Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Timeline
  • Published:

The calcium-signalling saga: tap water and protein crystals

Abstract

Of the approximately 1,400 grams of calcium that are in the human body, less than 10 grams manage to escape being trapped in the skeleton and teeth. These few grams might be an insignificant quantity, but they are extraordinarily significant qualitatively. They circulate in the blood and extracellular spaces, and penetrate cells to regulate their most important activities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sydney Ringer.
Figure 2: The control of cellular Ca2+.
Figure 3: The three-dimensional structure of parvalbumin.

References

  1. Ringer, S. A further contribution regarding the influence of different constituents of the blood on the contraction of the heart. J. Physiol. 4, 29–43 (1883).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Carafoli, E. et al. Generation, control, and processing of cellular calcium signals. Crit. Rev. Biochem. Mol. Biol. 36, 107–260 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Ebashi, S., Endo, M. & Ohtsuki, I. in Calcium as a Cellular Regulator (eds Carafoli, E. & Klee, C. B.) 28–54 (Oxford Univ. Press, New York, 1999).

    Google Scholar 

  4. Stricker, S. Comparative biology of calcium signalling during fertilization and egg activation in mammals. Dev. Biol. 211, 157–176 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Retting, J. M & Neher, E. Emerging roles of presynaptic proteins in Ca2+ triggered exocytosis. Science. 298, 781–785 (2000).

    Article  Google Scholar 

  6. Zucker, R. S. Calcium and activity-dependent synaptic plasticity. Curr. Opin. Neurobiol. 9, 305–313 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Locke, S. S. Notiz über den Einfluss physiologischer Kochsalzlösung auf die elektrische Erregbarkeit von Muskel und Nerv. Zentralbl. Physiol. 8, 166–167 (1894) (in German).

    Google Scholar 

  8. Mines, G. R. On functional analysis by the action of electrolytes. J. Physiol. (Lond.) 46, 188–235 (1913).

    Article  CAS  Google Scholar 

  9. Loewi, O. Über den Zusammenhang zwischen Digitalis- und Kalziumwirkung. Naunyn Schmiedebergs Arch. Pharmacol. 82, 131–158 (1917) (in German).

    Article  Google Scholar 

  10. Heilbrunn, L. V. The action of calcium on muscle protoplasm. Physiol. Zool. 13, 88–94 (1940).

    Article  CAS  Google Scholar 

  11. Bailey, K. Myosin and adenosinetriphosphatase. Biochem. J. 36, 121–139 (1942).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bozler, E. Relaxation in extracted muscle fibers. J. Gen. Physiol. 38, 149–159 (1954).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Weber, A. On the role of calcium in the activity of adenosine 5′ triphosphate hydrolysis by actomyosin. J. Biol. Chem. 234, 2764–2769 (1959).

    CAS  PubMed  Google Scholar 

  14. Chance, B. in Proc. 3rd Intern. Congr. Biochem. Brussels (ed. Liébecq, C.) 300–304 (Academic, New York, 1956).

  15. Saris, N. E. Om oxidativ fosforylering. Finska Kemistsamfundets Medd. 68, 98–107 (1959) (in Swedish).

    CAS  Google Scholar 

  16. Hasselbach, W. & Makinose, M. Die Calcium Pumpe der 'Erschlaffungsgrana' des Muskels und ihre Abhangigkeit von der ATP-Spaltung. Biochem. Z. 333, 518–528 (1961) (in German).

    CAS  PubMed  Google Scholar 

  17. Ebashi, S. & Lipmann, F. Adenosine triphosphate-linked concentration of calcium ions in a particulate fraction of rabbit muscle. J. Cell Biol. 14, 389–400 (1962).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tsien, R. Y. A non-disruptive technique for loading calcium buffers and indicators into cells. Nature 290, 527–528 (1981).

    Article  CAS  PubMed  Google Scholar 

  19. Tsien, R. W. et al. Multiple types of calcium channel in excitable cells. Soc. Gen. Physiol. Ser. 41, 167–187 (1987).

    CAS  PubMed  Google Scholar 

  20. Fleckenstein, A. Die Bedeutung der energiereichen Phosphate für Kontraktilitaet und Tonus des Myokards. Verh. Dtsch. Ges. Inn. Med. 70, 81–99 (1964) (in German).

    CAS  PubMed  Google Scholar 

  21. Watkins J. C. in The NMDA Receptor (eds Watkins, J. C. & Collingridge, G. L.) 1–17 (Oxford Univ. Press, New York, 1989).

    Google Scholar 

  22. Endo, M. et al. Calcium induced release of calcium from the sarcoplasmic reticulum of skinned skeletal muscle fibres. Nature 228, 34–36 (1970).

    Article  CAS  PubMed  Google Scholar 

  23. Streb, H. et al. Release of Ca2+ from a nonmitochondrial intracellular store in pancreatic acinar cells by inositol-1,4,5-trisphosphate. Nature 306, 67–69 (1983).

    Article  CAS  PubMed  Google Scholar 

  24. Lee, H. C. Mechanisms of calcum signaling by cyclic ADP ribose and NAADP. Physiol. Rev. 77, 1133–1164 (1997).

    Article  CAS  PubMed  Google Scholar 

  25. Franco, L. et al. The transmembrane glycoprotein CD38 is a catalytically active transporter responsible for generation and influx of the second messenger cyclic ADP-ribose across membranes. FASEB J. 12, 1507–1520 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Perraud A. L. et al. ADP-ribose gating of the calcium-permeable LTRPC2 channel revealed by Nudix motif homology. Nature 411, 542–543 (2001).

    Article  Google Scholar 

  27. Reuter, H. & Seitz, N. The dependence of calcium efflux from cardiac muscle on temperature and external ion composition. J. Physiol. 195, 451–470 (1968).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Baker, P. F. et al. The ouabain-sensitive fluxes of sodium and potassium in squid giant axons. J. Physiol. 200, 459–496 (1969).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Carafoli, E. et al. The release of calcium from heart mitochondria by sodium. J. Mol. Cell. Cardiol. 6, 361–371 (1974).

    Article  CAS  PubMed  Google Scholar 

  30. Schatzmann, H. J. ATP-dependent Ca2+ extrusion from human red cells. Experientia 22, 363–368 (1966).

    Article  Google Scholar 

  31. Stauffer, T. et al. Quantitative analysis of alternative splicing options of human plasma membrane calcium pump genes. J. Biol. Chem. 268, 25993–26003 (1993).

    CAS  PubMed  Google Scholar 

  32. Toyoshima, C. et al. Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6 Å resolution. Nature 405, 647–655 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Toyoshima, C. & Nomura, H. Structural changes in the calcium pump accompanying the dissociation of calcium. Nature 418, 605–611 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. James, P. et al. Nature and site of phospholamban regulation of the Ca2+ pump of sarcoplasmic reticulum. Nature 342, 90–92 (1989).

    Article  CAS  PubMed  Google Scholar 

  35. Scharff, E. I. et al. Crystal structure of diisopropylfluorophosphatase from Loligo vulgaris. Structure 9, 493–502 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Kretsinger, R. H. & Nockholds, C. E. Carp muscle calcium binding protein. II. Structure determination and general description. J. Biol. Chem. 248, 3313–3326 (1973).

    CAS  PubMed  Google Scholar 

  37. Ebashi, S. & Kodama, K. A new protein factor promoting aggregation of tropomyosin. J. Biochem. 58, 107–108 (1968).

    Article  Google Scholar 

  38. Berggard, T. et al. myo-inositol monophosphatase is an activated target of calbindin D28k . J. Biol. Chem. 277, 41954–41959 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Berridge, M., Lipp, P. & Bootman, M. Calcium signalling. Curr. Biol. 9, R157–R159 (1999).

    Article  CAS  PubMed  Google Scholar 

  40. Carafoli, E., Gamble, R. L. & Lehninger, A. L. Rebounds and oscillations in respiration-linked movements of Ca2+ and H+ in rat liver mitochondria. J. Biol. Chem. 241, 2544–2652 (1966).

    Google Scholar 

  41. Klee, C. B., Crouch, T. H. & Krinks, M. H. Calcineurin: A calcium- and calmodulin-binding protein of the nervous system. Proc. Natl Acad. Sci. USA 76, 6270–6273 (1980).

    Article  Google Scholar 

  42. Bading H., Ginty, D. D. & Greenberg, M. E. Regulation of gene expression in hippocampal neurons by distinct calcium signaling pathways. Science 260, 181–186 (1993).

    Article  CAS  PubMed  Google Scholar 

  43. Carrión, A. M. et al. DREAM is a Ca2+-regulated transcriptional repressor. Nature 398, 80–84 (1999).

    Article  PubMed  Google Scholar 

  44. De Koninck, P. & Schulman, H. Sensitivity of CaM kinase II to the frequency of Ca2+ oscillations. Science 279, 227–230 (1998).

    Article  CAS  PubMed  Google Scholar 

  45. Vieira, H. L. A. & Kroemer, G. Pathophysiology of mitochondrial cell death control. Cell. Mol. Life Sci. 56, 971–976 (1999).

    Article  CAS  PubMed  Google Scholar 

  46. Schwab, B. L. et al. Cleavage of the plasma membrane calcium pumps by caspases: a link between apoptosis and necrosis. Cell Death Differ. 9, 818–831 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. MacLennan, D. H. Purification and properties of an adenosine triphosphatase from sarcoplasmic reticulum. J. Biol. Chem. 245, 4508–4518 (1970).

    CAS  PubMed  Google Scholar 

  48. Clarke, D. M. et al. Location of high affinity Ca2+-binding sites within the predicted transmembrane domain of the sarcoplasmic reticulum Ca2+-ATPase. Nature 339, 476–478 (1989).

    Article  CAS  PubMed  Google Scholar 

  49. Green, N. M. & MacLennan, D. H. Structural biology: calcium callisthenics. Nature 418, 598–599 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Jurado, L. A., Chockalingam, P. S. & Jarrett, H. W. Apocalmodulin. Physiol. Rev. 79, 661–682 (1999).

    Article  CAS  PubMed  Google Scholar 

  51. Moldoveanu, T. et al. A Ca2+ switch aligns the active site of calpain. Cell 108, 649–660 (2002).

    Article  CAS  PubMed  Google Scholar 

  52. Vasington, F. D. & Murphy, J. V. Ca2+ uptake by rat kidney mitochondria and its dependence on respiration and phosphorylation. J. Biol. Chem. 237, 2670–2672 (1962).

    CAS  PubMed  Google Scholar 

  53. De Luca, H. F. & Engstrom, G. Calcium uptake by rat kidney mitochondria. Proc. Natl Acad. Sci. USA 47, 1744–1747 (1961).

    Article  CAS  Google Scholar 

  54. Rossi, C. S. & Lehninger, A. L. Stoichiometric relationship between accumulation of ions by mitochondria and the energy-coupling sites in the respiratory chain. Biochem. Z. 338, 698–713 (1963).

    CAS  PubMed  Google Scholar 

  55. McCormack, J. G. & Denton, R. M. in Calcium as a Cellular Regulator, (eds Carafoli, E. & Klee, C. B.) 529–544 (Oxford Univ. Press, New York, 1999).

    Google Scholar 

  56. Carafoli, E. In vivo effect of uncoupling agents on the incorporation of calcium and strontium into mitochondria and other subcellular fractions of rat liver. J. Gen. Physiol. 50, 1849–1864 (1967).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Rizzuto, R. et al. Rapid changes of mitochondrial Ca2+ revealed by specifically targeted recombinant aequorin. Nature 358, 325–328 (1992).

    Article  CAS  PubMed  Google Scholar 

  58. Richard, I. et al. Mutations in the proteolytic enzyme calpain 3 cause limb–girdle muscular dystrophy type 2A. Cell 81, 27–40 (1995).

    Article  CAS  PubMed  Google Scholar 

  59. Horikawa, Y. et al. Genetic variation in the gene encoding calpain-10 is associated with type 2 diabetes mellitus. Nature Genet. 26, 163–175 (2000).

    Article  CAS  PubMed  Google Scholar 

  60. Melell, S. et al. Annexin II and bleeding in acute promyelocytic leukemia. N. Engl. J. Med. 340, 994–1004 (1999).

    Article  Google Scholar 

  61. Rand, J. H. et al. Reduction of annexin-V (placental anticoagulant protein-I) on placental villi of women with antiphospholipid antibodies and recurrent spontaneous abortion. Am. J. Obstet. Gynecol. 171, 1566–1572 (1994).

    Article  CAS  PubMed  Google Scholar 

  62. Paunio, T. et al. Cells of the neuronal lineage play a major role in the generation of amyloid precursor fragments in gelsolin-related amyloidosis. J. Biol. Chem. 273, 16319–16324 (1998).

    Article  CAS  PubMed  Google Scholar 

  63. MacLennan, D. H., Loke, J. & Odermatt, A. in Calcium as a Cellular Regulator (eds Carafoli, E. & Klee, C. B.) 610–630 (Oxford Univ. Press, New York, 1999).

    Google Scholar 

  64. Keating, M. T. & Sanguinetti, M. C. Molecular and cellular mechanisms of cardiac arrhythmias. Cell 104, 569–580 (2001).

    Article  CAS  PubMed  Google Scholar 

  65. Sakuntabhai, A. et al. Mutations in ATP2A2, encoding a Ca2+ pump, cause Darier disease. Nature Genet. 21, 271–277 (1999).

    Article  CAS  PubMed  Google Scholar 

  66. Takahashi, K. & Kitamura, K. A point mutation in a plasma membrane Ca2+-ATPase gene causes deafness in Wriggle Mouse Sagami. Biochem. Biophys. Res. Commun. 261, 773–778 (1999).

    Article  CAS  PubMed  Google Scholar 

  67. Wasserman, R. H. & Taylor, A. N. Vitamin D3-induced calcium-binding protein in chick intestinal mucosa. Science 152, 791–793 (1966).

    Article  CAS  PubMed  Google Scholar 

  68. Cheung, W. Y. Cyclic 3′,5′-nucleotide phosphodiesterase. Adv. Biochem. Psychopharmacol. 3, 51–65 (1970).

    CAS  PubMed  Google Scholar 

  69. Niggli, V., Penniston, J. T. & Carafoli, E. Purification of the (Ca2+–Mg2+)–ATPase from human erythrocyte membranes using a calmodulin affinity column. J. Biol. Chem. 254, 9955–9958 (1979).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

InterPro

C2

EF-hand

LocusLink

calbindin

calcineurin

calmodulin kinase II

calsequestrin

troponin c

Swiss-Prot

annexin II

annexin V

Calmodulin kinase IV

DREAM

gelsolin

LTRPC2

phospholamban

PMCA1

PMCA2

PMCA3

PMCA4

recoverin

RYR1

RYR2

SERCA1

SERCA2

FURTHER INFORMATION

Ernesto Carafoli's laboratory

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carafoli, E. The calcium-signalling saga: tap water and protein crystals. Nat Rev Mol Cell Biol 4, 326–332 (2003). https://doi.org/10.1038/nrm1073

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm1073

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing