google Scholar 

  69. Okagaki, T., Higashi-Fujime, S., Ishikawa, R., Takano-Ohmuro, H. & Kohama, K. In vitro movement of actin filaments on gizzard smooth muscle myosin: requirement of phosphorylation of myosin light chain and effects of tropomyosin and caldesmon. J. Biochem. 109, 858–866 (1991).

    CAS  PubMed  Google Scholar 

  70. Alessi, D., MacDougall, L. K., Sola, M. M., Ikebe, M. & Cohen, P. The control of protein phosphatase-1 by targetting subunits. The major myosin phosphatase in avian smooth muscle is a novel form of protein phosphatase-1. Eur. J. Biochem. 210, 1023–1035 (1992).

    CAS  PubMed  Google Scholar 

  71. Kawano, Y. et al. Phosphorylation of myosin-binding subunit (MBS) of myosin phosphatase by Rho-kinase in vivo. J. Cell Biol. 147, 1023–1038 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Worthylake, R. A., Lemoine, S., Watson, J. M. & Burridge, K. RhoA is required for monocyte tail retraction during transendothelial migration. J. Cell Biol. 154, 147–160 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Yoshinaga-Ohara, N., Takahashi, A., Uchiyama, T. & Sasada, M. Spatiotemporal regulation of moesin phosphorylation and rear release by Rho and serine/threonine phosphatase during neutrophil migration. Exp. Cell Res. 278, 112–122 (2002).

    CAS  PubMed  Google Scholar 

  74. Iijima, M. & Devreotes, P. Tumor suppressor PTEN mediates sensing of chemoattractant gradients. Cell 109, 599–610 (2002).

    CAS  PubMed  Google Scholar 

  75. Funamoto, S., Meili, R., Lee, S., Parry, L. & Firtel, R. A. Spatial and temporal regulation of 3-phosphoinositides by PI 3-kinase and PTEN mediates chemotaxis. Cell 109, 611–623 (2002). References 74 and 75 identify a role for PTEN in directional migration through its lipid phosphatase activity. These studies both used Dictyostelium as a model system.

    CAS  PubMed  Google Scholar 

  76. Iijima, M., Huang, Y. E. & Devreotes, P. Temporal and spatial regulation of chemotaxis. Dev. Cell 3, 469–478 (2002).

    CAS  PubMed  Google Scholar 

  77. Chung, C. Y., Potikyan, G. & Firtel, R. A. Control of cell polarity and chemotaxis by Akt/PKB and PI3 kinase through the regulation of PAKa. Mol. Cell 7, 937–947 (2001).

    CAS  PubMed  Google Scholar 

  78. Comer, F. I. & Parent, C. A. PI 3-kinases and PTEN: how opposites chemoattract. Cell 109, 541–544 (2002).

    CAS  PubMed  Google Scholar 

  79. Tamura, M. et al. Inhibition of cell migration, spreading, and focal adhesions by tumor suppressor PTEN. Science 280, 1614–1617 (1998).

    CAS  PubMed  Google Scholar 

  80. Tamura, M., Gu, J., Takino, T. & Yamada, K. M. Tumor suppressor PTEN inhibition of cell invasion, migration, and growth: differential involvement of focal adhesion kinase and p130Cas. Cancer Res. 59, 442–449 (1999).

    CAS  PubMed  Google Scholar 

  81. Gu, J., Tamura, M. & Yamada, K. M. Tumor suppressor PTEN inhibits integrin- and growth factor-mediated mitogen-activated protein (MAP) kinase signaling pathways. J. Cell Biol. 143, 1375–1383 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Spiegel, S., English, D. & Milstien, S. Sphingosine 1-phosphate signaling: providing cells with a sense of direction. Trends Cell Biol. 12, 236–242 (2002).

    CAS  PubMed  Google Scholar 

  83. Takuwa, Y. Subtype-specific differential regulation of Rho family G proteins and cell migration by the Edg family sphingosine-1-phosphate receptors. Biochim. Biophys. Acta 1582, 112–120 (2002).

    CAS  PubMed  Google Scholar 

  84. Desai, C. J., Gindhart, J. G. Jr, Goldstein, L. S. & Zinn, K. Receptor tyrosine phosphatases are required for motor axon guidance in the Drosophila embryo. Cell 84, 599–609 (1996).

    CAS  PubMed  Google Scholar 

  85. Tan, C., Stronach, B. & Perrimon, N. Roles of myosin phosphatase during Drosophila development. Development 130, 671–681 (2003).

    CAS  PubMed  Google Scholar 

  86. Saxton, T. M. et al. Abnormal mesoderm patterning in mouse embryos mutant for the SH2 tyrosine phosphatase SHP-2. EMBO J. 16, 2352–2364 (1997). In this paper, chimeric analysis was used to identify a role for SHP2 in mammalian limb development, which was not possible to determine in knockout embryos owing to defective gastrulation. The role of SHP2 in limb development is presumed to involve changes in cell shape, migration or adhesion.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Furuta, Y. et al. Mesodermal defect in late phase of gastrulation by a targeted mutation of focal adhesion kinase, FAK. Oncogene 11, 1989–1995 (1995).

    CAS  PubMed  Google Scholar 

  88. Saxton, T. M. & Pawson, T. Morphogenetic movements at gastrulation require the SH2 tyrosine phosphatase SHP-2. Proc. Natl Acad. Sci. USA 96, 3790–3795 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Saxton, T. M. et al. The SH2 tyrosine phosphatase SHP-2 is required for mammalian limb development. Nature Genet. 24, 420–423 (2000).

    CAS  PubMed  Google Scholar 

  90. Gotz, J., Probst, A., Ehler, E., Hemmings, B. & Kues, W. Delayed embryonic lethality in mice lacking protein phosphatase 2A catalytic subunit Cα. Proc. Natl Acad. Sci. USA 95, 12370–12375 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Li, L., Liu, F. & Ross, A. H. PTEN regulation of neural development and CNS stem cells. J. Cell. Biochem. 88, 24–28 (2003).

    CAS  PubMed  Google Scholar 

  92. Schaapveld, R. Q. et al. Impaired mammary gland development and function in mice lacking LAR receptor-like tyrosine phosphatase activity. Dev. Biol. 188, 134–146 (1997).

    CAS  PubMed  Google Scholar 

  93. Pulido, R., Serra-Pages, C., Tang, M. & Streuli, M. The LAR/PTPδ/PTPσ subfamily of transmembrane protein-tyrosine-phosphatases: multiple human LAR, PTPδ, and PTPσ isoforms are expressed in a tissue-specific manner and associate with the LAR-interacting protein LIP1. Proc. Natl Acad. Sci. USA 92, 11686–11690 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Harrington, R. J., Gutch, M. J., Hengartner, M. O., Tonks, N. K. & Chisholm, A. D. The C. elegans LAR-like receptor tyrosine phosphatase PTP-3 and the VAB-1 Eph receptor tyrosine kinase have partly redundant functions in morphogenesis. Development 129, 2141–2153 (2002).

    CAS  PubMed  Google Scholar 

  95. Haj, F. G., Markova, B., Klaman, L. D., Bohmer, F. D. & Neel, B. G. Regulation of receptor tyrosine kinase signaling by protein tyrosine phosphatase-1B. J. Biol. Chem. 278, 739–744 (2003).

    CAS  PubMed  Google Scholar 

  96. Manning, G., Whyte, D. B., Martinez, R., Hunter, T. & Sudarsanam, S. The protein kinase complement of the human genome. Science 298, 1912–1934 (2002).

    CAS  PubMed  Google Scholar 

  97. Lander, E. S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).

    CAS  PubMed  Google Scholar 

  98. Venter, J. C. et al. The sequence of the human genome. Science 291, 1304–1351 (2001).

    CAS  PubMed  Google Scholar 

  99. Tonks, N. K. & Neel, B. G. Combinatorial control of the specificity of protein tyrosine phosphatases. Curr. Opin. Cell Biol. 13, 182–195 (2001).

    CAS  PubMed  Google Scholar 

  100. Hubbard, M. J. & Cohen, P. On target with a new mechanism for the regulation of protein phosphorylation. Trends Biochem. Sci. 18, 172–177 (1993).

    CAS  PubMed  Google Scholar 

  101. Denu, J. M. & Dixon, J. E. Protein tyrosine phosphatases: mechanisms of catalysis and regulation. Curr. Opin. Chem. Biol. 2, 633–641 (1998).

    CAS  PubMed  Google Scholar 

  102. Espanel, X., Huguenin-Reggiani, M. & Van Huijsduijnen, R. H. The SPOT technique as a tool for studying protein tyrosine phosphatase substrate specificities. Protein Sci. 11, 2326–2334 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Xie, L., Zhang, Y. L. & Zhang, Z. Y. Design and characterization of an improved protein tyrosine phosphatase substrate-trapping mutant. Biochemistry 41, 4032–4039 (2002).

    CAS  PubMed  Google Scholar 

  104. Meng, T. C., Fukada, T. & Tonks, N. K. Reversible oxidation and inactivation of protein tyrosine phosphatases in vivo. Mol. Cell 9, 387–399 (2002). One of the first papers to identify oxidation as a reversible post-translational modification of phosphatases. This discovery not only indicates a possible method for placement of phosphatases within specific signalling cascades, but also that this might be an important mechanism for the downregulation of phosphatase activity and consequent amplification of a tyrosine kinase signal.

    CAS  PubMed  Google Scholar 

  105. Burke, T. R. Jr & Zhang, Z. Y. Protein-tyrosine phosphatases: structure, mechanism, and inhibitor discovery. Biopolymers 47, 225–241 (1998).

    CAS  PubMed  Google Scholar 

  106. Huang, P. et al. Structure-based design and discovery of novel inhibitors of protein tyrosine phosphatases. Bioorg. Med. Chem. 11, 1835–1849 (2003).

    CAS  PubMed  Google Scholar 

  107. Elbashir, S. M., Harborth, J., Weber, K. & Tuschl, T. Analysis of gene function in somatic mammalian cells using small interfering RNAs. Methods 26, 199–213 (2002).

    CAS  PubMed  Google Scholar 

  108. Kirchner, J., Kam, Z., Tzur, G., Bershadsky, A. D. & Geiger, B. Live-cell monitoring of tyrosine phosphorylation in focal adhesions following microtubule disruption. J. Cell Sci. 116, 975–986 (2003).

    CAS  PubMed  Google Scholar 

  109. Zhang, J., Ma, Y., Taylor, S. S. & Tsien, R. Y. Genetically encoded reporters of protein kinase A activity reveal impact of substrate tethering. Proc. Natl Acad. Sci. USA 98, 14997–15002 (2001). This innovative study makes use of a reporter construct to image the localization and dynamics of serine/threonine kinase and phosphatase activity in live cells by fluorescence resonance energy transfer (FRET).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Ting, A. Y., Kain, K. H., Klemke, R. L. & Tsien, R. Y. Genetically encoded fluorescent reporters of protein tyrosine kinase activities in living cells. Proc. Natl Acad. Sci. USA 98, 15003–15008 (2001). This study confirms that the FRET technique for studying the localization of kinase/phosphatase activity in live cells developed by reference 109 is applicable to tyrosine kinases and phosphatases.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Simpson, L. & Parsons, R. PTEN: life as a tumor suppressor. Exp. Cell Res. 264, 29–41 (2001).

    CAS  PubMed  Google Scholar 

  112. van Huijsduijnen, R. H., Bombrun, A. & Swinnen, D. Selecting protein tyrosine phosphatases as drug targets. Drug Discov. Today 7, 1013–1019 (2002).

    Google Scholar 

  113. Andersen, J. N. et al. Structural and evolutionary relationships among protein tyrosine phosphatase domains. Mol. Cell. Biol. 21, 7117–7136 (2001). This review provides an excellent overview of the structure, function and evolutionary relationships among the PTP family members (see also Phosphatases in Online links).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Keyse, S. M. Protein phosphatases and the regulation of mitogen-activated protein kinase signalling. Curr. Opin. Cell Biol. 12, 186–192 (2000).

    CAS  PubMed  Google Scholar 

  115. Mauro, L. J. & Dixon, J. E. 'Zip codes' direct intracellular protein tyrosine phosphatases to the correct cellular 'address'. Trends Biochem. Sci. 19, 151–155 (1994).

    CAS  PubMed  Google Scholar 

  116. Barford, D., Das, A. K. & Egloff, M. P. The structure and mechanism of protein phosphatases: insights into catalysis and regulation. Annu. Rev. Biophys. Biomol. Struct. 27, 133–164 (1998).

    CAS  PubMed  Google Scholar 

  117. Rohrschneider, L. R., Fuller, J. F., Wolf, I., Liu, Y. & Lucas, D. M. Structure, function, and biology of SHIP proteins. Genes Dev. 14, 505–520 (2000).

    CAS  PubMed  Google Scholar 

  118. Cohen, P. The origins of protein phosphorylation. Nature Cell Biol. 4, E127–E130 (2002). This article gives an excellent history of the discovery of cellular protein phosphorylation.

    CAS  PubMed  Google Scholar 

  119. Harder, K. W., Moller, N. P., Peacock, J. W. & Jirik, F. R. Protein-tyrosine phosphatase α regulates Src family kinases and alters cell-substratum adhesion. J. Biol. Chem. 273, 31890–31900 (1998).

    CAS  PubMed  Google Scholar 

  120. Palka, H. L., Park, M. & Tonks, N. K. Hepatocyte growth factor receptor tyrosine kinase Met is a substrate of the receptor protein-tyrosine phosphatase DEP-1. J. Biol. Chem. 278, 5728–5735 (2003).

    CAS  PubMed  Google Scholar 

  121. Muller, T., Choidas, A., Reichmann, E. & Ullrich, A. Phosphorylation and free pool of β-catenin are regulated by tyrosine kinases and tyrosine phosphatases during epithelial cell migration. J. Biol. Chem. 274, 10173–10183 (1999).

    CAS  PubMed  Google Scholar 

  122. Hart, M. J., de los Santos, R., Albert, I. N., Rubinfeld, B. & Polakis, P. Downregulation of β-catenin by human axin and its association with the APC tumor suppressor, β-catenin and GSK3β. Curr. Biol. 8, 573–581 (1998).

    CAS  PubMed  Google Scholar 

  123. Polakis, P. Wnt signaling and cancer. Genes Dev. 14, 1837–1851 (2000).

    CAS  PubMed  Google Scholar 

  124. Muller, T., Bain, G., Wang, X. & Papkoff, J. Regulation of epithelial cell migration and tumor formation by β-catenin signaling. Exp. Cell Res. 280, 119–133 (2002).

    PubMed  Google Scholar 

  125. Persad, S., Troussard, A. A., McPhee, T. R., Mulholland, D. J. & Dedhar, S. Tumor suppressor PTEN inhibits nuclear accumulation of β-catenin and T cell/lymphoid enhancer factor 1-mediated transcriptional activation. J. Cell Biol. 153, 1161–1174 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Johnson, K. G. & Van Vactor, D. Receptor protein tyrosine phosphatases in nervous system development. Physiol. Rev. 83, 1–24 (2003).

    CAS  PubMed  Google Scholar 

  127. Janssens, V. & Goris, J. Protein phosphatase 2A: a highly regulated family of serine/threonine phosphatases implicated in cell growth and signalling. Biochem. J. 353, 417–439 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Yu, X. X. et al. Methylation of the protein phosphatase 2A catalytic subunit is essential for association of B α regulatory subunit but not SG2NA, striatin, or polyomavirus middle tumor antigen. Mol. Biol. Cell 12, 185–199 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Wallace, M. J., Fladd, C., Batt, J. & Rotin, D. The second catalytic domain of protein tyrosine phosphatase δ (PTPδ) binds to and inhibits the first catalytic domain of PTPσ. Mol. Cell. Biol. 18, 2608–2616 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Desai, D. M., Sap, J., Schlessinger, J. & Weiss, A. Ligand-mediated negative regulation of a chimeric transmembrane receptor tyrosine phosphatase. Cell 73, 541–554 (1993).

    CAS  PubMed  Google Scholar 

  131. Lechleider, R. J. et al. Activation of the SH2-containing phosphotyrosine phosphatase SH-PTP2 by its binding site, phosphotyrosine 1009, on the human platelet-derived growth factor receptor. J. Biol. Chem. 268, 21478–21481 (1993).

    CAS  PubMed  Google Scholar 

  132. Chen, J., Martin, B. L. & Brautigan, D. L. Regulation of protein serine-threonine phosphatase type-2A by tyrosine phosphorylation. Science 257, 1261–1264 (1992).

    CAS  PubMed  Google Scholar 

  133. Lu, W., Gong, D., Bar-Sagi, D. & Cole, P. A. Site-specific incorporation of a phosphotyrosine mimetic reveals a role for tyrosine phosphorylation of SHP-2 in cell signaling. Mol. Cell 8, 759–769 (2001).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We regret that we were able to review only a portion of the extensive work in this field due to length constraints. M.L. is supported by a National Insitutes of Health grant for postdoctoral fellows. M.L.T. is a Scientist of the Canadian Institutes of Health Research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Melinda Larsen or Michel L. Tremblay.

Related links

Related links

DATABASES

Flybase

Slingshot

Interpro

ADF

B′

phosphatases

PP

PTP

SH2

LocusLink

LMW-PTP

PTEN

PTP-PEST

SHP2

Swiss-Prot

FAK

LIMK

POPX1

POPX2

PP1

PP2A

PTP1B

PTPα

PTPδ

PTPσ

PTPφ

SHIP

SHPS1

FURTHER INFORMATION

Kinases

Kinases

Migration

Phosphatases

PPs

PPs

PTPs

PTPs

SHIPs

Glossary

LAMELLIPODIUM

A thin, flat extension at the cell periphery that is filled with a branching meshwork of actin filaments.

LEADING EDGE

The leading, or foremost, region of a motile cell.

FILOPODIA

Thin protrusions from cells that are usually supported by microfilaments.

RHO FAMILY OF SMALL GTPASES

A family of monomeric G proteins that comprises isoforms of Rho, Rac and Cdc42. These are important molecular switches and they control cytoskeletal assembly and contraction.

EXTRACELLULAR MATRIX

(ECM). The complex, multi-molecular material that surrounds cells. The ECM comprises a scaffold upon which tissues are organized, it provides cellular microenvironments and it regulates a variety of cellular functions.

FOCAL COMPLEX

A cell–substrate adhesion structure that mediates initial cell adhesion. Formation of the structure is promoted by Rac, and it can mature to form a focal adhesion.

FOCAL ADHESION

A cell-to-substrate adhesion structure that anchors the ends of actin microfilaments (stress fibres) and mediates strong attachment to substrates.

ACTIN CYTOSKELETON

A cytoplasmic structural framework within cells that is composed of F-actin and associated molecules.

INTEGRINS

A group of heterodimeric, transmembrane adhesion receptors for extracellular-matrix proteins such as fibronectin and vitronectin.

STRESS FIBRE

Also termed an 'actin microfilament bundle'. A bundle of parallel filaments that contains F-actin and other contractile molecules, which often stretches between cell attachments as if under stress.

RAFT

A discrete detergent-insoluble, glycosphingolipid-, sphingomyelin- and cholesterol-enriched domain within cellular membranes, where certain signalling lipids and transmembrane proteins that are involved in signalling are thought to be concentrated.

REACTIVE OXYGEN SPECIES

(ROS). Oxygen molecules, containing an unpaired electron in their outermost shell of electrons in an extremely unstable configuration, which quickly react with another molecule to achieve a stable configuration.

3D-MATRIX ADHESION

A long, thin cell–extracellular-matrix adhesion structure that contains the α5β1 integrin, which is characteristically formed at cell attachments to 3-dimensional, fibronectin-rich extracellular fibrils.

FIBRILLAR ADHESION

An elongated cell–extracellular-matrix adhesion structure that contains the α5β1 integrin, tensin and fibronectin, and that seems to generate fibronectin fibrils using directed translocation of integrins and cellular contractility.

PODOSOME

A circular cell–substrate adhesion structure that contains integrins and associated proteins such as gelsolin and cortactin, which surround a dense core of actin.

HOLOENZYME

An enzyme that consists of more than one subunit, each usually carrying out a different function and often existing as more than one isoform.

CHEMOTAXIS

A type of migration that is stimulated by a gradient of a chemical stimulant or chemoattractant.

ADHERENS JUNCTIONS

Specialized cell–cell adhesions found in epithelium, which contain transmembrane E-cadherin that connects with the cytoskeleton.

EPITHELIAL–MESENCHYMAL TRANSITION

(EMT). A transition of epithelial cells to a migratory phenotype that is more typical of mesenchymal cells. EMT is characterized by loss of adherens junctions and desmosomes with the acquisition of cell–matrix adhesions, and is necessary at many stages of embryonic development.

AXONAL PATHFINDING

The process by which extending nerve fibres find their way to destinations.

DORSAL CLOSURE

A process during Drosophila development in which two epithelial sheets converge, in a coordinated fashion, to close the embryo.

PRIMITIVE STREAK

The site of migration of the mesoderm and definitive endoderm cells from the exterior to the interior of the embryo during gastrulation. It defines the axes of the developing embryo.

GASTRULATION

The process during embryonic development that transforms a blastula into a gastrula and generates the embryonic cell layers: ectoderm, endoderm and mesoderm.

APICAL ECTODERMAL RIDGE

(AER). A region of ectoderm at the distal tip of a limb-bud that is induced by the underlying mesenchyme and is required for sustained outgrowth of the limb.

SUBSTRATE-TRAPPING MUTANT

A phosphatase containing a mutation that allows it to bind to and dephosphorylate a substrate, but not to release it. These are useful tools that allow the transient association of phosphatases and their substrates to be 'frozen' and so more easily detected.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Larsen, M., Tremblay, M. & Yamada, K. Phosphatases in cell–matrix adhesion and migration. Nat Rev Mol Cell Biol 4, 700–711 (2003). https://doi.org/10.1038/nrm1199

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm1199

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing