Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

A tale of two polymers: new insights into helical filaments

Key Points

  • General insights into helical protein polymers can be found from studies of actin (in eukaryotes) and RecA (in bacteria), each of which can be the most abundant protein in a cell.

  • Actin and RecA are each part of two different superfamilies of structurally conserved proteins. Although actin and RecA both form helical polymers, most of the other superfamily members do not, indicating that small differences have allowed these proteins to function as polymers.

  • Many proteins, including actin and RecA, can readily assemble in vitro into different higher-order assemblies, which makes it difficult to determine the assembly state of the protein in the cell. Alternatively, the multiple interfaces that can be found in vitro might reflect different interactions that have a physiological relevance.

  • Actin subunits are seen with multiple states of 'twist' within a filament, and a new form of actin, involving tilted subunits, shows that different subunit–subunit interfaces must be able to co-exist within the same filament.

  • Multiple states of the RecA polymer, including an activated and an inactivated form, also seem to arise from multiple subunit–subunit interfaces.

  • Both allosteric and cooperative effects exist within actin and RecA filaments, indicating that these protein polymers have evolved to function as more than merely an ensemble of independent subunits.

Abstract

Many proteins function as helical polymers within the cell. Two intensively studied examples are eukaryotic actin and bacterial RecA, which belong to two different protein superfamilies. However, most other members of these superfamilies do not polymerize into helical filaments. General features of polymorphism, cooperativity and allostery that emerge from studies of eukaryotic actin and bacterial RecA raise more general issues about how conserved these filamentous structures have been during evolution.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Properties of the actin subunit.
Figure 2: Comparison of F-actin and T-actin.
Figure 3: Different states of RecA.

Similar content being viewed by others

References

  1. Pollard, T. D., Blanchoin, L. & Mullins, R. D. Molecular mechanisms controlling actin filament dynamics in nonmuscle cells. Annu. Rev. Biophys. Biomol. Struct. 29, 545–576 (2000).

    CAS  PubMed  Google Scholar 

  2. Jones, L. J., Carballido-Lopez, R. & Errington, J. Control of cell shape in bacteria: helical, actin-like filaments in Bacillus subtilis. Cell 104, 913–922 (2001).

    CAS  PubMed  Google Scholar 

  3. van den Ent, F., Amos, L. A. & Löwe, J. Prokaryotic origin of the actin cytoskeleton. Nature 413, 39–44 (2001). A crystal structure of the bacterial MreB protein shows that it is a true actin homologue.

    CAS  PubMed  Google Scholar 

  4. van den Ent, F., Moller-Jensen, J., Amos, L. A., Gerdes, K. & Lowe, J. F-actin-like filaments formed by plasmid segregation protein ParM. EMBO J. 21, 6935–6943 (2002). A second bacterial actin homologue, ParM, is involved in plasmid separation, and crystal structures show that it can undergo large conformational changes.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Gudas, L. J. & Pardee, A. B. DNA synthesis inhibition and the induction of protein X in Escherichia coli. J. Mol. Biol. 101, 459–477 (1976).

    CAS  PubMed  Google Scholar 

  6. Sandler, S. J., Satin, L. H., Samra, H. S. & Clark, A. J. recA-like genes from three archaean species with putative protein products similar to Rad51 and Dmc1 proteins of the yeast Saccharomyces cerevisiae. Nucleic Acids Res. 24, 2125–2132 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Ogawa, T., Yu, X., Shinohara, A. & Egelman, E. H. Similarity of the yeast RAD51 filament to the bacterial RecA filament. Science 259, 1896–1899 (1993).

    CAS  PubMed  Google Scholar 

  8. Shinohara, A., Ogawa, H. & Ogawa, T. Rad51 protein involved in repair and recombination in S. cerevisiae is a RecA-like protein. Cell 69, 457–470 (1992).

    CAS  PubMed  Google Scholar 

  9. Passy, S. I. et al. Human Dmc1 protein binds DNA as an octameric ring. Proc. Natl Acad. Sci. USA 96, 10684–10688 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Masson, J. Y. et al. The meiosis-specific recombinase hDmc1 forms ring structures and interacts with hRad51. EMBO J. 18, 6552–6560 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Kurumizaka, H. et al. Homologous pairing and ring and filament structure formation activities of the human Xrcc2*Rad51D complex. J. Biol. Chem. 277, 14315–14320 (2002).

    CAS  PubMed  Google Scholar 

  12. Kabsch, W., Mannherz, H. G., Suck, D., Pai, E. F. & Holmes, K. C. Atomic structure of the actin:DNase I complex. Nature 347, 37–44 (1990).

    CAS  PubMed  Google Scholar 

  13. Flaherty, K. M., DeLuca-Flaherty, C. & McKay, D. B. Three-dimensional structure of the ATPase fragment of a 70K heat-shock cognate protein. Nature 346, 623–628 (1990).

    CAS  PubMed  Google Scholar 

  14. Flaherty, K. M., McKay, D. B., Kabsch, W. & Holmes, K. C. Similarity of the three-dimensional structures of actin and the ATPase fragment of a 70-kDa heat shock cognate protein. Proc. Natl Acad. Sci. USA 88, 5041–5045 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Bork, P., Sander, C. & Valencia, A. An ATPase domain common to prokaryotic cell cycle proteins, sugar kinases, actin, and hsp70 heat shock proteins. Proc. Natl Acad. Sci. USA 89, 7290–7294 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. van den Ent, F. & Löwe, J. Crystal structure of the cell division protein FtsA from Thermotoga maritima. EMBO J. 19, 5300–5307 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Wachi, M. & Matsuhashi, M. Negative control of cell division by mreB, a gene that functions in determining the rod shape of Escherichia coli cells. J. Bacteriol. 171, 3123–3127 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Lowe, J. & Amos, L. A. Crystal structure of the bacterial cell-division protein FtsZ. Nature 391, 203–206 (1998).

    CAS  PubMed  Google Scholar 

  19. Nogales, E., Wolf, S. G. & Downing, K. H. Structure of the αβ tubulin dimer by electron crystallography. Nature 391, 199–203 (1998).

    CAS  PubMed  Google Scholar 

  20. Erickson, H. P., Taylor, D. W., Taylor, K. A. & Bramhill, D. Bacterial cell division protein FtsZ assembles into protofilament sheets and minirings, structural homologs of tubulin polymers. Proc. Natl Acad. Sci. USA 93, 519–523 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Aebi, U., Fowler, W. E., Isenberg, G., Pollard, T. D. & Smith, P. R. Crystalline actin sheets: their structure and polymorphism. J. Cell Biol. 91, 340–351 (1981).

    CAS  PubMed  Google Scholar 

  22. McCormack, E. A., Rohman, M. J. & Willison, K. R. Mutational screen identifies critical amino acid residues of β-actin mediating interaction between its folding intermediates and eukaryotic cytosolic chaperonin CCT. J. Struct. Biol. 135, 185–197 (2001).

    CAS  PubMed  Google Scholar 

  23. Egelman, E. H. Molecular evolution: actin's long lost relative found. Curr. Biol. 11, R1022–R1024 (2001).

    CAS  PubMed  Google Scholar 

  24. Andreu, J. M., Oliva, M. A. & Monasterio, O. Reversible unfolding of FtsZ cell division proteins from archaea and bacteria. Comparison with eukaryotic tubulin folding and assembly. J. Biol. Chem. 277, 43262–43270 (2002).

    CAS  PubMed  Google Scholar 

  25. Moller-Jensen, J., Jensen, R. B., Lowe, J. & Gerdes, K. Prokaryotic DNA segregation by an actin-like filament. EMBO J. 21, 3119–3127 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Bennett, W. S. Jr & Steitz, T. A. Glucose-induced conformational change in yeast hexokinase. Proc. Natl Acad. Sci. USA 75, 4848–4852 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Shi, L., Kataoka, M. & Fink, A. L. Conformational characterization of DnaK and its complexes by small-angle X-ray scattering. Biochemistry 35, 3297–3308 (1996).

    CAS  PubMed  Google Scholar 

  28. Wilbanks, S. M., Chen, L., Tsuruta, H., Hodgson, K. O. & McKay, D. B. Solution small-angle X-ray scattering study of the molecular chaperone Hsc70 and its subfragments. Biochemistry 34, 12095–12106 (1995).

    CAS  PubMed  Google Scholar 

  29. Robinson, R. C. et al. Crystal structure of Arp2/3 complex. Science 294, 1679–1684 (2001). Arp2 and Arp3 are 'actin-related proteins'. A crystal structure and electron microscopy evidence suggest a mechanism for how they nucleate F-actin filaments.

    CAS  PubMed  Google Scholar 

  30. Goodson, H. V. & Hawse, W. F. Molecular evolution of the actin family. J. Cell Sci. 115, 2619–2622 (2002).

    CAS  PubMed  Google Scholar 

  31. Tirion, M. M. & ben Avraham, D. Normal mode analysis of G-actin. J. Mol. Biol. 230, 186–195 (1993).

    CAS  PubMed  Google Scholar 

  32. Galkin, V. E., VanLoock, M. S., Orlova, A. & Egelman, E. H. A new internal mode in F-actin helps explain the remarkable evolutionary conservation of actin's sequence and structure. Curr. Biol. 12, 570–575 (2002). T-actin is a filamentous state of actin that involves a substantial tilt of subunits away from their position in F-actin.

    CAS  PubMed  Google Scholar 

  33. Chik, J. K., Lindberg, U. & Schutt, C. E. The structure of an open state of β-actin at 2.65 Ångstrom resolution. J. Mol. Biol. 263, 607–623 (1996).

    CAS  PubMed  Google Scholar 

  34. Schutt, C. E., Myslik, J. C., Rozycki, M. D., Goonesekere, N. C. W. & Lindberg, U. The structure of crystalline profilin: β-actin. Nature 365, 810–816 (1993).

    CAS  PubMed  Google Scholar 

  35. Otterbein, L. R., Graceffa, P. & Dominguez, R. The crystal structure of uncomplexed actin in the ADP state. Science 293, 708–711 (2001).

    CAS  PubMed  Google Scholar 

  36. McLaughlin, P. J., Gooch, J. T., Mannherz, H. G. & Weeds, A. G. Structure of gelsolin segment 1-actin complex and the mechanism of filament severing. Nature 364, 685–692 (1993).

    CAS  PubMed  Google Scholar 

  37. Sablin, E. P. et al. How does ATP hydrolysis control actin's associations? Proc. Natl Acad. Sci. USA 99, 10945–10947 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Holmes, K. C., Popp, D., Gebhard, W. & Kabsch, W. Atomic model of the actin filament. Nature 347, 44–49 (1990).

    CAS  PubMed  Google Scholar 

  39. Kuang, B. & Rubenstein, P. A. The effects of severely decreased hydrophobicity in a subdomain 3/4 loop on the dynamics and stability of yeast G-actin. J. Biol. Chem. 272, 4412–4418 (1997).

    CAS  PubMed  Google Scholar 

  40. Shvetsov, A., Musib, R., Phillips, M., Rubenstein, P. A. & Reisler, E. Locking the hydrophobic loop 262–274 to G-actin surface by a disulfide bridge prevents filament formation. Biochemistry 41, 10787–10793 (2002).

    CAS  PubMed  Google Scholar 

  41. Musib, R., Wang, G., Geng, L. & Rubenstein, P. A. Effect of polymerization on the subdomain 3/4 loop of yeast actin. J. Biol. Chem. 277, 22699–22709 (2002).

    CAS  PubMed  Google Scholar 

  42. Belmont, L. D., Orlova, A., Drubin, D. G. & Egelman, E. H. A change in actin conformation associated with filament instability after Pi release. Proc. Natl Acad. Sci. USA 96, 29–34 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Milligan, R. A., Whittaker, M. & Safer, D. Molecular structure of F-actin and location of surface binding sites. Nature 348, 217–221 (1990).

    CAS  PubMed  Google Scholar 

  44. Orlova, A., Yu, X. & Egelman, E. H. Three-dimensional reconstruction of a co-complex of F-actin with antibody Fab fragments to actin's amino-terminus. Biophys. J. 66, 276–285 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Drummond, D. R., Peckham, M., Sparrow, J. C. & White, D. C. Alteration in crossbridge kinetics caused by mutations in actin. Nature 348, 440–442 (1990).

    CAS  PubMed  Google Scholar 

  46. Kim, E. et al. Intrastrand cross-linked actin between Gln-41 and Cys-374. III. Inhibition of motion and force generation with myosin. Biochemistry 37, 17801–17809 (1998). Actin can be modified so that the ATPase of myosin is still activated, but force production is either reduced or eliminated.

    CAS  PubMed  Google Scholar 

  47. Prochniewicz, E. & Yanagida, T. Inhibition of sliding movement of F-actin by crosslinking emphasizes the role of actin structure in the mechanism of motility. J. Mol. Biol. 216, 761–772 (1990).

    CAS  PubMed  Google Scholar 

  48. Hanson, J. Axial period of actin filaments: electron microscope studies. Nature 213, 353–356 (1967).

    CAS  Google Scholar 

  49. Egelman, E. H., Francis, N. & DeRosier, D. J. F-actin is a helix with a random variable twist. Nature 298, 131–135 (1982).

    CAS  PubMed  Google Scholar 

  50. Bremer, A. et al. The structural basis for the intrinsic disorder of the actin filament: the 'lateral slipping' model. J. Cell Biol. 115, 689–703 (1991).

    CAS  PubMed  Google Scholar 

  51. Egelman, E. H. & DeRosier, D. J. Image analysis shows that variations in actin crossover spacings are random, not compensatory. Biophys. J. 63, 1299–1305 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Galkin, V. E., Orlova, A., Lukoyanova, N., Wriggers, W. & Egelman, E. H. Actin depolymerizing factor stabilizes an existing state of F-actin and can change the tilt of F-actin subunits. J. Cell Biol. 153, 75–86 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. McGough, A., Pope, B., Chiu, W. & Weeds, A. Cofilin changes the twist of F-actin: implications for actin filament dynamics and cellular function. J. Cell Biol. 138, 771–781 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Egelman, E. H. A robust algorithm for the reconstruction of helical filaments using single-particle methods. Ultramicroscopy 85, 225–234 (2000).

    CAS  PubMed  Google Scholar 

  55. Gonsior, S. M. et al. Conformational difference between nuclear and cytoplasmic actin as detected by a monoclonal antibody. J. Cell Sci. 112, 797–809 (1999).

    CAS  PubMed  Google Scholar 

  56. Olave, I. A., Reck-Peterson, S. L. & Crabtree, G. R. Nuclear actin and actin-related proteins in chromatin remodeling. Annu. Rev. Biochem. 71, 755–781 (2002). Although the existence of nuclear actin is controversial, this review summarizes evidence for the presence of actin in large multi-protein complexes within the nucleus.

    CAS  PubMed  Google Scholar 

  57. Story, R. M., Weber, I. T. & Steitz, T. A. The structure of the E. coli recA protein monomer and polymer. Nature 355, 318–325 (1992).

    CAS  PubMed  Google Scholar 

  58. Abrahams, J. P., Leslie, A. G., Lutter, R. & Walker, J. E. Structure at 2.8 Å resolution of F1-ATPase from bovine heart mitochondria. Nature 370, 621–628 (1994).

    CAS  PubMed  Google Scholar 

  59. Shirakihara, Y. et al. The crystal structure of the nucleotide-free α3 β3 subcomplex of F1-ATPase from the thermophilic Bacillus PS3 is a symmetric trimer. Structure 5, 825–836 (1997).

    CAS  PubMed  Google Scholar 

  60. Bishop, D. K., Park, D., Xu, L. & Kleckner, N. DMC1: a meiosis-specific yeast homolog of E. coli recA required for recombination, synaptonemal complex formation, and cell cycle progression. Cell 69, 439–456 (1992).

    CAS  PubMed  Google Scholar 

  61. Pellegrini, L. et al. Insights into DNA recombination from the structure of a RAD51–BRCA2 complex. Nature 420, 287–293 (2002).

    CAS  PubMed  Google Scholar 

  62. Subramanya, H. S., Bird, L. E., Brannigan, J. A. & Wigley, D. B. Crystal structure of a DExx box DNA helicase. Nature 384, 379–383 (1996).

    CAS  PubMed  Google Scholar 

  63. Bird, L. E., Subramanya, H. S. & Wigley, D. B. Helicases: a unifying structural theme? Curr. Opin. Struct. Biol. 8, 14–18 (1998).

    CAS  PubMed  Google Scholar 

  64. Shiratori, A. et al. Systematic identification, classification, and characterization of the open reading frames which encode novel helicase-related proteins in Saccharomyces cerevisiae by gene disruption and northern analysis. Yeast 15, 219–253 (1999).

    CAS  PubMed  Google Scholar 

  65. Thompson, T. B., Thomas, M. G., Escalante-Semerena, J. C. & Rayment, I. Three-dimensional structure of adenosylcobinamide kinase/adenosylcobinamide phosphate guanylyltransferase from Salmonella typhimurium determined to 2.3 Å resolution. Biochemistry 37, 7686–7695 (1998).

    CAS  PubMed  Google Scholar 

  66. Stasiak, A. & Di Capua, E. The helicity of DNA in complexes with RecA protein. Nature 229, 185–186 (1982).

    Google Scholar 

  67. Morimatsu, K., Takahashi, M. & Norden, B. Arrangement of RecA protein in its active filament determined by polarized-light spectroscopy. Proc. Natl Acad. Sci. USA 99, 11688–11693 (2002). Spectroscopic studies indicate that there is a large (40°) rotation between the orientation of subunits in the active RecA–DNA filament and the RecA crystal filament.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. VanLoock, M. S. et al. ATP-mediated conformational changes in the RecA filament. Structure 11, 187–196 (2003). Three-dimensional reconstructions of RecA–DNA filaments show large motions of the carboxy-terminal domain with respect to the bound nucleotide, and indicate that the packing of subunits in the active RecA–DNA filaments is different from that seen in the RecA crystal filament.

    CAS  PubMed  Google Scholar 

  69. Kelley, D. Z., Forget, A. L., Logan, K. M. & Knight, K. L. Phe217 regulates the transfer of allosteric information across the subunit interface of the RecA protein filament. Structure 9, 47–55 (2001).

    Google Scholar 

  70. Logan, K. M., Forget, A. L., Verderese, J. P. & Knight, K. L. ATP-mediated changes in cross-subunit interactions in the RecA protein. Biochemistry 40, 11382–11389 (2001).

    CAS  PubMed  Google Scholar 

  71. Yu, X. & Egelman, E. H. The RecA hexamer is a structural homologue of ring helicases. Nature Struct. Biol. 4, 101–104 (1997).

    CAS  PubMed  Google Scholar 

  72. Mikawa, T., Masui, R., Ogawa, T., Ogawa, H. & Kuramitsu, S. N-terminal 33 amino acid residues of Escherichia coli RecA protein contribute to its self-assembly. J. Mol. Biol. 250, 471–483 (1995).

    CAS  PubMed  Google Scholar 

  73. Singleton, M. R., Sawaya, M. R., Ellenberger, T. & Wigley, D. B. Crystal structure of T7 gene 4 ring helicase indicates a mechanism for sequential hydrolysis of nucleotides. Cell 101, 589–600 (2000). Helicases are structural homologues of RecA, and a crystal structure of a hexameric helicase shows how rotations between subunits in the ring can potentially inactivate certain subunits.

    CAS  PubMed  Google Scholar 

  74. Niedenzu, T., Roleke, D., Bains, G., Scherzinger, E. & Saenger, W. Crystal structure of the hexameric replicative helicase RepA of plasmid RSF1010. J. Mol. Biol. 306, 479–487 (2001).

    CAS  PubMed  Google Scholar 

  75. Sawaya, M. R., Guo, S., Tabor, S., Richardson, C. C. & Ellenberger, T. Crystal structure of the helicase domain from the replicative helicase-primase of bacteriophage T7. Cell 99, 167–177 (1999).

    CAS  PubMed  Google Scholar 

  76. Brendel, V., Brocchieri, L., Sandler, S. J., Clark, A. J. & Karlin, S. Evolutionary comparisons of RecA-like proteins across all major kingdoms of living organisms. J. Mol. Evol. 44, 528–541 (1997).

    CAS  PubMed  Google Scholar 

  77. Yang, S., Yu, X., Seitz, E. M., Kowalczykowski, S. C. & Egelman, E. H. Archaeal RadA protein binds DNA as both helical filaments and octameric rings. J. Mol. Biol. 314, 1077–1085 (2001).

    CAS  PubMed  Google Scholar 

  78. Yonesaki, T., Ryo, Y., Minagawa, T. & Takahashi, H. Purification and some of the functions of the products of bacteriophage T4 recombination genes, uvsX and uvsY. Eur. J. Biochem. 148, 127–134 (1985).

    CAS  PubMed  Google Scholar 

  79. Yu, X. & Egelman, E. H. DNA conformation induced by the bacteriophage T4 UvsX protein appears identical to the conformation induced by the Escherichia coli RecA protein. J. Mol. Biol. 232, 1–4 (1993).

    CAS  PubMed  Google Scholar 

  80. Egelman, E. H. Does a stretched DNA structure dictate the helical geometry of RecA- like filaments? J. Mol. Biol. 309, 539–542 (2001).

    CAS  PubMed  Google Scholar 

  81. Kirsten, F. M., Dyda, F., Dobrodumov, A. & Gronenborn, A. M. Core mutations switch monomeric protein GB1 into an intertwined tetramer. Nature Struct. Biol. 9, 877–885 (2002).

    Google Scholar 

  82. Yu, X. & Egelman, E. H. Structural data suggest that the active and inactive forms of the RecA filament are not simply interconvertible. J. Mol. Biol. 227, 334–346 (1992).

    CAS  PubMed  Google Scholar 

  83. Yu, X., Jacobs, S. A., West, S. C., Ogawa, T. & Egelman, E. H. Domain structure and dynamics in the helical filaments formed by RecA and Rad51 on DNA. Proc. Natl Acad. Sci. USA 98, 8419–8424 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Cazaux, C. et al. Purification and biochemical characterization of Escherichia coli RecA proteins mutated in the putative DNA binding site. J. Biol. Chem. 269, 8246–8254 (1994).

    CAS  PubMed  Google Scholar 

  85. Benedict, R. C. & Kowalczykowski, S. C. Increase of the DNA strand assimilation activity of recA protein by removal of the C terminus and structure-function studies of the resulting protein fragment. J. Biol. Chem. 263, 15513–15520 (1988).

    CAS  PubMed  Google Scholar 

  86. Aihara, H. et al. An interaction between a specified surface of the C-terminal domain of RecA protein and double-stranded DNA for homologous pairing. J. Mol. Biol. 274, 213–221 (1997).

    CAS  PubMed  Google Scholar 

  87. Tombline, G. & Fishel, R. Biochemical characterization of the human RAD51 protein. I. ATP hydrolysis. J. Biol. Chem. 277, 14417–14425 (2002). It is suggested that while subunits in a bacterial RecA filament can hydrolyse ATP with a high degree of cooperativity, filaments formed from human RAD51 protein may be unable to coordinate ATP hydrolysis between neighbouring protomers. This is consistent with a different subunit-subunit interface in these two helical polymers.

    CAS  PubMed  Google Scholar 

  88. Orlova, A., Prochniewicz, E. & Egelman, E. H. Structural dynamics of F-actin. II. Co-operativity in structural transitions. J. Mol. Biol. 245, 598–607 (1995).

    CAS  PubMed  Google Scholar 

  89. Khaitlina, S. & Hinssen, H. Conformational changes in actin induced by its interaction with gelsolin. Biophys. J. 73, 929–937 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Stohl, E. A. et al. Escherichia coli RecX inhibits RecA recombinase and coprotease activities in vitro and in vivo. J. Biol. Chem. 278, 2278–2285 (2003).

    CAS  PubMed  Google Scholar 

  91. Egelman, E. H., Yu, X., Wild, R., Hingorani, M. M. & Patel, S. S. Bacteriophage T7 helicase/primase proteins form rings around single-stranded DNA that suggest a general structure for hexameric helicases. Proc. Natl Acad. Sci. USA 92, 3869–3873 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Patel, S. S. & Hingorani, M. M. Oligomeric structure of bacteriophage T7 DNA primase/helicase proteins. J. Biol. Chem. 268, 10668–10675 (1993).

    CAS  PubMed  Google Scholar 

  93. Peat, T. S. et al. Structure of the UmuD' protein and its regulation in response to DNA damage. Nature 380, 727–730 (1996).

    CAS  PubMed  Google Scholar 

  94. Peat, T. S. et al. The UmuD' protein filament and its potential role in damage induced mutagenesis. Structure 4, 1401–1412 (1996).

    CAS  PubMed  Google Scholar 

  95. Ferentz, A. E., Opperman, T., Walker, G. C. & Wagner, G. Dimerization of the UmuD' protein in solution and its implications for regulation of SOS mutagenesis. Nature Struct. Biol. 4, 979–983 (1997).

    CAS  PubMed  Google Scholar 

  96. Ferentz, A. E., Walker, G. C. & Wagner, G. Converting a DNA damage checkpoint effector (UmuD2C) into a lesion bypass polymerase (UmuD'2C). EMBO J. 20, 4287–4298 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Walker, G. C. Mutagenesis and inducible responses to deoxyribonucleic acid damage in Escherichia coli. Microbiol. Rev. 48, 60–93 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Egelman, E. H., Orlova, A. & McGough, A. Only one F-actin model. Nature Struct. Biol. 4, 683–684 (1997).

    CAS  PubMed  Google Scholar 

  99. Dawson, J. F., Sablin, E. P., Spudich, J. A. & Fletterick, R. J. Structure of an F-actin trimer disrupted by gelsolin and implications for the mechanism of severing. J. Biol. Chem. 278, 1229–1238 (2003).

    CAS  PubMed  Google Scholar 

  100. Steinmetz, M. O. et al. An atomic model of crystalline actin tubes: combining electron microscopy with X-ray crystallography. J. Mol. Biol. 278, 703–711 (1998).

    CAS  PubMed  Google Scholar 

  101. Orlova, A. et al. Probing the structure of F-actin: cross-links constrain atomic models and modify actin dynamics. J. Mol. Biol. 312, 95–106 (2001).

    CAS  PubMed  Google Scholar 

  102. Bubb, M. R. et al. Polylysine induces an antiparallel actin dimer that nucleates filament assembly: crystal structure at 3.5-Å resolution. J. Biol. Chem. 277, 20999–21006 (2002).

    CAS  PubMed  Google Scholar 

  103. Kim, E. et al. Cross-linking constraints on F-actin structure. J. Mol. Biol. 299, 421–429 (2000).

    CAS  PubMed  Google Scholar 

  104. Lorenz, M., Popp, D. & Holmes, K. C. Refinement of the F-actin model against X-ray fiber diffraction data by the use of a directed mutation algorithm. J. Mol. Biol. 234, 826–836 (1993).

    CAS  PubMed  Google Scholar 

  105. Rich, S. A. & Estes, J. E. Detection of conformational changes in actin by proteolytic digestion: evidence for a new monomeric species. J. Mol. Biol. 104, 777–792 (1976).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

Biomachina

Holmes model

Entrez

RadA

Interpro

HSP-70

LocusLink

Actin

RAD51

Protein Data Bank

Arp3

FtsA

FtsZ

hexokinase

ParM

RecA

T7 gp4

Tubulin

Swiss-Prot

DMC1

MreB

RAD51D

XRCC2

Glossary

TUBULIN

The protein that polymerizes to form microtubules.

NUCLEATION

Polymer growth can be separated into nucleation (the formation of a 'seed' that will allow a polymer to grow) and elongation (when subunits add on to an existing nucleus or filament).

COFILIN

A member of the actin-depolymerizing factor (ADF)/cofilin family of proteins, which are involved in the depolymerization of actin filaments in the cell.

HELICASE

A protein that uses the energy provided by ATP hydrolysis to open double-stranded DNA, double-stranded RNA or RNA–DNA hybrids, into two separate strands.

MYOFIBRILS

Muscle fibres are composed of myofibrils, primarily containing actin and myosin.

CYTOPLASMIC STRESS FIBRES

Contractile bundles of actin and myosin that are attached to sites of adhesion between a cell and the substrate.

PHALLOIDIN

A toxin that binds to, and stabilizes, F-actin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Egelman, E. A tale of two polymers: new insights into helical filaments. Nat Rev Mol Cell Biol 4, 621–631 (2003). https://doi.org/10.1038/nrm1176

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm1176

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing