Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The multifaceted roles of PARP1 in DNA repair and chromatin remodelling

Key Points

  • Poly(ADP-ribose) polymerase 1 (PARP1) was the first member of the PARP family to be identified. The PARP family now comprises 18 members.

  • PARP1 post-translationally modifies itself and a range of other proteins that have diverse roles in different cellular processes.

  • The catalytic activity of PARP1 is responsible for mediating multiple DNA damage repair pathways.

  • PARP1 has a crucial role in the stabilization of DNA replication forks.

  • The role of PARP1 in remodelling chromatin overlaps with its role in DNA repair.

  • PARP1 inhibition is an attractive strategy for the treatment of cancers that are deficient in the repair of DNA double-strand breaks by homologous recombination.

Abstract

Cells are exposed to various endogenous and exogenous insults that induce DNA damage, which, if unrepaired, impairs genome integrity and leads to the development of various diseases, including cancer. Recent evidence has implicated poly(ADP-ribose) polymerase 1 (PARP1) in various DNA repair pathways and in the maintenance of genomic stability. The inhibition of PARP1 is therefore being exploited clinically for the treatment of various cancers, which include DNA repair-deficient ovarian, breast and prostate cancers. Understanding the role of PARP1 in maintaining genome integrity is not only important for the design of novel chemotherapeutic agents, but is also crucial for gaining insights into the mechanisms of chemoresistance in cancer cells. In this Review, we discuss the roles of PARP1 in mediating various aspects of DNA metabolism, such as single-strand break repair, nucleotide excision repair, double-strand break repair and the stabilization of replication forks, and in modulating chromatin structure.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: The biochemical functions of poly(ADP-ribose) polymerase 1 in DNA damage repair.
Figure 2: The roles of poly(ADP-ribose) polymerase 1 in excision repair.
Figure 3: The roles of poly(ADP-ribose) polymerase 1 in detection and repair of DNA double-strand breaks.
Figure 4: Poly(ADP-ribose) polymerase 1 helps maintain the stability of replication forks.
Figure 5: Chromatin changes induced by poly(ADP- ribose) polymerase 1 — integrating DNA repair.

References

  1. 1

    Tubbs, A. & Nussenzweig, A. Endogenous DNA damage as a source of genomic instability in cancer. Cell 168, 644–656 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2

    Lord, C. J., Tutt, A. N. & Ashworth, A. Synthetic lethality and cancer therapy: lessons learned from the development of PARP inhibitors. Annu. Rev. Med. 66, 455–470 (2015).

    CAS  PubMed  Google Scholar 

  3. 3

    Montoni, A., Robu, M., Pouliot, E. & Shah, G. M. Resistance to PARP-inhibitors in cancer therapy. Front. Pharmacol. 4, 18 (2013).

    PubMed  PubMed Central  Google Scholar 

  4. 4

    Ame, J. C., Spenlehauer, C. & de Murcia, G. The PARP superfamily. Bioessays 26, 882–893 (2004).

    CAS  PubMed  Google Scholar 

  5. 5

    Buki, K. G. & Kun, E. Polypeptide domains of ADP-ribosyltransferase obtained by digestion with plasmin. Biochemistry 27, 5990–5995 (1988).

    CAS  PubMed  Google Scholar 

  6. 6

    Froelich, C. J. et al. Granzyme B/perforin-mediated apoptosis of Jurkat cells results in cleavage of poly(ADP-ribose) polymerase to the 89-kDa apoptotic fragment and less abundant 64-kDa fragment. Biochem. Biophys. Res. Commun. 227, 658–665 (1996).

    CAS  PubMed  Google Scholar 

  7. 7

    Kameshita, I., Matsuda, Z., Taniguchi, T. & Shizuta, Y. Poly (ADP-ribose) synthetase. Separation and identification of three proteolytic fragments as the substrate-binding domain, the DNA-binding domain, and the automodification domain. J. Biol. Chem. 259, 4770–4776 (1984).

    CAS  Google Scholar 

  8. 8

    Langelier, M. F., Planck, J. L., Roy, S. & Pascal, J. M. Structural basis for DNA damage-dependent poly(ADP-ribosyl)ation by human PARP-1. Science 336, 728–732 (2012). This article reports the crystal structure of PARP1 bound to a DNA DSB and proposes a mechanism for the DNA-dependent activation of PARP1.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9

    Nishikimi, M., Ogasawara, K., Kameshita, I., Taniguchi, T. & Shizuta, Y. Poly(ADP-ribose) synthetase. The DNA binding domain and the automodification domain. J. Biol. Chem. 257, 6102–6105 (1982).

    CAS  PubMed  Google Scholar 

  10. 10

    Bork, P. et al. A superfamily of conserved domains in DNA damage-responsive cell cycle checkpoint proteins. FASEB J. 11, 68–76 (1997).

    CAS  PubMed  Google Scholar 

  11. 11

    D'Amours, D., Desnoyers, S., D'Silva, I. & Poirier, G. G. Poly(ADP-ribosyl)ation reactions in the regulation of nuclear functions. Biochem. J. 342, 249–268 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12

    Kraus, W. L. & Lis, J. T. PARP goes transcription. Cell 113, 677–683 (2003).

    CAS  PubMed  Google Scholar 

  13. 13

    Kim, M. Y., Zhang, T. & Kraus, W. L. Poly(ADP-ribosyl)ation by PARP-1: 'PAR-laying' NAD+ into a nuclear signal. Genes Dev. 19, 1951–1967 (2005).

    CAS  PubMed  Google Scholar 

  14. 14

    Hanzlikova, H., Gittens, W., Krejcikova, K., Zeng, Z. & Caldecott, K. W. Overlapping roles for PARP1 and PARP2 in the recruitment of endogenous XRCC1 and PNKP into oxidized chromatin. Nucleic Acids Res. 45, 2546–2557 (2017).

    CAS  PubMed  Google Scholar 

  15. 15

    Isabelle, M. et al. Investigation of PARP-1, PARP-2, and PARG interactomes by affinity-purification mass spectrometry. Proteome Sci. 8, 22 (2010).

    PubMed  PubMed Central  Google Scholar 

  16. 16

    Menissier de Murcia, J. et al. Functional interaction between PARP-1 and PARP-2 in chromosome stability and embryonic development in mouse. EMBO J. 22, 2255–2263 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17

    Huambachano, O., Herrera, F., Rancourt, A. & Satoh, M. S. Double-stranded DNA binding domain of poly(ADP-ribose) polymerase-1 and molecular insight into the regulation of its activity. J. Biol. Chem. 286, 7149–7160 (2011).

    CAS  Google Scholar 

  18. 18

    Gagne, J. P. et al. Proteome-wide identification of poly(ADP-ribose) binding proteins and poly(ADP-ribose)-associated protein complexes. Nucleic Acids Res. 36, 6959–6976 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19

    Jungmichel, S. et al. Proteome-wide identification of poly(ADP-ribosyl)ation targets in different genotoxic stress responses. Mol. Cell 52, 272–285 (2013). This article reports the high-throughput identification of targets of PARylation in response to different genotoxic stresses.

    CAS  PubMed  Google Scholar 

  20. 20

    Hassa, P. O. & Hottiger, M. O. The diverse biological roles of mammalian PARPS, a small but powerful family of poly-ADP-ribose polymerases. Front. Biosci. 13, 3046–3082 (2008).

    CAS  PubMed  Google Scholar 

  21. 21

    Krietsch, J. et al. Reprogramming cellular events by poly(ADP-ribose)-binding proteins. Mol. Aspects Med. 34, 1066–1087 (2013).

    CAS  PubMed  Google Scholar 

  22. 22

    Teloni, F. & Altmeyer, M. Readers of poly(ADP-ribose): designed to be fit for purpose. Nucleic Acids Res. 44, 993–1006 (2016).

    CAS  PubMed  Google Scholar 

  23. 23

    Althaus, F. R. et al. Poly ADP-ribosylation: a DNA break signal mechanism. Mol. Cell. Biochem. 193, 5–11 (1999).

    CAS  PubMed  Google Scholar 

  24. 24

    Malanga, M., Pleschke, J. M., Kleczkowska, H. E. & Althaus, F. R. Poly(ADP-ribose) binds to specific domains of p53 and alters its DNA binding functions. J. Biol. Chem. 273, 11839–11843 (1998).

    CAS  PubMed  Google Scholar 

  25. 25

    Pleschke, J. M., Kleczkowska, H. E., Strohm, M. & Althaus, F. R. Poly(ADP-ribose) binds to specific domains in DNA damage checkpoint proteins. J. Biol. Chem. 275, 40974–40980 (2000).

    CAS  Google Scholar 

  26. 26

    Meyer-Ficca, M. L., Meyer, R. G., Coyle, D. L., Jacobson, E. L. & Jacobson, M. K. Human poly(ADP-ribose) glycohydrolase is expressed in alternative splice variants yielding isoforms that localize to different cell compartments. Exp. Cell Res. 297, 521–532 (2004).

    CAS  PubMed  Google Scholar 

  27. 27

    Erdelyi, K. et al. Dual role of poly(ADP-ribose) glycohydrolase in the regulation of cell death in oxidatively stressed A549 cells. FASEB J. 23, 3553–3563 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28

    Feng, X. & Koh, D. W. Inhibition of poly(ADP-ribose) polymerase-1 or poly(ADPribose) glycohydrolase individually, but not in combination, leads to improved chemotherapeutic efficacy in HeLa cells. Int. J. Oncol. 42, 749–756 (2013).

    CAS  PubMed  Google Scholar 

  29. 29

    Fisher, A. E. O., Hochegger, H., Takeda, S. & Caldecott, K. W. Poly(ADP-ribose) polymerase 1 accelerates single-strand break repair in concert with poly(ADP-ribose) glycohydrolase. Mol. Cell. Biol. 27, 5597–5605 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30

    Koh, D. W. et al. Failure to degrade poly(ADP-ribose) causes increased sensitivity to cytotoxicity and early embryonic lethality. Proc. Natl Acad. Sci. USA 101, 17699–17704 (2004). This article reports the essential role of PARG in degradation of PAR.

    CAS  PubMed  Google Scholar 

  31. 31

    Ray Chaudhuri, A., Ahuja, A. K., Herrador, R. & Lopes, M. Poly(ADP-ribosyl) glycohydrolase prevents the accumulation of unusual replication structures during unperturbed S phase. Mol. Cell. Biol. 35, 856–865 (2015).

    PubMed  PubMed Central  Google Scholar 

  32. 32

    Zhou, Y., Feng, X. & Koh, D. W. Enhanced DNA accessibility and increased DNA damage induced by the absence of poly(ADP-ribose) hydrolysis. Biochemistry 49, 7360–7366 (2010).

    CAS  PubMed  Google Scholar 

  33. 33

    Caldecott, K. W. Single-strand break repair and genetic disease. Nat. Rev. Genet. 9, 619–631 (2008).

    CAS  PubMed  Google Scholar 

  34. 34

    Satoh, M. S. & Lindahl, T. Role of poly(Adp-ribose) formation in DNA-repair. Nature 356, 356–358 (1992).

    CAS  Google Scholar 

  35. 35

    Caldecott, K. W., McKeown, C. K., Tucker, J. D., Ljungquist, S. & Thompson, L. H. An interaction between the mammalian DNA repair protein XRCC1 and DNA ligase III. Mol. Cell. Biol. 14, 68–76 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36

    Loizou, J. I. et al. The protein kinase CK2 facilitates repair of chromosomal DNA single-strand breaks. Cell 117, 17–28 (2004).

    CAS  PubMed  Google Scholar 

  37. 37

    Marintchev, A. et al. Domain specific interaction in the XRCC1-DNA polymerase beta complex. Nucleic Acids Res. 28, 2049–2059 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38

    Whitehouse, C. J. et al. XRCC1 stimulates human polynucleotide kinase activity at damaged DNA termini and accelerates DNA single-strand break repair. Cell 104, 107–117 (2001).

    CAS  PubMed  Google Scholar 

  39. 39

    El-Khamisy, S. F., Masutani, M., Suzuki, H. & Caldecott, K. W. A requirement for PARP-1 for the assembly or stability of XRCC1 nuclear foci at sites of oxidative DNA damage. Nucleic Acids Res. 31, 5526–5533 (2003). This article shows the requirement for PARP1 in the recruitment of XRCC1, which is an essential factor in the repair of SSBs.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40

    Schreiber, V. et al. Poly(ADP-ribose) polymerase-2 (PARP-2) is required for efficient base excision DNA repair in association with PARP-1 and XRCC1. J. Biol. Chem. 277, 23028–23036 (2002).

    CAS  PubMed  Google Scholar 

  41. 41

    Hoch, N. C. et al. XRCC1 mutation is associated with PARP1 hyperactivation and cerebellar ataxia. Nature 541, 87–91 (2017).

    CAS  PubMed  Google Scholar 

  42. 42

    Oei, S. L. & Ziegler, M. ATP for the DNA ligation step in base excision repair is generated from poly(ADP-ribose). J. Biol. Chem. 275, 23234–23239 (2000).

    CAS  PubMed  Google Scholar 

  43. 43

    Petermann, E., Ziegler, M. & Oei, S. L. ATP-dependent selection between single nucleotide and long patch base excision repair. DNA Repair 2, 1101–1114 (2003).

    CAS  PubMed  Google Scholar 

  44. 44

    Pommier, Y. Topoisomerase I inhibitors: camptothecins and beyond. Nat. Rev. Cancer 6, 789–802 (2006).

    CAS  PubMed  Google Scholar 

  45. 45

    Pouliot, J. J., Yao, K. C., Robertson, C. A. & Nash, H. A. Yeast gene for a Tyr-DNA phosphodiesterase that repairs topoisomerase I complexes. Science 286, 552–555 (1999).

    CAS  Google Scholar 

  46. 46

    Yang, S. W. et al. A eukaryotic enzyme that can disjoin dead-end covalent complexes between DNA and type I topoisomerases. Proc. Natl Acad. Sci. USA 93, 11534–11539 (1996).

    CAS  PubMed  Google Scholar 

  47. 47

    Das, B. B. et al. PARP1-TDP1 coupling for the repair of topoisomerase I-induced DNA damage. Nucleic Acids Res. 42, 4435–4449 (2014). This article elucidates the interaction of PARP1 and TDP1 and its important role in the repair of TOP1-abortive complexes.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48

    Patel, A. G. et al. Enhanced killing of cancer cells by poly(ADP-ribose) polymerase inhibitors and topoisomerase I inhibitors reflects poisoning of both enzymes. J. Biol. Chem. 287, 4198–4210 (2012).

    CAS  PubMed  Google Scholar 

  49. 49

    Dantzer, F. et al. Base excision repair is impaired in mammalian cells lacking poly(ADP-ribose) polymerase-1. Biochemistry 39, 7559–7569 (2000).

    CAS  PubMed  Google Scholar 

  50. 50

    Dantzer, F. et al. Involvement of poly(ADP-ribose) polymerase in base excision repair. Biochimie 81, 69–75 (1999).

    CAS  PubMed  Google Scholar 

  51. 51

    de Murcia, J. M. et al. Requirement of poly(ADP-ribose) polymerase in recovery from DNA damage in mice and in cells. Proc. Natl Acad. Sci. USA 94, 7303–7307 (1997).

    CAS  PubMed  Google Scholar 

  52. 52

    Pachkowski, B. F. et al. Cells deficient in PARP-1 show an accelerated accumulation of DNA single strand breaks, but not AP sites, over the PARP-1-proficient cells exposed to MMS. Mutat. Res. 671, 93–99 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53

    Vodenicharov, M. D., Sallmann, F. R., Satoh, M. S. & Poirier, G. G. Base excision repair is efficient in cells lacking poly(ADP-ribose) polymerase 1. Nucleic Acids Res. 28, 3887–3896 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54

    Wang, Z. Q. et al. PARP is important for genomic stability but dispensable in apoptosis. Genes Dev. 11, 2347–2358 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. 55

    Allinson, S. L., Dianova, I. I. & Dianov, G. L. Poly(ADP-ribose) polymerase in base excision repair: always engaged, but not essential for DNA damage processing. Acta Biochim. Pol. 50, 169–179 (2003).

    CAS  PubMed  Google Scholar 

  56. 56

    Orta, M. L. et al. The PARP inhibitor Olaparib disrupts base excision repair of 5-aza-2′-deoxycytidine lesions. Nucleic Acids Res. 42, 9108–9120 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57

    Strom, C. E. et al. Poly (ADP-ribose) polymerase (PARP) is not involved in base excision repair but PARP inhibition traps a single-strand intermediate. Nucleic Acids Res. 39, 3166–3175 (2011).

    PubMed  Google Scholar 

  58. 58

    Reynolds, P., Cooper, S., Lomax, M. & O'Neill, P. Disruption of PARP1 function inhibits base excision repair of a sub-set of DNA lesions. Nucleic Acids Res. 43, 4028–4038 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. 59

    Marteijn, J. A., Lans, H., Vermeulen, W. & Hoeijmakers, J. H. J. Understanding nucleotide excision repair and its roles in cancer and ageing. Nat. Rev. Mol. Cell Biol. 15, 465–481 (2014).

    CAS  PubMed  Google Scholar 

  60. 60

    Guerrero-Santoro, J. et al. The cullin 4B-based UV-damaged DNA-binding protein ligase binds to UV-damaged chromatin and ubiquitinates histone H2A. Cancer Res. 68, 5014–5022 (2008).

    CAS  PubMed  Google Scholar 

  61. 61

    Kapetanaki, M. G. et al. The DDB1-CUL4ADDB2 ubiquitin ligase is deficient in xeroderma pigmentosum group E and targets histone H2A at UV-damaged DNA sites. Proc. Natl Acad. Sci. USA 103, 2588–2593 (2006).

    CAS  PubMed  Google Scholar 

  62. 62

    Wang, H. et al. Histone H3 and H4 ubiquitylation by the CUL4-DDB-ROC1 ubiquitin ligase facilitates cellular response to DNA damage. Mol. Cell 22, 383–394 (2006).

    PubMed  Google Scholar 

  63. 63

    Pines, A. et al. PARP1 promotes nucleotide excision repair through DDB2 stabilization and recruitment of ALC1. J. Cell Biol. 199, 235–249 (2012). This report shows the role of PARP1 in mediating NER through the recruitment of DDB2 and the chromatin modifier ALC1.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. 64

    Robu, M. et al. Role of poly(ADP-ribose) polymerase-1 in the removal of UV-induced DNA lesions by nucleotide excision repair. Proc. Natl Acad. Sci. USA 110, 1658–1663 (2013).

    CAS  PubMed  Google Scholar 

  65. 65

    Luijsterburg, M. S. et al. DDB2 promotes chromatin decondensation at UV-induced DNA damage. J. Cell Biol. 197, 267–281 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. 66

    King, B. S., Cooper, K. L., Liu, K. J. & Hudson, L. G. Poly(ADP-ribose) contributes to an association between poly(ADP-ribose) polymerase-1 and xeroderma pigmentosum complementation group A in nucleotide excision repair. J. Biol. Chem. 287, 39824–39833 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. 67

    Mehta, A. & Haber, J. E. Sources of DNA double-strand breaks and models of recombinational DNA repair. Cold Spring Harb. Perspect. Biol. 6, a016428 (2014).

    PubMed  PubMed Central  Google Scholar 

  68. 68

    Chapman, J. R., Taylor, M. R. G. & Boulton, S. J. Playing the end game: DNA double-strand break repair pathway choice. Mol. Cell 47, 497–510 (2012).

    CAS  Google Scholar 

  69. 69

    Price, B. D. & D'Andrea, A. D. Chromatin remodeling at DNA double-strand breaks. Cell 152, 1344–1354 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. 70

    Ali, A. A. et al. The zinc-finger domains of PARP1 cooperate to recognize DNA strand breaks. Nat. Struct. Mol. Biol. 19, 685–692 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. 71

    Langelier, M. F. & Pascal, J. M. PARP-1 mechanism for coupling DNA damage detection to poly(ADP-ribose) synthesis. Curr. Opin. Struct. Biol. 23, 134–143 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. 72

    Polo, S. E. & Jackson, S. P. Dynamics of DNA damage response proteins at DNA breaks: a focus on protein modifications. Genes Dev. 25, 409–433 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. 73

    Sukhanova, M. V. et al. Single molecule detection of PARP1 and PARP2 interaction with DNA strand breaks and their poly(ADP-ribosyl)ation using high-resolution AFM imaging. Nucleic Acids Res. 44, e60 (2016).

    PubMed  Google Scholar 

  74. 74

    Haince, J. F. et al. Ataxia telangiectasia mutated (ATM) signaling network is modulated by a novel poly(ADP-ribose)-dependent pathway in the early response to DNA-damaging agents. J. Biol. Chem. 282, 16441–16453 (2007).

    CAS  PubMed  Google Scholar 

  75. 75

    Aguilar-Quesada, R. et al. Interaction between ATM and PARP-1 in response to DNA damage and sensitization of ATM deficient cells through PARP inhibition. BMC Mol. Biol. 8, 29 (2007).

    PubMed  PubMed Central  Google Scholar 

  76. 76

    Menisser-de Murcia, J., Mark, M., Wendling, O., Wynshaw-Boris, A. & de Murcia, G. Early embryonic lethality in PARP-1 Atm double-mutant mice suggests a functional synergy in cell proliferation during development. Mol. Cell. Biol. 21, 1828–1832 (2001).

    CAS  PubMed  Google Scholar 

  77. 77

    Haince, J. F. et al. PARP1-dependent kinetics of recruitment of MRE11 and NBS1 proteins to multiple DNA damage sites. J. Biol. Chem. 283, 1197–1208 (2008).

    CAS  PubMed  Google Scholar 

  78. 78

    Hochegger, H. et al. Parp-1 protects homologous recombination from interference by Ku and Ligase IV in vertebrate cells. EMBO J. 25, 1305–1314 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. 79

    Bunting, S. F. et al. 53BP1 inhibits homologous recombination in Brca1-deficient cells by blocking resection of DNA breaks. Cell 141, 243–254 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. 80

    Cruz-Garcia, A., Lopez-Saavedra, A. & Huertas, P. BRCA1 accelerates CtIP-mediated DNA-end resection. Cell Rep. 9, 451–459 (2014).

    CAS  PubMed  Google Scholar 

  81. 81

    Scully, R. et al. Association of BRCA1 with Rad51 in mitotic and meiotic cells. Cell 88, 265–275 (1997).

    CAS  PubMed  Google Scholar 

  82. 82

    Li, M. & Yu, X. Function of BRCA1 in the DNA damage response is mediated by ADP-ribosylation. Cancer Cell 23, 693–704 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. 83

    Schwertman, P., Bekker-Jensen, S. & Mailand, N. Regulation of DNA double-strand break repair by ubiquitin and ubiquitin-like modifiers. Nat. Rev. Mol. Cell Biol. 17, 379–394 (2016).

    CAS  PubMed  Google Scholar 

  84. 84

    Morgan, W. F. & Cleaver, J. E. 3-Aminobenzamide synergistically increases sister-chromatid exchanges in cells exposed to methyl methanesulfonate but not to ultraviolet light. Mutat. Res. 104, 361–366 (1982).

    CAS  PubMed  Google Scholar 

  85. 85

    Oikawa, A., Tohda, H., Kanai, M., Miwa, M. & Sugimura, T. Inhibitors of poly(adenosine diphosphate ribose) polymerase induce sister chromatid exchanges. Biochem. Biophys. Res. Commun. 97, 1311–1316 (1980).

    CAS  PubMed  Google Scholar 

  86. 86

    Schultz, N., Lopez, E., Saleh-Gohari, N. & Helleday, T. Poly(ADP-ribose) polymerase (PARP-1) has a controlling role in homologous recombination. Nucleic Acids Res. 31, 4959–4964 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. 87

    Yang, Y. G., Cortes, U., Patnaik, S., Jasin, M. & Wang, Z. Q. Ablation of PARP-1 does not interfere with the repair of DNA double-strand breaks, but compromises the reactivation of stalled replication forks. Oncogene 23, 3872–3882 (2004).

    CAS  PubMed  Google Scholar 

  88. 88

    Hu, Y. et al. PARP1-driven poly-ADP-ribosylation regulates BRCA1 function in homologous recombination-mediated DNA repair. Cancer Discov. 4, 1430–1447 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. 89

    El-Khamisy, S. F. et al. Defective DNA single-strand break repair in spinocerebellar ataxia with axonal neuropathy-1. Nature 434, 108–113 (2005).

    CAS  PubMed  Google Scholar 

  90. 90

    Fan, J. et al. XRCC1 down-regulation in human cells leads to DNA-damaging agent hypersensitivity, elevated sister chromatid exchange, and reduced survival of BRCA2 mutant cells. Environ. Mol. Mutagen. 48, 491–500 (2007).

    CAS  PubMed  Google Scholar 

  91. 91

    Bouwman, P. et al. 53BP1 loss rescues BRCA1 deficiency and is associated with triple-negative and BRCA-mutated breast cancers. Nat. Struct. Mol. Biol. 17, 688–695 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. 92

    Bryant, H. E. et al. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 434, 913–917 (2005).

    CAS  Google Scholar 

  93. 93

    Farmer, H. et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434, 917–921 (2005). References 92 and 93 are the first reports of the synthetic lethality of the combined loss of PARP1 and BRCA2.

    CAS  Google Scholar 

  94. 94

    Evers, B., Helleday, T. & Jonkers, J. Targeting homologous recombination repair defects in cancer. Trends Pharmacol. Sci. 31, 372–380 (2010).

    CAS  PubMed  Google Scholar 

  95. 95

    Rottenberg, S. et al. High sensitivity of BRCA1-deficient mammary tumors to the PARP inhibitor AZD2281 alone and in combination with platinum drugs. Proc. Natl Acad. Sci. USA 105, 17079–17084 (2008).

    CAS  PubMed  Google Scholar 

  96. 96

    Ruscetti, T. et al. Stimulation of the DNA-dependent protein kinase by poly(ADP-ribose) polymerase. J. Biol. Chem. 273, 14461–14467 (1998).

    CAS  PubMed  Google Scholar 

  97. 97

    Spagnolo, L., Barbeau, J., Curtin, N. J., Morris, E. P. & Pearl, L. H. Visualization of a DNA-PK/PARP1 complex. Nucleic Acids Res. 40, 4168–4177 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. 98

    Rybanska, I. et al. PARP1 and DNA-PKcs synergize to suppress p53 mutation and telomere fusions during T-lineage lymphomagenesis. Oncogene 32, 1761–1771 (2013).

    CAS  PubMed  Google Scholar 

  99. 99

    Luijsterburg, M. S. et al. PARP1 links CHD2-mediated chromatin expansion and H3.3 deposition to DNA repair by non-homologous end-joining. Mol. Cell 61, 547–562 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. 100

    Truong, L. N. et al. Microhomology-mediated end joining and homologous recombination share the initial end resection step to repair DNA double-strand breaks in mammalian cells. Proc. Natl Acad. Sci. USA 110, 7720–7725 (2013).

    CAS  PubMed  Google Scholar 

  101. 101

    Deriano, L. & Roth, D. B. Modernizing the nonhomologous end-joining repertoire: alternative and classical NHEJ share the stage. Annu. Rev. Genet. 47, 433–455 (2013).

    CAS  PubMed  Google Scholar 

  102. 102

    Yan, C. T. et al. IgH class switching and translocations use a robust non-classical end-joining pathway. Nature 449, 478–482 (2007).

    CAS  PubMed  Google Scholar 

  103. 103

    Cheng, Q. et al. Ku counteracts mobilization of PARP1 and MRN in chromatin damaged with DNA double-strand breaks. Nucleic Acids Res. 39, 9605–9619 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. 104

    Fattah, F. et al. Ku regulates the non-homologous end joining pathway choice of DNA double-strand break repair in human somatic cells. PLoS Genet. 6, e1000855 (2010).

    PubMed  PubMed Central  Google Scholar 

  105. 105

    Mansour, W. Y., Rhein, T. & Dahm-Daphi, J. The alternative end-joining pathway for repair of DNA double-strand breaks requires PARP1 but is not dependent upon microhomologies. Nucleic Acids Res. 38, 6065–6077 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. 106

    Wang, M. et al. PARP-1 and Ku compete for repair of DNA double strand breaks by distinct NHEJ pathways. Nucleic Acids Res. 34, 6170–6182 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. 107

    Wray, J. et al. PARP1 is required for chromosomal translocations. Blood 121, 4359–4365 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. 108

    Celli, G. B. & de Lange, T. DNA processing is not required for ATM-mediated telomere damage response after TRF2 deletion. Nat. Cell Biol. 7, 712–718 (2005).

    CAS  PubMed  Google Scholar 

  109. 109

    Celli, G. B., Denchi, E. L. & de Lange, T. Ku70 stimulates fusion of dysfunctional telomeres yet protects chromosome ends from homologous recombination. Nat. Cell Biol. 8, 885–890 (2006).

    PubMed  Google Scholar 

  110. 110

    Sfeir, A. & de Lange, T. Removal of shelterin reveals the telomere end-protection problem. Science 336, 593–597 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. 111

    Ceccaldi, R. et al. Homologous-recombination-deficient tumours are dependent on Poltheta-mediated repair. Nature 518, 258–262 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. 112

    Kent, T., Mateos-Gomez, P. A., Sfeir, A. & Pomerantz, R. T. Polymerase theta is a robust terminal transferase that oscillates between three different mechanisms during end-joining. eLife 5, e13740 (2016).

    PubMed  PubMed Central  Google Scholar 

  113. 113

    Mateos-Gomez, P. A. et al. Mammalian polymerase theta promotes alternative NHEJ and suppresses recombination. Nature 518, 254–257 (2015). References 111 and 113 discuss the requirement for Pol θ in aNHEJ.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. 114

    Anachkova, B., Russev, G. & Poirier, G. G. DNA replication and poly(ADP-ribosyl)ation of chromatin. Cytobios 58, 19–28 (1989).

    CAS  PubMed  Google Scholar 

  115. 115

    Lehmann, A. R., Kirk-Bell, S., Shall, S. & Whish, W. J. The relationship between cell growth, macromolecular synthesis and poly ADP-ribose polymerase in lymphoid cells. Exp. Cell Res. 83, 63–72 (1974).

    CAS  PubMed  Google Scholar 

  116. 116

    Bryant, H. E. et al. PARP is activated at stalled forks to mediate Mre11-dependent replication restart and recombination. EMBO J. 28, 2601–2615 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. 117

    Dantzer, F., Nasheuer, H. P., Vonesch, J. L., de Murcia, G. & Menissier-de Murcia, J. Functional association of poly(ADP-ribose) polymerase with DNA polymerase alpha-primase complex: a link between DNA strand break detection and DNA replication. Nucleic Acids Res. 26, 1891–1898 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. 118

    Simbulan-Rosenthal, C. M. et al. Regulation of the expression or recruitment of components of the DNA synthesome by poly(ADP-ribose) polymerase. Biochemistry 37, 9363–9370 (1998).

    CAS  PubMed  Google Scholar 

  119. 119

    Smirnova, M. & Klein, H. L. Role of the error-free damage bypass postreplication repair pathway in the maintenance of genomic stability. Mutat. Res. 532, 117–135 (2003).

    CAS  PubMed  Google Scholar 

  120. 120

    Dungrawala, H. et al. The replication checkpoint prevents two types of fork collapse without regulating replisome stability. Mol. Cell 59, 998–1010 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. 121

    Ray Chaudhuri, A. et al. Topoisomerase I poisoning results in PARP-mediated replication fork reversal. Nat. Struct. Mol. Biol. 19, 417–423 (2012). This report demonstrates the essential role of PARP1 in replication fork reversal.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. 122

    Sugimura, K., Takebayashi, S., Taguchi, H., Takeda, S. & Okumura, K. PARP-1 ensures regulation of replication fork progression by homologous recombination on damaged DNA. J. Cell Biol. 183, 1203–1212 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. 123

    Zellweger, R. et al. Rad51-mediated replication fork reversal is a global response to genotoxic treatments in human cells. J. Cell Biol. 208, 563–579 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. 124

    Follonier, C., Oehler, J., Herrador, R. & Lopes, M. Friedreich's ataxia-associated GAA repeats induce replication-fork reversal and unusual molecular junctions. Nat. Struct. Mol. Biol. 20, 486–494 (2013).

    CAS  PubMed  Google Scholar 

  125. 125

    Neelsen, K. J. & Lopes, M. Replication fork reversal in eukaryotes: from dead end to dynamic response. Nat. Rev. Mol. Cell Biol. 16, 207–220 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. 126

    Neelsen, K. J., Zanini, I. M., Herrador, R. & Lopes, M. Oncogenes induce genotoxic stress by mitotic processing of unusual replication intermediates. J. Cell Biol. 200, 699–708 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. 127

    Atkinson, J. & McGlynn, P. Replication fork reversal and the maintenance of genome stability. Nucleic Acids Res. 37, 3475–3492 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. 128

    Berti, M. et al. Human RECQ1 promotes restart of replication forks reversed by DNA topoisomerase I inhibition. Nat. Struct. Mol. Biol. 20, 347–354 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. 129

    Ahuja, A. K. et al. A short G1 phase imposes constitutive replication stress and fork remodelling in mouse embryonic stem cells. Nat. Commun. 7, 10660 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. 130

    Ding, X. et al. Synthetic viability by BRCA2 and PARP1/ARTD1 deficiencies. Nat. Commun. 7, 12425 (2016). This report shows that synthetic viability results from deficiency of both PARP1 and BRCA2.

    CAS  PubMed  PubMed Central  Google Scholar 

  131. 131

    Ying, S., Hamdy, F. C. & Helleday, T. Mre11-dependent degradation of stalled DNA replication forks is prevented by BRCA2 and PARP1. Cancer Res. 72, 2814–2821 (2012).

    CAS  PubMed  Google Scholar 

  132. 132

    Schlacher, K. et al. Double-strand break repair-independent role for BRCA2 in blocking stalled replication fork degradation by MRE11. Cell 145, 529–542 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. 133

    Schlacher, K., Wu, H. & Jasin, M. A distinct replication fork protection pathway connects Fanconi anemia tumor suppressors to RAD51-BRCA1/2. Cancer Cell 22, 106–116 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. 134

    Murai, J. et al. Trapping of PARP1 and PARP2 by clinical PARP inhibitors. Cancer Res. 72, 5588–5599 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. 135

    Petermann, E., Orta, M. L., Issaeva, N., Schultz, N. & Helleday, T. Hydroxyurea-stalled replication forks become progressively inactivated and require two different RAD51-mediated pathways for restart and repair. Mol. Cell 37, 492–502 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. 136

    Gottipati, P. et al. Poly(ADP-ribose) polymerase is hyperactivated in homologous recombination-defective cells. Cancer Res. 70, 5389–5398 (2010).

    CAS  PubMed  Google Scholar 

  137. 137

    Ray Chaudhuri, A. et al. Replication fork stability confers chemoresistance in BRCA-deficient cells. Nature 535, 382–387 (2016). This report demonstrates that a loss of PARP1 that precedes BRCA1 loss results in relative genome stability owing to replication fork protection.

    PubMed  Google Scholar 

  138. 138

    Illuzzi, G. et al. PARG is dispensable for recovery from transient replicative stress but required to prevent detrimental accumulation of poly(ADP-ribose) upon prolonged replicative stress. Nucleic Acids Res. 42, 7776–7792 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. 139

    Guillemette, S. et al. Resistance to therapy in BRCA2 mutant cells due to loss of the nucleosome remodeling factor CHD4. Genes Dev. 29, 489–494 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. 140

    Escargueil, A. E., Soares, D. G., Salvador, M., Larsen, A. K. & Henriques, J. A. What histone code for DNA repair? Mutat. Res. 658, 259–270 (2008).

    CAS  PubMed  Google Scholar 

  141. 141

    Gibson, B. A. & Kraus, W. L. New insights into the molecular and cellular functions of poly(ADP-ribose) and PARPs. Nat. Rev. Mol. Cell Biol. 13, 411–424 (2012).

    CAS  PubMed  Google Scholar 

  142. 142

    Kraus, W. L. & Hottiger, M. O. PARP-1 and gene regulation: progress and puzzles. Mol. Aspects Med. 34, 1109–1123 (2013).

    CAS  PubMed  Google Scholar 

  143. 143

    Schiewer, M. J. & Knudsen, K. E. Transcriptional roles of PARP1 in cancer. Mol. Cancer Res. 12, 1069–1080 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. 144

    Messner, S. et al. PARP1 ADP-ribosylates lysine residues of the core histone tails. Nucleic Acids Res. 38, 6350–6362 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. 145

    Poirier, G. G., de Murcia, G., Jongstra-Bilen, J., Niedergang, C. & Mandel, P. Poly(ADP-ribosyl)ation of polynucleosomes causes relaxation of chromatin structure. Proc. Natl Acad. Sci. USA 79, 3423–3427 (1982).

    CAS  PubMed  Google Scholar 

  146. 146

    Chen, M. et al. Transgenic CHD1L expression in mouse induces spontaneous tumors. PLoS ONE 4, e6727 (2009).

    PubMed  PubMed Central  Google Scholar 

  147. 147

    Ma, N. F. et al. Isolation and characterization of a novel oncogene, amplified in liver cancer 1, within a commonly amplified region at 1q21 in hepatocellular carcinoma. Hepatology 47, 503–510 (2008).

    CAS  Google Scholar 

  148. 148

    Ahel, D. et al. Poly(ADP-ribose)-dependent regulation of DNA repair by the chromatin remodeling enzyme ALC1. Science 325, 1240–1243 (2009). This report shows that PARP1-dependent chromatin remodelling by ALC1 is essential for DNA repair.

    CAS  PubMed  PubMed Central  Google Scholar 

  149. 149

    Gottschalk, A. J. et al. Poly(ADP-ribosyl)ation directs recruitment and activation of an ATP-dependent chromatin remodeler. Proc. Natl Acad. Sci. USA 106, 13770–13774 (2009).

    CAS  Google Scholar 

  150. 150

    Smeenk, G. et al. Poly(ADP-ribosyl)ation links the chromatin remodeler SMARCA5/SNF2H to RNF168-dependent DNA damage signaling. J. Cell Sci. 126, 889–903 (2013).

    CAS  PubMed  Google Scholar 

  151. 151

    Malewicz, M. et al. Essential role for DNA-PK-mediated phosphorylation of NR4A nuclear orphan receptors in DNA double-strand break repair. Genes Dev. 25, 2031–2040 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. 152

    Kruhlak, M. et al. The ATM repair pathway inhibits RNA polymerase I transcription in response to chromosome breaks. Nature 447, 730–734 (2007).

    CAS  PubMed  Google Scholar 

  153. 153

    Shanbhag, N. M., Rafalska-Metcalf, I. U., Balane-Bolivar, C., Janicki, S. M. & Greenberg, R. A. ATM-dependent chromatin changes silence transcription in cis to DNA double-strand breaks. Cell 141, 970–981 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. 154

    Chou, D. M. et al. A chromatin localization screen reveals poly (ADP ribose)-regulated recruitment of the repressive polycomb and NuRD complexes to sites of DNA damage. Proc. Natl Acad. Sci. USA 107, 18475–18480 (2010).

    CAS  PubMed  Google Scholar 

  155. 155

    Polo, S. E., Kaidi, A., Baskcomb, L., Galanty, Y. & Jackson, S. P. Regulation of DNA-damage responses and cell-cycle progression by the chromatin remodelling factor CHD4. EMBO J. 29, 3130–3139 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. 156

    Mateo, J. et al. DNA-repair defects and olaparib in metastatic prostate cancer. N. Engl. J. Med. 373, 1697–1708 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. 157

    Vinayak, S. & Ford, J. M. PARP inhibitors for the treatment and prevention of breast cancer. Curr. Breast Cancer Rep. 2, 190–197 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. 158

    Gagne, J. P., Hendzel, M. J., Droit, A. & Poirier, G. G. The expanding role of poly(ADP-ribose) metabolism: current challenges and new perspectives. Curr. Opin. Cell Biol. 18, 145–151 (2006).

    CAS  PubMed  Google Scholar 

  159. 159

    Min, W. & Wang, Z. Q. Poly (ADP-ribose) glycohydrolase (PARG) and its therapeutic potential. Front. Biosci. (Landmark Ed.) 14, 1619–1626 (2009).

    CAS  Google Scholar 

  160. 160

    Barkauskaite, E., Jankevicius, G. & Ahel, I. Structures and mechanisms of enzymes employed in the synthesis and degradation of PARP-dependent protein ADP-ribosylation. Mol. Cell 58, 935–946 (2015).

    CAS  PubMed  Google Scholar 

  161. 161

    Andrabi, S. A. et al. Poly(ADP-ribose) (PAR) polymer is a death signal. Proc. Natl Acad. Sci. USA 103, 18308–18313 (2006).

    CAS  PubMed  Google Scholar 

  162. 162

    Mortusewicz, O., Fouquerel, E., Ame, J. C., Leonhardt, H. & Schreiber, V. PARG is recruited to DNA damage sites through poly(ADP-ribose)- and PCNA-dependent mechanisms. Nucleic Acids Res. 39, 5045–5056 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. 163

    Cortes, U. et al. Depletion of the 110-kilodalton isoform of poly(ADP-ribose) glycohydrolase increases sensitivity to genotoxic and endotoxic stress in mice. Mol. Cell. Biol. 24, 7163–7178 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. 164

    Mueller-Dieckmann, C. et al. The structure of human ADP-ribosylhydrolase 3 (ARH3) provides insights into the reversibility of protein ADP-ribosylation. Proc. Natl Acad. Sci. USA 103, 15026–15031 (2006).

    CAS  Google Scholar 

  165. 165

    Oka, S., Kato, J. & Moss, J. Identification and characterization of a mammalian 39-kDa poly(ADP-ribose) glycohydrolase. J. Biol. Chem. 281, 705–713 (2006).

    CAS  Google Scholar 

  166. 166

    Rosenthal, F. et al. Macrodomain-containing proteins are new mono-ADP-ribosylhydrolases. Nat. Struct. Mol. Biol. 20, 502–507 (2013).

    CAS  PubMed  Google Scholar 

  167. 167

    Sharifi, R. et al. Deficiency of terminal ADP-ribose protein glycohydrolase TARG1/C6orf130 in neurodegenerative disease. EMBO J. 32, 1225–1237 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. 168

    Krishnakumar, R. et al. Reciprocal binding of PARP-1 and histone H1 at promoters specifies transcriptional outcomes. Science 319, 819–821 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. 169

    Hassa, P. O., Buerki, C., Lombardi, C., Imhof, R. & Hottiger, M. O. Transcriptional coactivation of nuclear factor-kappaB-dependent gene expression by p300 is regulated by poly(ADP)-ribose polymerase-1. J. Biol. Chem. 278, 45145–45153 (2003).

    CAS  PubMed  Google Scholar 

  170. 170

    Gibson, B. A. et al. Chemical genetic discovery of PARP targets reveals a role for PARP-1 in transcription elongation. Science 353, 45–50 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. 171

    Soldatenkov, V. A. et al. Transcriptional repression by binding of poly(ADP-ribose) polymerase to promoter sequences. J. Biol. Chem. 277, 665–670 (2002).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are especially grateful to A. Tubbs, S. John and G. Poirier for comments on the manuscript and also for discussions. This work was supported by the Intramural Research Program of the US National Institutes of Health (NIH), the US National Cancer Institute and the Center for Cancer Research. A.N. was also supported by the US Department of Defense (BCRP DOD Idea Expansion Award BC133858 and BCRP Breakthrough Award BC151331), the Ellison Foundation Award for Aging Research and Alex's Lemonade Stand Foundation Reach Award. A.R.C. has been supported by a Human Frontier Science Program Long-term Fellowship (LT000393/2013).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Arnab Ray Chaudhuri or André Nussenzweig.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

PowerPoint slides

Glossary

DNA damage response

(DDR). The collection of cellular pathways that detect, signal and repair DNA damage.

BRCT domain

(BRCA1 C terminus domain). An evolutionarily conserved protein domain that has DNA repair functions; it contains phosphoprotein-binding sites.

Abasic sites

DNA sites that lack either a purine or a pyrimidine base owing to endogenous and/or exogenous DNA damage.

Epistasis

A genetic interaction in which a mutation in one gene masks the effects of a mutation in another gene.

Oxidative base damage

Damage to DNA bases caused by oxidation, which mostly modifies guanine to produce 8-hydroxyguanine.

Alkylation damage

DNA damage mediated by transfer of a single methyl group to a DNA base (mostly to N or O atoms of guanine), which results in the formation of a methyl adduct on the base.

Lesion verification

Verification of a chemical modification on the DNA by the transcription and repair factor transcription factor IIH (TFIIH) during nucleotide excision repair.

Class-switch recombination

(CSR). A process in B cells that involves switching the type of antibody that is produced by changing the constant region of the antibody heavy chain.

V(D)J recombination

A DNA recombination process that occurs during B cell or T cell activation, in which the variable domain exons of antigen receptors are assembled from sub-exonic segments called V, D and J to ultimately generate an immunoglobulin gene or T cell receptor, respectively.

One-ended DSBs

(One-ended DNA double-strand breaks). DSBs formed during collision of ongoing replications forks with a lesion on one strand of the template DNA.

Shelterin complex

A complex of six proteins that binds to TTAGGG repeats at telomeres and protects them from recognition as DNA double-strand breaks.

Terminal transferase

An enzyme that catalyses the addition of nucleotides to 3′ DNA overhangs at double-stranded DNA.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ray Chaudhuri, A., Nussenzweig, A. The multifaceted roles of PARP1 in DNA repair and chromatin remodelling. Nat Rev Mol Cell Biol 18, 610–621 (2017). https://doi.org/10.1038/nrm.2017.53

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing