Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanobiology of YAP and TAZ in physiology and disease

Key Points

  • Mechanical signals are fundamental regulators of cell behaviour, but how mechanical cues are sensed and transduced at the molecular level to regulate gene expression has long remained enigmatic.

  • YAP and TAZ have been identified as conserved mechanotransducers, reading a very diverse set of mechanical cues, from shear stress to cell shape and extracellular matrix rigidity, and translating them into cell-specific transcriptional programmes.

  • YAP and TAZ mechanotransduction offers new means to interpret and study classic aspects of tissue physiology and pathology in molecular terms.

  • YAP and TAZ as mechanotransducers provide insight into how aberrant cell mechanics drive the onset of multiple diseases, including atherosclerosis, fibrosis, cardiac hypertrophy, muscular dystrophy and cancer.

Abstract

A growing body of evidence suggests that mechanical signals emanating from the cell's microenvironment are fundamental regulators of cell behaviour. Moreover, at the macroscopic scale, the influence of forces, such as the forces generated by blood flow, muscle contraction, gravity and overall tissue rigidity (for example, inside of a tumour lump), is central to our understanding of physiology and disease pathogenesis. Still, how mechanical cues are sensed and transduced at the molecular level to regulate gene expression has long remained enigmatic. The identification of the transcription factors YAP and TAZ as mechanotransducers started to fill this gap. YAP and TAZ read a broad range of mechanical cues, from shear stress to cell shape and extracellular matrix rigidity, and translate them into cell-specific transcriptional programmes. YAP and TAZ mechanotransduction is critical for driving stem cell behaviour and regeneration, and it sheds new light on the mechanisms by which aberrant cell mechanics is instrumental for the onset of multiple diseases, such as atherosclerosis, fibrosis, pulmonary hypertension, inflammation, muscular dystrophy and cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representations of mechanical stimuli influencing YAP and TAZ subcellular localization and activity.
Figure 2: Biological responses caused by nuclear accumulation and activation of YAP and TAZ by high levels of mechanical signalling.
Figure 3: Biological responses caused by cytoplasmic YAP and TAZ retention and inhibition due to low levels of mechanical stimuli.
Figure 4: Molecular players involved in YAP and TAZ mechanotransduction.
Figure 5: YAP and TAZ mechanotransduction in stem cell biology.
Figure 6: Deregulation of YAP and TAZ mechanotransduction in disease.

Similar content being viewed by others

References

  1. Butcher, D. T., Alliston, T. & Weaver, V. M. A tense situation: forcing tumour progression. Nat. Rev. Cancer 9, 108–122 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Discher, D. E., Mooney, D. J. & Zandstra, P. W. Growth factors, matrices, and forces combine and control stem cells. Science 324, 1673–1677 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Hahn, C. & Schwartz, M. A. Mechanotransduction in vascular physiology and atherogenesis. Nat. Rev. Mol. Cell Biol. 10, 53–62 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Jaalouk, D. E. & Lammerding, J. Mechanotransduction gone awry. Nat. Rev. Mol. Cell Biol. 10, 63–73 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Mammoto, A. & Ingber, D. E. Cytoskeletal control of growth and cell fate switching. Curr. Opin. Cell Biol. 21, 864–870 (2009).

    CAS  PubMed  Google Scholar 

  6. Provenzano, P. P. & Keely, P. J. Mechanical signaling through the cytoskeleton regulates cell proliferation by coordinated focal adhesion and Rho GTPase signaling. J. Cell Sci. 124, 1195–1205 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Vogel, V. & Sheetz, M. Local force and geometry sensing regulate cell functions. Nat. Rev. Mol. Cell Biol. 7, 265–275 (2006).

    CAS  PubMed  Google Scholar 

  8. Wozniak, M. A. & Chen, C. S. Mechanotransduction in development: a growing role for contractility. Nat. Rev. Mol. Cell Biol. 10, 34–43 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Keller, R. Developmental biology. Physical biology returns to morphogenesis. Science 338, 201–203 (2012).

    CAS  PubMed  Google Scholar 

  10. Chen, C. S., Mrksich, M., Huang, S., Whitesides, G. M. & Ingber, D. E. Geometric control of cell life and death. Science 276, 1425–1428 (1997). A classic in the field, this paper elegantly shows that cellular mechanotransduction can affect a classic binary cell decision, such as cell death and proliferation.

    CAS  PubMed  Google Scholar 

  11. Engler, A. J., Sen, S., Sweeney, H. L. & Discher, D. E. Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006). Another classic in the field, this paper remarkably demonstrates that ECM rigidity instructs cellular differentiation.

    Article  CAS  PubMed  Google Scholar 

  12. Folkman, J. & Moscona, A. Role of cell shape in growth control. Nature 273, 345–349 (1978).

    CAS  PubMed  Google Scholar 

  13. Watt, F. M., Jordan, P. W. & O'Neill, C. H. Cell shape controls terminal differentiation of human epidermal keratinocytes. Proc. Natl Acad. Sci. USA 85, 5576–5580 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Zanconato, F. et al. Genome-wide association between YAP/TAZ/TEAD and AP-1 at enhancers drives oncogenic growth. Nat. Cell Biol. 17, 1218–1227 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Galli, G. G. et al. YAP drives growth by controlling transcriptional pause release from dynamic enhancers. Mol. Cell 60, 328–337 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Stein, C. et al. YAP1 exerts its transcriptional control via TEAD-mediated activation of enhancers. PLoS Genet. 11, e1005465 (2015).

    PubMed  PubMed Central  Google Scholar 

  17. Vassilev, A., Kaneko, K. J., Shu, H., Zhao, Y. & DePamphilis, M. L. TEAD/TEF transcription factors utilize the activation domain of YAP65, a Src/Yes-associated protein localized in the cytoplasm. Genes Dev. 15, 1229–1241 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Huang, J., Wu, S., Barrera, J., Matthews, K. & Pan, D. The Hippo signaling pathway coordinately regulates cell proliferation and apoptosis by inactivating Yorkie, the Drosophila homolog of YAP. Cell 122, 421–434 (2005).

    CAS  PubMed  Google Scholar 

  19. Wu, S., Liu, Y., Zheng, Y., Dong, J. & Pan, D. The TEAD/TEF family protein Scalloped mediates transcriptional output of the Hippo growth-regulatory pathway. Dev. Cell 14, 388–398 (2008).

    CAS  PubMed  Google Scholar 

  20. Pan, D. The Hippo signaling pathway in development and cancer. Dev. Cell 19, 491–505 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Yu, F. X., Zhao, B. & Guan, K. L. Hippo pathway in organ size control, tissue homeostasis, and cancer. Cell 163, 811–828 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Piccolo, S., Dupont, S. & Cordenonsi, M. The biology of YAP/TAZ: hippo signaling and beyond. Physiol. Rev. 94, 1287–1312 (2014).

    CAS  PubMed  Google Scholar 

  23. Gaspar, P. & Tapon, N. Sensing the local environment: actin architecture and Hippo signalling. Curr. Opin. Cell Biol. 31, 74–83 (2014). This is a well-balanced review that outlines the role of F-actin organization as central for YAP and TAZ biology, the evolutionary conservation of this connection, and the potential crosstalks and mutual regulations between YAP and TAZ regulation by mechanotransduction and Hippo signalling.

    CAS  PubMed  Google Scholar 

  24. Aragona, M. et al. A mechanical checkpoint controls multicellular growth through YAP/TAZ regulation by actin-processing factors. Cell 154, 1047–1059 (2013). This paper identifies mechanical regulation of YAP and TAZ as the key determinant for contact inhibition of proliferation (see Ref. 91 ) and for the malignant properties of mammary tumour cells induced by stiffening of the 3D environment (see Ref. 121).

    CAS  PubMed  Google Scholar 

  25. Sorrentino, G. et al. Glucocorticoid receptor signalling activates YAP in breast cancer. Nat. Commun. 8, 14073 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Das, A., Fischer, R. S., Pan, D. & Waterman, C. M. YAP nuclear localization in the absence of cell–cell contact is mediated by a filamentous actin-dependent, myosin II- and phospho-YAP-independent pathway during extracellular matrix mechanosensing. J. Biol. Chem. 291, 6096–6110 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Dupont, S. et al. Role of YAP/TAZ in mechanotransduction. Nature 474, 179–183 (2011). This is the original paper reporting YAP and TAZ as readers and effectors of mechanical signalling.

    CAS  PubMed  Google Scholar 

  28. Hu, J. K. et al. An FAK-YAP-mTOR signaling axis regulates stem cell-based tissue renewal in mice. Cell Stem Cell 21, 91–106 (2017).

    CAS  Google Scholar 

  29. Low, B. C. et al. YAP/TAZ as mechanosensors and mechanotransducers in regulating organ size and tumor growth. FEBS Lett. 588, 2663–2670 (2014).

    CAS  PubMed  Google Scholar 

  30. Reginensi, A. et al. Yap- and Cdc42-dependent nephrogenesis and morphogenesis during mouse kidney development. PLoS Genet. 9, e1003380 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Feng, X. et al. Hippo-independent activation of YAP by the GNAQ uveal melanoma oncogene through a trio-regulated rho GTPase signaling circuitry. Cancer Cell 25, 831–845 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Sorrentino, G. et al. Metabolic control of YAP and TAZ by the mevalonate pathway. Nat. Cell Biol. 16, 357–366 (2014).

    CAS  PubMed  Google Scholar 

  33. Taniguchi, K. et al. A gp130-Src-YAP module links inflammation to epithelial regeneration. Nature 519, 57–62 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Wada, K., Itoga, K., Okano, T., Yonemura, S. & Sasaki, H. Hippo pathway regulation by cell morphology and stress fibers. Development 138, 3907–3914 (2011).

    CAS  PubMed  Google Scholar 

  35. Wang, Z. et al. Interplay of mevalonate and Hippo pathways regulates RHAMM transcription via YAP to modulate breast cancer cell motility. Proc. Natl Acad. Sci. USA 111, E89–E98 (2014).

    CAS  PubMed  Google Scholar 

  36. Calvo, F. et al. Mechanotransduction and YAP-dependent matrix remodelling is required for the generation and maintenance of cancer-associated fibroblasts. Nat. Cell Biol. 15, 637–646 (2013).

    CAS  PubMed  Google Scholar 

  37. Fernandez, B. G. et al. Actin-capping protein and the Hippo pathway regulate F-actin and tissue growth in Drosophila. Development 138, 2337–2346 (2011).

    CAS  PubMed  Google Scholar 

  38. Halder, G., Dupont, S. & Piccolo, S. Transduction of mechanical and cytoskeletal cues by YAP and TAZ. Nat. Rev. Mol. Cell Biol. 13, 591–600 (2012).

    CAS  PubMed  Google Scholar 

  39. Schroeder, M. C. & Halder, G. Regulation of the Hippo pathway by cell architecture and mechanical signals. Semin. Cell Dev. Biol. 23, 803–811 (2012).

    CAS  PubMed  Google Scholar 

  40. Wang, K. C. et al. Flow-dependent YAP/TAZ activities regulate endothelial phenotypes and atherosclerosis. Proc. Natl Acad. Sci. USA 113, 11525–11530 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang, L. et al. Integrin–YAP/TAZ–JNK cascade mediates atheroprotective effect of unidirectional shear flow. Nature 540, 579–582 (2016).

    CAS  PubMed  Google Scholar 

  42. Nakajima, H. et al. Flow-dependent endothelial YAP regulation contributes to vessel maintenance. Dev. Cell 40, 523–536 (2017).

    CAS  PubMed  Google Scholar 

  43. Totaro, A. et al. YAP/TAZ link cell mechanics to Notch signalling to control epidermal stem cell fate. Nat. Commun. 8, 15206 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Benham-Pyle, B. W., Pruitt, B. L. & Nelson, W. J. Cell adhesion. Mechanical strain induces E-cadherin-dependent Yap1 and beta-catenin activation to drive cell cycle entry. Science 348, 1024–1027 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Gjorevski, N. et al. Designer matrices for intestinal stem cell and organoid culture. Nature 539, 560–564 (2016).

    CAS  PubMed  Google Scholar 

  46. Eyckmans, J., Boudou, T., Yu, X. & Chen, C. S. A hitchhiker's guide to mechanobiology. Dev. Cell 21, 35–47 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhao, B. et al. Cell detachment activates the Hippo pathway via cytoskeleton reorganization to induce anoikis. Genes Dev. 26, 54–68 (2012).

    PubMed  PubMed Central  Google Scholar 

  48. Connelly, J. T. et al. Actin and serum response factor transduce physical cues from the microenvironment to regulate epidermal stem cell fate decisions. Nat. Cell Biol. 12, 711–718 (2010).

    CAS  PubMed  Google Scholar 

  49. Sansores-Garcia, L. et al. Modulating F-actin organization induces organ growth by affecting the Hippo pathway. EMBO J. 30, 2325–2335 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Mana-Capelli, S., Paramasivam, M., Dutta, S. & McCollum, D. Angiomotins link F-actin architecture to Hippo pathway signaling. Mol. Biol. Cell 25, 1676–1685 (2014).

    PubMed  PubMed Central  Google Scholar 

  51. Moleirinho, S. et al. Regulation of localization and function of the transcriptional co-activator YAP by angiomotin. eLife 6, e23966 (2017).

    PubMed  PubMed Central  Google Scholar 

  52. Deng, H. et al. Spectrin regulates Hippo signaling by modulating cortical actomyosin activity. eLife 4, e06567 (2015).

    PubMed  PubMed Central  Google Scholar 

  53. Fletcher, G. C. et al. The Spectrin cytoskeleton regulates the Hippo signalling pathway. EMBO J. 34, 940–954 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Oka, T. et al. Functional complexes between YAP2 and ZO-2 are PDZ domain-dependent, and regulate YAP2 nuclear localization and signalling. Biochem. J. 432, 461–472 (2010).

    CAS  PubMed  Google Scholar 

  55. Pan, C. Q., Sudol, M., Sheetz, M. & Low, B. C. Modularity and functional plasticity of scaffold proteins as p(l)acemakers in cell signaling. Cell. Signal. 24, 2143–2165 (2012).

    CAS  PubMed  Google Scholar 

  56. Remue, E. et al. TAZ interacts with zonula occludens-1 and -2 proteins in a PDZ-1 dependent manner. FEBS Lett. 584, 4175–4180 (2010).

    CAS  PubMed  Google Scholar 

  57. Schlegelmilch, K. et al. Yap1 acts downstream of alpha-catenin to control epidermal proliferation. Cell 144, 782–795 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Silvis, M. R. et al. α-Catenin is a tumor suppressor that controls cell accumulation by regulating the localization and activity of the transcriptional coactivator Yap1. Sci. Signal. 4, ra33 (2011).

    PubMed  PubMed Central  Google Scholar 

  59. Humphrey, J. D., Dufresne, E. R. & Schwartz, M. A. Mechanotransduction and extracellular matrix homeostasis. Nat. Rev. Mol. Cell Biol. 15, 802–812 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Iskratsch, T., Wolfenson, H. & Sheetz, M. P. Appreciating force and shape — the rise of mechanotransduction in cell biology. Nat. Rev. Mol. Cell Biol. 15, 825–833 (2014).

    CAS  PubMed  Google Scholar 

  61. Low, B. C. et al. YAP/TAZ as mechanosensors and mechanotransducers in regulating organ size and tumor growth. FEBS Lett. 588, 2663–2670 (2014).

    CAS  PubMed  Google Scholar 

  62. Galbraith, C. G., Yamada, K. M. & Sheetz, M. P. The relationship between force and focal complex development. J. Cell Biol. 159, 695–705 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Tzima, E., del Pozo, M. A., Shattil, S. J., Chien, S. & Schwartz, M. A. Activation of integrins in endothelial cells by fluid shear stress mediates Rho-dependent cytoskeletal alignment. EMBO J. 20, 4639–4647 (2001). This is a key contribution on the role of RHO, downstream of integrin, in the response to a classic mechanical signal.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Azzolin, L. et al. YAP/TAZ incorporation in the beta-catenin destruction complex orchestrates the Wnt response. Cell 158, 157–170 (2014).

    CAS  PubMed  Google Scholar 

  65. Panciera, T. et al. Induction of expandable tissue-specific stem/progenitor cells through transient expression of YAP/TAZ. Cell Stem Cell 19, 725–737 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Zanconato, F., Cordenonsi, M. & Piccolo, S. YAP/TAZ at the roots of cancer. Cancer Cell 29, 783–803 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Kanellos, G. et al. ADF and cofilin1 control actin stress fibers, nuclear integrity, and cell survival. Cell Rep. 13, 1949–1964 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Nishioka, N. et al. The Hippo signaling pathway components Lats and Yap pattern Tead4 activity to distinguish mouse trophectoderm from inner cell mass. Dev. Cell 16, 398–410 (2009).

    CAS  PubMed  Google Scholar 

  69. Kono, K., Tamashiro, D. A. & Alarcon, V. B. Inhibition of RHO–ROCK signaling enhances ICM and suppresses TE characteristics through activation of Hippo signaling in the mouse blastocyst. Dev. Biol. 394, 142–155 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Maitre, J. L. et al. Asymmetric division of contractile domains couples cell positioning and fate specification. Nature 536, 344–348 (2016). This is a recent report on the role of cell mechanics and YAP and TAZ regulation as determinants of the first cell fate decision in mammalian embryos.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Ohgushi, M., Minaguchi, M. & Sasai, Y. Rho-signaling-directed YAP/TAZ activity underlies the long-term survival and expansion of human embryonic stem cells. Cell Stem Cell 17, 448–461 (2015).

    CAS  PubMed  Google Scholar 

  72. Musah, S. et al. Substratum-induced differentiation of human pluripotent stem cells reveals the coactivator YAP is a potent regulator of neuronal specification. Proc. Natl Acad. Sci. USA 111, 13805–13810 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Beyer, T. A. et al. Switch enhancers interpret TGF-beta and Hippo signaling to control cell fate in human embryonic stem cells. Cell Rep. 5, 1611–1624 (2013).

    CAS  PubMed  Google Scholar 

  74. Musah, S. et al. Glycosaminoglycan-binding hydrogels enable mechanical control of human pluripotent stem cell self-renewal. ACS Nano 6, 10168–10177 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Hsiao, C. et al. Human pluripotent stem cell culture density modulates YAP signaling. Biotechnol. J. 11, 662–675 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Sun, Y. et al. Hippo/YAP-mediated rigidity-dependent motor neuron differentiation of human pluripotent stem cells. Nat. Mater. 13, 599–604 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. McBeath, R., Pirone, D. M., Nelson, C. M., Bhadriraju, K. & Chen, C. S. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev. Cell 6, 483–495 (2004). This is seminal paper introduces the role of RHO signalling and cell shape as dictators of the behaviour of MSCs.

    CAS  PubMed  Google Scholar 

  78. Hong, J. H. et al. TAZ, a transcriptional modulator of mesenchymal stem cell differentiation. Science 309, 1074–1078 (2005).

    CAS  PubMed  Google Scholar 

  79. Tang, Y., Feinberg, T., Keller, E. T., Li, X. Y. & Weiss, S. J. Snail/Slug binding interactions with YAP/TAZ control skeletal stem cell self-renewal and differentiation. Nat. Cell Biol. 18, 917–929 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Tang, Y. et al. MT1-MMP-dependent control of skeletal stem cell commitment via a beta1-integrin/YAP/TAZ signaling axis. Dev. Cell 25, 402–416 (2013). This is a key demonstration that cells must remodel their microenvironment through metalloproteinases in order to exploit new mechanical niches to foster YAP and TAZ activity in progenitor cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Cosgrove, B. D. et al. N-cadherin adhesive interactions modulate matrix mechanosensing and fate commitment of mesenchymal stem cells. Nat. Mater. 15, 1297–1306 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Zhong, W. et al. Mesenchymal stem cell and chondrocyte fates in a multishear microdevice are regulated by Yes-associated protein. Stem Cells Dev. 22, 2083–2093 (2013).

    CAS  PubMed  Google Scholar 

  83. Zhong, W., Zhang, W., Wang, S. & Qin, J. Regulation of fibrochondrogenesis of mesenchymal stem cells in an integrated microfluidic platform embedded with biomimetic nanofibrous scaffolds. PLoS ONE 8, e61283 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Kim, K. M. et al. Shear stress induced by an interstitial level of slow flow increases the osteogenic differentiation of mesenchymal stem cells through TAZ activation. PLoS ONE 9, e92427 (2014).

    PubMed  PubMed Central  Google Scholar 

  85. Chen, Z., Luo, Q., Lin, C., Kuang, D. & Song, G. Simulated microgravity inhibits osteogenic differentiation of mesenchymal stem cells via depolymerizing F-actin to impede TAZ nuclear translocation. Sci. Rep. 6, 30322 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Judson, R. N. et al. The Hippo pathway member Yap plays a key role in influencing fate decisions in muscle satellite cells. J. Cell Sci. 125, 6009–6019 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Esteves de Lima, J., Bonnin, M. A., Birchmeier, C. & Duprez, D. Muscle contraction is required to maintain the pool of muscle progenitors via YAP and NOTCH during fetal myogenesis. eLife 5, e15593 (2016).

    PubMed  PubMed Central  Google Scholar 

  88. Varelas, X. & Wrana, J. L. Coordinating developmental signaling: novel roles for the Hippo pathway. Trends Cell Biol. 22, 88–96 (2012).

    CAS  PubMed  Google Scholar 

  89. Strassburger, K., Tiebe, M., Pinna, F., Breuhahn, K. & Teleman, A. A. Insulin/IGF signaling drives cell proliferation in part via Yorkie/YAP. Dev. Biol. 367, 187–196 (2012).

    CAS  PubMed  Google Scholar 

  90. Tumaneng, K. et al. YAP mediates crosstalk between the Hippo and PI(3)K–TOR pathways by suppressing PTEN via miR-29. Nat. Cell Biol. 14, 1322–1329 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Zhao, B. et al. Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev. 21, 2747–2761 (2007). This is a classic paper on the role of YAP and TAZ as determinants of CIP.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Kim, J. H. & Asthagiri, A. R. Matrix stiffening sensitizes epithelial cells to EGF and enables the loss of contact inhibition of proliferation. J. Cell Sci. 124, 1280–1287 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Liu, Z. et al. MAPK-mediated YAP activation controls mechanical-tension-induced pulmonary alveolar regeneration. Cell Rep. 16, 1810–1819 (2016).

    CAS  PubMed  Google Scholar 

  94. Elbediwy, A. et al. Integrin signalling regulates YAP and TAZ to control skin homeostasis. Development 143, 1674–1687 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Grose, R. et al. A crucial role of beta 1 integrins for keratinocyte migration in vitro and during cutaneous wound repair. Development 129, 2303–2315 (2002).

    CAS  PubMed  Google Scholar 

  96. Samuel, M. S. et al. Actomyosin-mediated cellular tension drives increased tissue stiffness and beta-catenin activation to induce epidermal hyperplasia and tumor growth. Cancer Cell 19, 776–791 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Spinale, F. G. Myocardial matrix remodeling and the matrix metalloproteinases: influence on cardiac form and function. Physiol. Rev. 87, 1285–1342 (2007).

    CAS  PubMed  Google Scholar 

  98. Mosqueira, D. et al. Hippo pathway effectors control cardiac progenitor cell fate by acting as dynamic sensors of substrate mechanics and nanostructure. ACS Nano 8, 2033–2047 (2014).

    CAS  PubMed  Google Scholar 

  99. Morikawa, Y. et al. Actin cytoskeletal remodeling with protrusion formation is essential for heart regeneration in Hippo-deficient mice. Sci. Signal. 8, ra41 (2015).

    PubMed  PubMed Central  Google Scholar 

  100. Xin, M. et al. Hippo pathway effector Yap promotes cardiac regeneration. Proc. Natl Acad. Sci. USA 110, 13839–13844 (2013). References 99 and 100 reveal the remarkable capacity of YAP activation to trigger cardiac regeneration in mammals, a property that was lost more than 300 million years ago and required actin cytoskeletal remodelling.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Wang, Y. et al. Deletion of yes-associated protein (YAP) specifically in cardiac and vascular smooth muscle cells reveals a crucial role for YAP in mouse cardiovascular development. Circ. Res. 114, 957–965 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Feng, X. et al. Thromboxane A2 activates YAP/TAZ protein to induce vascular smooth muscle cell proliferation and migration. J. Biol. Chem. 291, 18947–18958 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Kimura, T. E. et al. The Hippo pathway mediates inhibition of vascular smooth muscle cell proliferation by cAMP. J. Mol. Cell Cardiol. 90, 1–10 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Lammers, S. et al. Mechanics and function of the pulmonary vasculature: implications for pulmonary vascular disease and right ventricular function. Compr. Physiol. 2, 295–319 (2012).

    PubMed  PubMed Central  Google Scholar 

  105. Bertero, T. et al. Matrix remodeling promotes pulmonary hypertension through feedback mechanoactivation of the YAP/TAZ–miR-130/301 circuit. Cell Rep. 13, 1016–1032 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Bertero, T. et al. Vascular stiffness mechanoactivates YAP/TAZ-dependent glutaminolysis to drive pulmonary hypertension. J. Clin. Invest. 126, 3313–3335 (2016).

    PubMed  PubMed Central  Google Scholar 

  107. Rockey, D. C., Bell, P. D. & Hill, J. A. Fibrosis — a common pathway to organ injury and failure. N. Engl. J. Med. 372, 1138–1149 (2015).

    CAS  PubMed  Google Scholar 

  108. Mannaerts, I. et al. The Hippo pathway effector YAP controls mouse hepatic stellate cell activation. J. Hepatol. 63, 679–688 (2015).

    CAS  PubMed  Google Scholar 

  109. Caliari, S. R. et al. Stiffening hydrogels for investigating the dynamics of hepatic stellate cell mechanotransduction during myofibroblast activation. Sci. Rep. 6, 21387 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Liu, F. et al. Mechanosignaling through YAP and TAZ drives fibroblast activation and fibrosis. Am. J. Physiol. Lung Cell. Mol. Physiol. 308, L344–L357 (2015).

    CAS  PubMed  Google Scholar 

  111. Jorgenson, A. J. et al. TAZ activation drives fibroblast spheroid growth, expression of profibrotic paracrine signals, and context-dependent ECM gene expression. Am. J. Physiol. Cell Physiol. 312, C277–C285 (2017).

    PubMed  Google Scholar 

  112. Noguchi, S. et al. TAZ contributes to pulmonary fibrosis by activating profibrotic functions of lung fibroblasts. Sci. Rep. 7, 42595 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Cai, J. et al. The Hippo signaling pathway restricts the oncogenic potential of an intestinal regeneration program. Genes Dev. 24, 2383–2388 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Huveneers, S. & Danen, E. H. Adhesion signaling — crosstalk between integrins, Src and Rho. J. Cell Sci. 122, 1059–1069 (2009).

    CAS  PubMed  Google Scholar 

  115. Nowell, C. S. et al. Chronic inflammation imposes aberrant cell fate in regenerating epithelia through mechanotransduction. Nat. Cell Biol. 18, 168–180 (2016).

    CAS  PubMed  Google Scholar 

  116. Bertrand, A. T. et al. Cellular microenvironments reveal defective mechanosensing responses and elevated YAP signaling in LMNA-mutated muscle precursors. J. Cell Sci. 127, 2873–2884 (2014).

    CAS  PubMed  Google Scholar 

  117. Zanconato, F., Battilana, G., Cordenonsi, M. & Piccolo, S. YAP/TAZ as therapeutic targets in cancer. Curr. Opin. Pharmacol. 29, 26–33 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Cordenonsi, M. et al. The Hippo transducer TAZ confers cancer stem cell-related traits on breast cancer cells. Cell 147, 759–772 (2011).

    CAS  PubMed  Google Scholar 

  119. Erler, J. T. et al. Lysyl oxidase is essential for hypoxia-induced metastasis. Nature 440, 1222–1226 (2006).

    CAS  PubMed  Google Scholar 

  120. Levental, K. R. et al. Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139, 891–906 (2009). This is a seminal contribution on the role of cell mechanics as a driver of malignancy.

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Lin, C. H. et al. Microenvironment rigidity modulates responses to the HER2 receptor tyrosine kinase inhibitor lapatinib via YAP and TAZ transcription factors. Mol. Biol. Cell 26, 3946–3953 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Hirata, E. et al. Intravital imaging reveals how BRAF inhibition generates drug-tolerant microenvironments with high integrin beta1/FAK signaling. Cancer Cell 27, 574–588 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Kim, M. H. et al. Actin remodeling confers BRAF inhibitor resistance to melanoma cells through YAP/TAZ activation. EMBO J. 35, 462–478 (2016). This is a very original paper on the role of YAP and TAZ mechanotransduction as an inducer of chemoresistance.

    CAS  PubMed  Google Scholar 

  124. Li, Z. et al. The Hippo transducer TAZ promotes epithelial to mesenchymal transition and cancer stem cell maintenance in oral cancer. Mol. Oncol. 9, 1091–1105 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Karp, I., Behlouli, H., Lelorier, J. & Pilote, L. Statins and cancer risk. Am. J. Med. 121, 302–309 (2008).

    CAS  PubMed  Google Scholar 

  126. Goldstein, M. R., Mascitelli, L. & Pezzetta, F. Do statins prevent or promote cancer? Curr. Oncol. 15, 76–77 (2008).

    PubMed  PubMed Central  Google Scholar 

  127. Driscoll, T. P., Cosgrove, B. D., Heo, S. J., Shurden, Z. E. & Mauck, R. L. Cytoskeletal to nuclear strain transfer regulates YAP signaling in mesenchymal stem cells. Biophys. J. 108, 2783–2793 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Swift, J. et al. Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed differentiation. Science 341, 1240104 (2013).

    PubMed  PubMed Central  Google Scholar 

  129. Yu, F. X. et al. Regulation of the Hippo–YAP pathway by G-protein-coupled receptor signaling. Cell 150, 780–791 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Legoff, L., Rouault, H. & Lecuit, T. A global pattern of mechanical stress polarizes cell divisions and cell shape in the growing Drosophila wing disc. Development 140, 4051–4059 (2013).

    CAS  PubMed  Google Scholar 

  131. Thompson, D. A. W. On Growth and Form 1st edn (Cambridge Univ. Press, 1917).

    Google Scholar 

  132. Sebe-Pedros, A., Zheng, Y., Ruiz-Trillo, I. & Pan, D. Premetazoan origin of the hippo signaling pathway. Cell Rep. 1, 13–20 (2012).

    CAS  PubMed  Google Scholar 

  133. Bartfeld, S. & Clevers, H. Stem cell-derived organoids and their application for medical research and patient treatment. J. Mol. Med. 95, 729–738 (2017).

    CAS  PubMed  Google Scholar 

  134. Gregorieff, A., Liu, Y., Inanlou, M. R., Khomchuk, Y. & Wrana, J. L. Yap-dependent reprogramming of Lgr5+ stem cells drives intestinal regeneration and cancer. Nature 526, 715–718 (2015).

    CAS  PubMed  Google Scholar 

  135. Tan, Q., Choi, K. M., Sicard, D. & Tschumperlin, D. J. Human airway organoid engineering as a step toward lung regeneration and disease modeling. Biomaterials 113, 118–132 (2017).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank all members of the S.P. laboratory for discussion. This work is supported by AIRC Special Program Molecular Clinical Oncology '5 per mille', by an AIRC PI-Grant to S.P., and by Epigenetics Flagship project CNR-MIUR grants to S.P. This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No. 670126-DENOVOSTEM).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to all aspects of the article (researching data for article, substantial contribution to discussion of content, writing, review/editing of manuscript before submission).

Corresponding author

Correspondence to Stefano Piccolo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Shear stress

The force vector component coplanar with a material cross section; a fluid moving along a solid boundary will generate a shear stress on that boundary.

TEAD factors

(TEA domain family members; also known as TEFs). A family of DNA-binding transcription factors that cannot induce target gene transcription on their own but need to associate with specific cofactors, such as YAP and TAZ.

Mechanotransduction

Mechanisms by which cells convert mechanical signals conveyed by the microenvironment into biochemical signals to adapt their behaviour to the environment.

Capping proteins

Proteins (including CapZ but also ADF/cofilin, which are also F-actin-severing proteins) that bind to the growing (barbed) end of F-actin filaments, blocking the binding of other actin subunits to the growing filament.

Vinculin

A focal adhesion protein that links the cytosolic domain of integrins to the F-actin cytoskeleton.

Talins

Focal adhesion proteins that link integrin to the F-actin cytoskeleton either directly or indirectly (through binding to vinculin or α-actinin).

Focal adhesion kinase

(FAK). A cytosolic tyrosine kinase associated with focal adhesions and required for integrin-dependent cell motility, cell spreading and cell survival.

SRC-family kinases

A family of tyrosine kinases (composed of nine different members: SRC, YES, FYN, FGR, LCK, HCK, BLK, LYN and FRK) that can target cytosolic, nuclear or membrane proteins, having a broad impact on the phosphotyrosine proteome and on diverse cell behaviours.

RHO-associated protein kinase

(ROCK). A serine/threonine kinase that is best understood as a downstream effector of the small GTPase RHOA. ROCK favours formation of stress fibres and contractility of the actomyosin cytoskeleton by phosphorylating LIM domain kinase and myosin light chain kinase.

Intestinal crypts

Simple tubular invaginations at the base of intestinal villi (also known as crypts of Lieberkühn). Intestinal crypts are lined by various cell types: goblet, enteroendocrine, tuft, Paneth cells and intestinal stem cells.

Trophoblast

The outer layer of a blastocyst, composed of polarized cells from which part of the placenta originates.

Inner cell mass

(ICM). A mass of cells lying on one side of the blastocyst cavity from which all the adult tissues eventually derive.

Blastocyst

A structure formed during the development of mammalian embryos after the morula stage and before implantation, and is composed of an external layer (trophoblast) surrounding an internal cavity (blastocoel) and the inner cell mass.

Elastic modulus

A measure of the resistance of an object to elastic deformation.

Enamel

One of the four different tissues that compose the tooth; it is the outermost, highly mineralized tissue formed by epithelial cells known as ameloblasts.

LIM domain kinase

An actin-bound kinase that phosphorylates and inactivates actin-binding and actin-severing proteins, such as ADF/cofilin, thereby fostering the stabilization of F-actin filaments. LIM domain kinases are activated by RHO GTPases.

Foam cells

Lipid-filled M2 macrophages that form when monocytes are recruited to an atherogenic area of the arterial wall and contribute to the formation of the atherosclerotic plaque; these cells are derived from monocytes that engulf lipoprotein particles.

Vessel stenosis

Abnormal narrowing of a blood vessel (might be referred to as coarctation in the case of the carotid artery).

Coronary angioplasty

A surgical endovascular procedure performed to widen the narrowed (stenotic) coronary arteries of the heart.

Adventitial fibroblasts

Fibroblasts that are part of the area between the external elastic lamina and the outermost edge of a blood vessel (adventitia).

Lysyl oxidase

(LOX). An enzyme that promotes collagen and elastin crosslinking.

Hepatic stellate cells

Pericytes found in the perisinusoidal space of the liver; these are the major cell type involved in fibrosis in response to liver damage.

Metaplasia

Reversible transition of a differentiated cell type to another differentiated cell type that can be caused in a tissue by an abnormal stimulus; once the stimulus ceases, the tissue returns to its normal differentiation condition. Metaplasia is often considered an early phase of the tumorigenic process.

Myoblasts

Embryonic progenitor cells that can differentiate into muscle cells. Myoblasts that do not differentiate into muscle cells in the skeletal muscle fibre can turn into satellite cells (somatic muscle stem cells).

Linker of nucleoskeleton and cytoskeleton (LINC) complex

A protein complex associated with the nuclear membrane and composed of SUN domain and KASH domain proteins. This complex serves as a linker connecting nuclear lamins and chromatin with cytosolic actin microfilaments, microtubule filaments and intermediate filaments.

Evo-devo

(evolutionary developmental biology). A field in biological studies that compares the developmental processes of different organisms to trace their evolutionary relationships and to infer the evolution of developmental processes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panciera, T., Azzolin, L., Cordenonsi, M. et al. Mechanobiology of YAP and TAZ in physiology and disease. Nat Rev Mol Cell Biol 18, 758–770 (2017). https://doi.org/10.1038/nrm.2017.87

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm.2017.87

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing