Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The mystery of membrane organization: composition, regulation and roles of lipid rafts

Key Points

  • Cellular membranes are laterally heterogeneous and consist of transient and dynamic domains with varying properties, which prominently include ordered lipid-driven domains that are referred to as lipid (or membrane) rafts.

  • Membrane domains can be induced and regulated by a variety of interactions, which include specific lipid–lipid and lipid–protein interactions, bulk membrane properties, and interactions between membrane components and the underlying cytoskeleton.

  • Advanced microscopy and biochemistry techniques facilitate the study of membrane domains; however, these domains still elude direct in vivo visualization. The multiplicity of possible organizational states and their context-dependent nature most likely account for experimental inconsistencies.

  • Membrane rafts potentially have crucial physiological roles across cell types that range from immune cells to cancer cells.

  • Membrane domains are conserved throughout the domains of life, which supports their functional importance in biological systems.

Abstract

Cellular plasma membranes are laterally heterogeneous, featuring a variety of distinct subcompartments that differ in their biophysical properties and composition. A large number of studies have focused on understanding the basis for this heterogeneity and its physiological relevance. The membrane raft hypothesis formalized a physicochemical principle for a subtype of such lateral membrane heterogeneity, in which the preferential associations between cholesterol and saturated lipids drive the formation of relatively packed (or ordered) membrane domains that selectively recruit certain lipids and proteins. Recent studies have yielded new insights into this mechanism and its relevance in vivo, owing primarily to the development of improved biochemical and biophysical technologies.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: General overview of lateral heterogeneity in the plasma membrane.
Figure 2: Tools to study membrane domain organization, composition and function.
Figure 3: Area coverage of membrane domains and domain size.
Figure 4: Regulation of membrane domains.
Figure 5: Cellular functions of lipid rafts.

References

  1. Singer, S. J. & Nicolson, G. L. The fluid mosaic model of the structure of cell membranes. Science 175, 720–731 (1972).

    Article  CAS  PubMed  Google Scholar 

  2. Yu, J., Fischman, D. A. & Steck, T. L. Selective solubilization of proteins and phospholipids from red blood cell membranes by nonionic detergents. J. Supramol. Struct. 1, 233–248 (1973).

    Article  CAS  PubMed  Google Scholar 

  3. Bagatolli, L. & Mouritsen, O. Is the fluid mosaic (and the accompanying raft hypothesis) a suitable model to describe fundamental features of biological membranes? What may be missing? Front. Plant Sci. 4, 457 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ahmed, S. N., Brown, D. A. & London, E. On the origin of sphingolipid/cholesterol-rich detergent-insoluble cell membranes: physiological concentrations of cholesterol and sphingolipid induce formation of a detergent-insoluble, liquid-ordered lipid phase in model membranes. Biochemistry 36, 10944–10953 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. Brown, D. A. & Rose, J. K. Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell 68, 533–544 (1992).

    Article  CAS  PubMed  Google Scholar 

  6. Vanmeer, G., Stelzer, E. H. K., Wijnaendts- van-Resandt, R. W. & Simons, K. Sorting of sphingolipids in epithelial (Madin–Darby canine kidney) cells. J. Cell Biol. 105, 1623–1635 (1987).

    Article  CAS  Google Scholar 

  7. Varma, R. & Mayor, S. GPI-anchored proteins are organized in submicron domains at the cell surface. Nature 394, 798–801 (1998). First evidence for nanoscopic domains of GPI-anchored proteins in living cells.

    Article  CAS  PubMed  Google Scholar 

  8. Pralle, A., Keller, P., Florin, E. L., Simons, K. & Horber, J. K. Sphingolipid–cholesterol rafts diffuse as small entities in the plasma membrane of mammalian cells. J. Cell Biol. 148, 997–1008 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Friedrichson, T. & Kurzchalia, T. V. Microdomains of GPI-anchored proteins in living cells revealed by crosslinking. Nature 394, 802–805 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Simons, K. & Ikonen, E. Functional rafts in cell membranes. Nature 387, 569–572 (1997). First work to highlight the lipid raft hypothesis and its potential functional relevance.

    Article  CAS  PubMed  Google Scholar 

  11. Simons, K. & Vaz, W. L. Model systems, lipid rafts, and cell membranes. Annu. Rev. Biophys. Biomol. Struct. 33, 269–295 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Pike, L. J. Rafts defined: a report on the Keystone Symposium on Lipid Rafts and Cell Function. J. Lipid Res. 47, 1597–1598 (2006). An editorial article that summarizes the 2006 Keystone symposium on lipid rafts.

    Article  CAS  PubMed  Google Scholar 

  13. Kiessling, V., Wan, C. & Tamm, L. K. Domain coupling in asymmetric lipid bilayers. Biochim. Biophys. Acta 1788, 64–71 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. Raghupathy, R. et al. Transbilayer lipid interactions mediate nanoclustering of lipid-anchored proteins. Cell 161, 581–594 (2015). Explains the transbilayer coupling between dynamic actin organization on the intracellular side of the plasma membrane and lipid domains in the extracellular leaflet via raft-based interactions of anionic lipids.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lingwood, D. & Simons, K. Lipid rafts as a membrane-organizing principle. Science 327, 46–50 (2010).

    Article  CAS  PubMed  Google Scholar 

  16. Klotzsch, E. & Schuetz, G. J. A critical survey of methods to detect plasma membrane rafts. Phil. Trans. R. Soc. B 368, 20120033 (2013).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Hanada, K., Nishijima, M., Akamatsu, Y. & Pagano, R. E. Both sphingolipids and cholesterol participate in the detergent insolubility of alkaline phosphatase, a glycosylphosphatidylinositol-anchored protein, in mammalian membranes. J. Biol. Chem. 270, 6254–6260 (1995).

    Article  CAS  PubMed  Google Scholar 

  18. Schroeder, R., London, E. & Brown, D. Interactions between saturated acyl chains confer detergent resistance on lipids and glycosylphosphatidylinositol (GPI)-anchored proteins: GPI-anchored proteins in liposomes and cells show similar behavior. Proc. Natl Acad. Sci. USA 91, 12130–12134 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Schuck, S., Honsho, M., Ekroos, K., Shevchenko, A. & Simons, K. Resistance of cell membranes to different detergents. Proc. Natl Acad. Sci. USA 100, 5795–5800 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mayor, S. & Maxfield, F. R. Insolubility and redistribution of GPI-anchored proteins at the cell surface after detergent treatment. Mol. Biol. Cell 6, 929–944 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Levental, I. et al. Cholesterol-dependent phase separation in cell-derived giant plasma-membrane vesicles. Biochem. J. 424, 163–167 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. Komura, N. et al. Raft-based interactions of gangliosides with a GPI-anchored receptor. Nat. Chem. Biol. 12, 402–410 (2016). Combines DRM assays, SPT and GPMVs to confirm domain-mediated interactions between GPI-anchored proteins and gangliosides.

    Article  CAS  PubMed  Google Scholar 

  23. Lichtenberg, D., Goni, F. M. & Heerklotz, H. Detergent-resistant membranes should not be identified with membrane rafts. Trends Biochem. Sci. 30, 430–436 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Sezgin, E. & Schwille, P. Model membrane platforms to study protein–membrane interactions. Mol. Membr. Biol. 29, 144–154 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. Ipsen, J. H., Karlstrom, G., Mouritsen, O. G., Wennerstrom, H. & Zuckermann, M. J. Phase equilibria in the phosphatidylcholine-cholesterol system. Biochim. Biophys. Acta 905, 162–172 (1987).

    Article  CAS  PubMed  Google Scholar 

  26. Veatch, S. L. & Keller, S. L. Separation of liquid phases in giant vesicles of ternary mixtures of phospholipids and cholesterol. Biophys. J. 85, 3074–3083 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kaiser, H. J. et al. Order of lipid phases in model and plasma membranes. Proc. Natl Acad. Sci. USA 106, 16645–16650 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. McConnell, H. M., Tamm, L. K. & Weis, R. M. Periodic structures in lipid monolayer phase transitions. Proc. Natl Acad. Sci. USA 81, 3249–3253 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tamm, L. K. & McConnell, H. M. Supported phospholipid-bilayers. Biophys. J. 47, 105–113 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Feigenson, G. W. & Buboltz, J. T. Ternary phase diagram of dipalmitoyl-PC/dilauroyl-PC/cholesterol: nanoscopic domain formation driven by cholesterol. Biophys. J. 80, 2775–2788 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Korlach, J., Schwille, P., Webb, W. W. & Feigenson, G. W. Characterization of lipid bilayer phases by confocal microscopy and fluorescence correlation spectroscopy. Proc. Natl Acad. Sci. USA 96, 8461–8466 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bagatolli, L. A., Sanchez, S. A., Hazlett, T. & Gratton, E. Giant vesicles, Laurdan, and two-photon fluorescence microscopy: evidence of lipid lateral separation in bilayers. Methods Enzymol. 360, 481–500 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Kahya, N., Brown, D. A. & Schwille, P. Raft partitioning and dynamic behavior of human placental alkaline phosphatase in giant unilamellar vesicles. Biochemistry 44, 7479–7489 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Stachowiak, J. C. et al. Unilamellar vesicle formation and encapsulation by microfluidic jetting. Proc. Natl Acad. Sci. USA 105, 4697–4702 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dupuy, A. D. & Engelman, D. M. Protein area occupancy at the center of the red blood cell membrane. Proc. Natl Acad. Sci. USA 105, 2848–2852 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sezgin, E. et al. Partitioning, diffusion, and ligand binding of raft lipid analogs in model and cellular plasma membranes. Biochim. Biophys. Acta 1818, 1777–1784 (2012).

    Article  CAS  PubMed  Google Scholar 

  37. Sezgin, E. et al. Elucidating membrane structure and protein behavior using giant plasma membrane vesicles. Nat. Protoc. 7, 1042–1051 (2012).

    Article  CAS  PubMed  Google Scholar 

  38. Baumgart, T. et al. Large-scale fluid/fluid phase separation of proteins and lipids in giant plasma membrane vesicles. Proc. Natl Acad. Sci. USA 104, 3165–3170 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Fridriksson, E. K. et al. Quantitative analysis of phospholipids in functionally important membrane domains from RBL-2H3 mast cells using tandem high-resolution mass spectrometry. Biochemistry 38, 8056–8063 (1999).

    Article  CAS  PubMed  Google Scholar 

  40. Scott, R. E., Perkins, R. G., Zschunke, M. A., Hoerl, B. J. & Maercklein, P. B. Plasma membrane vesiculation in 3T3 and SV3T3 cells. I. Morphological and biochemical characterization. J. Cell Sci. 35, 229–243 (1979).

    Article  CAS  PubMed  Google Scholar 

  41. Keller, H., Lorizate, M. & Schwille, P. PI(4,5)P2 degradation promotes the formation of cytoskeleton-free model membrane systems. Chemphyschem 10, 2805–2812 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. Levental, K. R. & Levental, I. Giant plasma membrane vesicles: models for understanding membrane organization. Curr. Top. Membr. 75, 25–57 (2015).

    Article  PubMed  CAS  Google Scholar 

  43. Levental, I., Lingwood, D., Grzybek, M., Coskun, U. & Simons, K. Palmitoylation regulates raft affinity for the majority of integral raft proteins. Proc. Natl Acad. Sci. USA 107, 22050–22054 (2010). Quantitative investigation of the role of palmitoylation in protein partitioning to raft domains in GPMVs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gupta, N. & DeFranco, A. L. Visualizing lipid raft dynamics and early signaling events during antigen receptor-mediated B-lymphocyte activation. Mol. Biol. Cell 14, 432–444 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sezgin, E. & Schwille, P. Fluorescence techniques to study lipid dynamics. Cold Spring Harb. Perspect. Biol. 3, a009803 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Eggeling, C. Super-resolution optical microscopy of lipid plasma membrane dynamics. Essays Biochem. 57, 69–80 (2015).

    Article  PubMed  Google Scholar 

  47. Owen, D. M., Williamson, D. J., Magenau, A. & Gaus, K. Sub-resolution lipid domains exist in the plasma membrane and regulate protein diffusion and distribution. Nat. Commun. 3, 1256 (2012).

    Article  PubMed  CAS  Google Scholar 

  48. Sengupta, P. et al. Probing protein heterogeneity in the plasma membrane using PALM and pair correlation analysis. Nat. Methods 8, 969–975 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. van Zanten, T. S. et al. Hotspots of GPI-anchored proteins and integrin nanoclusters function as nucleation sites for cell adhesion. Proc. Natl Acad. Sci. USA 106, 18557–18562 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Saka, S. K. et al. Multi-protein assemblies underlie the mesoscale organization of the plasma membrane. Nat. Commun. 5, 4509 (2014).

    Article  CAS  PubMed  Google Scholar 

  51. Suzuki, K. G. Single-molecule imaging of signal transduction via GPI-anchored receptors. Methods Mol. Biol. 1376, 229–238 (2016).

    Article  CAS  PubMed  Google Scholar 

  52. Moertelmaier, M., Brameshuber, M., Linimeier, M., Schütz, G. J. & Stockinger, H. Thinning out clusters while conserving stoichiometry of labeling. Appl. Phys. Lett. 87, 263903 (2005).

    Article  CAS  Google Scholar 

  53. Kusumi, A. et al. Paradigm shift of the plasma membrane concept from the two-dimensional continuum fluid to the partitioned fluid: high-speed single-molecule tracking of membrane molecules. Annu. Rev. Biophys. Biomol. Struct. 34, 351–378 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. Ortega-Arroyo, J. & Kukura, P. Interferometric scattering microscopy (iSCAT): new frontiers in ultrafast and ultrasensitive optical microscopy. Phys. Chem. Chem. Phys. 14, 15625–15636 (2012).

    Article  CAS  PubMed  Google Scholar 

  55. Wu, H. M., Lin, Y. H., Yen, T. C. & Hsieh, C. L. Nanoscopic substructures of raft-mimetic liquid-ordered membrane domains revealed by high-speed single-particle tracking. Sci. Rep. 6, 20542 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Spillane, K. M. et al. High-speed single-particle tracking of GM1 in model membranes reveals anomalous diffusion due to interleaflet coupling and molecular pinning. Nano Lett. 14, 5390–5397 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wawrezinieck, L., Rigneault, H., Marguet, D. & Lenne, P. F. Fluorescence correlation spectroscopy diffusion laws to probe the submicron cell membrane organization. Biophys. J. 89, 4029–4042 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Eggeling, C. et al. Direct observation of the nanoscale dynamics of membrane lipids in a living cell. Nature 457, 1159–1162 (2009). Reports differential diffusion behaviour of phospholipids and sphingolipids in the plasma membrane of live cells using super-resolution STED microscopy combined with FCS.

    Article  CAS  PubMed  Google Scholar 

  59. Honigmann, A. et al. Scanning STED-FCS reveals spatiotemporal heterogeneity of lipid interaction in the plasma membrane of living cells. Nat. Commun. 5, 5412–5412 (2014).

    Article  CAS  PubMed  Google Scholar 

  60. Saha, S., Raghupathy, R. & Mayor, S. Homo-FRET imaging highlights the nanoscale organization of cell surface molecules. Methods Mol. Biol. 1251, 151–173 (2015).

    Article  CAS  PubMed  Google Scholar 

  61. Sharma, P. et al. Nanoscale organization of multiple GPI-anchored proteins in living cell membranes. Cell 116, 577–589 (2004).

    Article  CAS  PubMed  Google Scholar 

  62. Pathak, P. & London, E. The effect of membrane lipid composition on the formation of lipid ultrananodomains. Biophys. J. 109, 1630–1638 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Engel, S. et al. FLIM-FRET and FRAP reveal association of influenza virus haemagglutinin with membrane rafts. Biochem. J. 425, 567–573 (2010).

    Article  CAS  PubMed  Google Scholar 

  64. Heberle, F. A., Wu, J., Goh, S. L., Petruzielo, R. S. & Feigenson, G. W. Comparison of three ternary lipid bilayer mixtures: FRET and ESR reveal nanodomains. Biophys. J. 99, 3309–3318 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Barrera, N. P., Zhou, M. & Robinson, C. V. The role of lipids in defining membrane protein interactions: insights from mass spectrometry. Trends Cell Biol. 23, 1–8 (2013).

    Article  CAS  PubMed  Google Scholar 

  66. Ogiso, H., Taniguchi, M. & Okazaki, T. Analysis of lipid-composition changes in plasma membrane microdomains. J. Lipid Res. 56, 1594–1605 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Levental, K. R. et al. Polyunsaturated lipids regulate membrane domain stability by tuning membrane order. Biophys. J. 110, 1800–1810 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Gerl, M. J. et al. Quantitative analysis of the lipidomes of the influenza virus envelope and MDCK cell apical membrane. J. Cell Biol. 196, 213–221 (2012). Using lipidomics, this study shows that the influenza virus envelope is enriched in sphingolipids and cholesterol compared with the apical plasma membrane from which the virus buds, which reveals raft lipid selectivity during virus budding.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lozano, M. M., Hovis, J. S., Moss, F. R. III & Boxer, S. G. Dynamic reorganization and correlation among lipid raft components. J. Am. Chem. Soc. 138, 9996–10001 (2016). Shows that cholesterol and sphingomyelin reorganize with ganglioside, demonstrating that there is an attractive interaction between these raft constituents.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lozano, M. M. et al. Colocalization of the ganglioside GM1 and cholesterol detected by secondary ion mass spectrometry. J. Am. Chem. Soc. 135, 5620–5630 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Frisz, J. F. et al. Sphingolipid domains in the plasma membranes of fibroblasts are not enriched with cholesterol. J. Biol. Chem. 288, 16855–16861 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. de Wit, G., Danial, J. S., Kukura, P. & Wallace, M. I. Dynamic label-free imaging of lipid nanodomains. Proc. Natl Acad. Sci. USA 112, 12299–12303 (2015). Presents a label-free technique to study lipid domains in model membranes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ando, J. et al. Sphingomyelin distribution in lipid rafts of artificial monolayer membranes visualized by Raman microscopy. Proc. Natl Acad. Sci. USA 112, 4558–4563 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Pencer, J., Mills, T. T., Kucerka, N., Nieh, M. P. & Katsaras, J. Small-angle neutron scattering to detect rafts and lipid domains. Methods Mol. Biol. 398, 231–244 (2007).

    Article  CAS  PubMed  Google Scholar 

  75. Heberle, F. A. et al. Hybrid and nonhybrid lipids exert common effects on membrane raft size and morphology. J. Am. Chem. Soc. 135, 14932–14935 (2013).

    Article  CAS  PubMed  Google Scholar 

  76. Prior, I. A., Muncke, C., Parton, R. G. & Hancock, J. F. Direct visualization of Ras proteins in spatially distinct cell surface microdomains. J. Cell Biol. 160, 165–170 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Baumgart, T., Hunt, G., Farkas, E. R., Webb, W. W. & Feigenson, G. W. Fluorescence probe partitioning between Lo/Ld phases in lipid membranes. Biochim. Biophys. Acta 1768, 2182–2194 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Klymchenko, A. S. & Kreder, R. Fluorescent probes for lipid rafts: from model membranes to living cells. Chem. Biol. 21, 97–113 (2014).

    Article  CAS  PubMed  Google Scholar 

  79. Juhasz, J., Davis, J. H. & Sharom, F. J. Fluorescent probe partitioning in giant unilamellar vesicles of 'lipid raft' mixtures. Biochem. J. 430, 415–423 (2010).

    Article  CAS  PubMed  Google Scholar 

  80. Pourmousa, M. et al. Dehydroergosterol as an analogue for cholesterol: why it mimics cholesterol so well — or does it? J. Phys. Chem. B 118, 7345–7357 (2014).

    Article  CAS  PubMed  Google Scholar 

  81. Robalo, J. R., Martins do Canto, A. M. T., Palace Carvalho, A. J., Prates Ramalho, J. P. & Loura, L. M. S. Behavior of fluorescent cholesterol analogues dehydroergosterol and cholestatrienol in lipid bilayers: a molecular dynamics study. J. Phys. Chem. B 117, 5806–5819 (2013).

    Article  CAS  PubMed  Google Scholar 

  82. Sezgin, E. et al. A comparative study on fluorescent cholesterol analogs as versatile cellular reporters. J. Lipid Res. 57, 299–309 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Crane, J. M. & Tamm, L. K. Role of cholesterol in the formation and nature of lipid rafts in planar and spherical model membranes. Biophys. J. 86, 2965–2979 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Momin, N. et al. Designing lipids for selective partitioning into liquid ordered membrane domains. Soft Matter 11, 3241–3250 (2015).

    Article  CAS  PubMed  Google Scholar 

  85. Lopes, S. C., Goormaghtigh, E., Cabral, B. J. & Castanho, M. A. Filipin orientation revealed by linear dichroism. Implication for a model of action. J. Am. Chem. Soc. 126, 5396–5402 (2004).

    Article  CAS  PubMed  Google Scholar 

  86. Palmer, M. The family of thiol-activated, cholesterol-binding cytolysins. Toxicon 39, 1681–1689 (2001).

    Article  CAS  PubMed  Google Scholar 

  87. Skocaj, M. et al. Tracking cholesterol/sphingomyelin-rich membrane domains with the ostreolysin A-mCherry protein. PLoS ONE 9, e92783 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Yamaji, A. et al. Lysenin, a novel sphingomyelin-specific binding protein. J. Biol. Chem. 273, 5300–5306 (1998).

    Article  CAS  PubMed  Google Scholar 

  89. Bhat, H. B. et al. Binding of a pleurotolysin ortholog from Pleurotus eryngii to sphingomyelin and cholesterol-rich membrane domains. J. Lipid Res. 54, 2933–2943 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Harder, T., Scheiffele, P., Verkade, P. & Simons, K. Lipid domain structure of the plasma membrane revealed by patching of membrane components. J. Cell Biol. 141, 929–942 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Dietrich, C. et al. Lipid rafts reconstituted in model membranes. Biophys. J. 80, 1417–1428 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Sezgin, E. et al. Adaptive lipid packing and bioactivity in membrane domains. PLoS ONE 10, e0123930 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Gray, E. M., Diaz-Vazquez, G. & Veatch, S. L. Growth conditions and cell cycle phase modulate phase transition temperatures in RBL-2H3 derived plasma membrane vesicles. PLoS ONE 10, e0137741 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Sezgin, E., Sadowski, T. & Simons, K. Measuring lipid packing of model and cellular membranes with environment sensitive probes. Langmuir 30, 8160–8166 (2014).

    Article  CAS  PubMed  Google Scholar 

  95. Sezgin, E., Waithe, D., Bernardino de la Serna, J. & Eggeling, C. Spectral imaging to measure heterogeneity in membrane lipid packing. Chemphyschem 16, 1387–1394 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Parasassi, T., Krasnowska, E. K., Bagatolli, L. & Gratton, E. Laurdan and Prodan as polarity-sensitive fluorescent membrane probes. J. Fluoresc. 8, 365–373 (1998).

    Article  CAS  Google Scholar 

  97. Parasassi, T., De Stasio, G., Ravagnan, G., Rusch, R. M. & Gratton, E. Quantitation of lipid phases in phospholipid vesicles by the generalized polarization of Laurdan fluorescence. Biophys. J. 60, 179–189 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Sanchez, S. A., Tricerri, M. A. & Gratton, E. Laurdan generalized polarization fluctuations measures membrane packing micro-heterogeneity in vivo. Proc. Natl Acad. Sci. USA 109, 7314–7319 (2012). Together with reference 27 and 92, suggests that the cell membrane contains domains with a range of properties.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Golfetto, O., Hinde, E. & Gratton, E. Laurdan fluorescence lifetime discriminates cholesterol content from changes in fluidity in living cell membranes. Biophys. J. 104, 1238–1247 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Kreder, R. et al. Solvatochromic Nile Red probes with FRET quencher reveal lipid order heterogeneity in living and apoptotic cells. ACS Chem. Biol. 10, 1435–1442 (2015).

    Article  CAS  PubMed  Google Scholar 

  101. Mahammad, S. & Parmryd, I. Cholesterol depletion using methyl-beta-cyclodextrin. Methods Mol. Biol. 1232, 91–102 (2015).

    Article  CAS  PubMed  Google Scholar 

  102. Pottosin, I. I., Valencia-Cruz, G., Bonales-Alatorre, E., Shabala, S. N. & Dobrovinskaya, O. R. Methyl-beta-cyclodextrin reversibly alters the gating of lipid rafts-associated Kv1.3 channels in Jurkat T lymphocytes. Pflugers Arch. 454, 235–244 (2007).

    Article  CAS  PubMed  Google Scholar 

  103. Mahammad, S., Dinic, J., Adler, J. & Parmryd, I. Limited cholesterol depletion causes aggregation of plasma membrane lipid rafts inducing T cell activation. Biochim. Biophys. Acta 1801, 625–634 (2010).

    Article  CAS  PubMed  Google Scholar 

  104. Sanchez, S. A., Gunther, G., Tricerri, M. A. & Gratton, E. Methyl-beta-cyclodextrins preferentially remove cholesterol from the liquid disordered phase in giant unilamellar vesicles. J. Membr. Biol. 241, 1–10 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Hillyard, D. Z. et al. Statins inhibit NK cell cytotoxicity by membrane raft depletion rather than inhibition of isoprenylation. Atherosclerosis 191, 319–325 (2007).

    Article  CAS  PubMed  Google Scholar 

  106. Amin, D. et al. RPR 107393, a potent squalene synthase inhibitor and orally effective cholesterol-lowering agent: comparison with inhibitors of HMG-CoA reductase. J. Pharmacol. Exp. Ther. 281, 746–752 (1997).

    CAS  PubMed  Google Scholar 

  107. Ahn, K. W. & Sampson, N. S. Cholesterol oxidase senses subtle changes in lipid bilayer structure. Biochemistry 43, 827–836 (2004).

    Article  CAS  PubMed  Google Scholar 

  108. Merrill, A. H. Jr, van Echten, G., Wang, E. & Sandhoff, K. Fumonisin B1 inhibits sphingosine (sphinganine) N-acyltransferase and de novo sphingolipid biosynthesis in cultured neurons in situ. J. Biol. Chem. 268, 27299–27306 (1993).

    Article  CAS  PubMed  Google Scholar 

  109. Zhao, Y. et al. ABCB4 exports phosphatidylcholine in a sphingomyelin-dependent manner. J. Lipid Res. 56, 644–652 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Miller, H. et al. Lipid raft-dependent plasma membrane repair interferes with the activation of B lymphocytes. J. Cell Biol. 211, 1193–1205 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Eggeling, C. & Honigmann, A. Closing the gap: the approach of optical and computational microscopy to uncover biomembrane organization. Biochim. Biophys. Acta 1858, 2558–2568 (2016).

    Article  CAS  PubMed  Google Scholar 

  112. Dror, R. O., Dirks, R. M., Grossman, J. P., Xu, H. & Shaw, D. E. Biomolecular simulation: a computational microscope for molecular biology. Annu. Rev. Biophys. 41, 429–452 (2012).

    Article  CAS  PubMed  Google Scholar 

  113. Lane, T. J., Shukla, D., Beauchamp, K. A. & Pande, V. S. To milliseconds and beyond: challenges in the simulation of protein folding. Curr. Opin. Struct. Biol. 23, 58–65 (2013).

    Article  CAS  PubMed  Google Scholar 

  114. Saunders, M. G. & Voth, G. A. Coarse-graining methods for computational biology. Annu. Rev. Biophys. 42, 73–93 (2013).

    Article  CAS  PubMed  Google Scholar 

  115. Vattulainen, I. & Rog, T. Lipid simulations: a perspective on lipids in action. Cold Spring Harb. Perspect. Biol. 3, a004655 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Stansfeld, P. J. & Sansom, M. S. Molecular simulation approaches to membrane proteins. Structure 19, 1562–1572 (2011).

    Article  CAS  PubMed  Google Scholar 

  117. Ingolfsson, H. I. et al. Lipid organization of the plasma membrane. J. Am. Chem. Soc. 136, 14554–14559 (2014).

    Article  CAS  PubMed  Google Scholar 

  118. Niemela, P. S., Ollila, S., Hyvonen, M. T., Karttunen, M. & Vattulainen, I. Assessing the nature of lipid raft membranes. PLoS Comput. Biol. 3, e34 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Barua, D. & Goldstein, B. A mechanistic model of early FcepsilonRI signaling: lipid rafts and the question of protection from dephosphorylation. PLoS ONE 7, e51669 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Levental, I., Grzybek, M. & Simons, K. Raft domains of variable properties and compositions in plasma membrane vesicles. Proc. Natl Acad. Sci. USA 108, 11411–11416 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Schutz, G. J., Kada, G., Pastushenko, V. P. & Schindler, H. Properties of lipid microdomains in a muscle cell membrane visualized by single molecule microscopy. EMBO J. 19, 892–901 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Wang, T. Y. & Silvius, J. R. Sphingolipid partitioning into ordered domains in cholesterol-free and cholesterol-containing lipid bilayers. Biophys. J. 84, 367–378 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Sodt, A. J., Pastor, R. W. & Lyman, E. Hexagonal substructure and hydrogen bonding in liquid-ordered phases containing palmitoyl sphingomyelin. Biophys. J. 109, 948–955 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Ramstedt, B. & Slotte, J. P. Interaction of cholesterol with sphingomyelins and acyl-chain-matched phosphatidylcholines: a comparative study of the effect of the chain length. Biophys. J. 76, 908–915 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Sodt, A. J., Sandar, M. L., Gawrisch, K., Pastor, R. W. & Lyman, E. The molecular structure of the liquid-ordered phase of lipid bilayers. J. Am. Chem. Soc. 136, 725–732 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Levental, I., Grzybek, M. & Simons, K. Greasing their way: lipid modifications determine protein association with membrane rafts. Biochemistry 49, 6305–6316 (2010).

    Article  CAS  PubMed  Google Scholar 

  127. Ozhan, G. et al. Lypd6 enhances Wnt/beta-catenin signaling by promoting Lrp6 phosphorylation in raft plasma membrane domains. Dev. Cell 26, 331–345 (2013).

    Article  PubMed  CAS  Google Scholar 

  128. Brameshuber, M. et al. Imaging of mobile long-lived nanoplatforms in the live cell plasma membrane. J. Biol. Chem. 285, 41765–41771 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Goswami, D. et al. Nanoclusters of GPI-anchored proteins are formed by cortical actin-driven activity. Cell 135, 1085–1097 (2008).

    Article  CAS  PubMed  Google Scholar 

  130. Sevcsik, E. et al. GPI-anchored proteins do not reside in ordered domains in the live cell plasma membrane. Nat. Commun. 6, 6969 (2015).

    Article  CAS  PubMed  Google Scholar 

  131. Shi, D. et al. Smoothened oligomerization/higher order clustering in lipid rafts is essential for high Hedgehog activity transduction. J. Biol. Chem. 288, 12605–12614 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Shah, A. et al. RaftProt: mammalian lipid raft proteome database. Nucleic Acids Res. 43, D335–D338 (2015).

    Article  CAS  PubMed  Google Scholar 

  133. Lorent, J. H. & Levental, I. Structural determinants of protein partitioning into ordered membrane domains and lipid rafts. Chem. Phys. Lipids 192, 23–32 (2015).

    Article  CAS  PubMed  Google Scholar 

  134. Diaz-Rohrer, B. B., Levental, K. R., Simons, K. & Levental, I. Membrane raft association is a determinant of plasma membrane localization. Proc. Natl Acad. Sci. USA 111, 8500–8505 (2014). Relates the membrane raft association of several proteins to their localization at the cell surface by showing that both properties are determined by the length of the TMD of a protein.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Veatch, S. L. et al. Critical fluctuations in plasma membrane vesicles. ACS Chem. Biol. 3, 287–293 (2008). Shows critical fluctuation behaviour in GPMVs, which suggests that the cell membrane is near a miscibility critical point that could be modulated by temperature.

    Article  CAS  PubMed  Google Scholar 

  136. Lingwood, D., Ries, J., Schwille, P. & Simons, K. Plasma membranes are poised for activation of raft phase coalescence at physiological temperature. Proc. Natl Acad. Sci. USA 105, 10005–10010 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Zhou, Y. et al. Bile acids modulate signaling by functional perturbation of plasma membrane domains. J. Biol. Chem. 288, 35660–35670 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Coskun, U., Grzybek, M., Drechsel, D. & Simons, K. Regulation of human EGF receptor by lipids. Proc. Natl Acad. Sci. USA 108, 9044–9048 (2010).

    Article  Google Scholar 

  139. Levental, I. & Veatch, S. L. The continuing mystery of lipid rafts. J. Mol. Biol. 428, 4749–4764 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Tisza, M. J. et al. Motility and stem cell properties induced by the epithelial–mesenchymal transition require destabilization of lipid rafts. Oncotarget 7, 51553–51568 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Schwarzer, R. et al. The cholesterol-binding motif of the HIV-1 glycoprotein gp41 regulates lateral sorting and oligomerization. Cell. Microbiol. 16, 1565–1581 (2014).

    Article  CAS  PubMed  Google Scholar 

  142. Contreras, F. X. et al. Molecular recognition of a single sphingolipid species by a protein's transmembrane domain. Nature 481, 525–529 (2012). Shows direct specific interactions between the single-pass TMD of the coat protein I (COPI)-machinery protein p24 and a single sphingomyelin species.

    Article  CAS  PubMed  Google Scholar 

  143. Tulodziecka, K. et al. Remodeling of the postsynaptic plasma membrane during neural development. Mol. Biol. Cell 27, 3480–3489 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Lach, A. et al. Palmitoylation of MPP1 (membrane-palmitoylated protein 1)/p55 is crucial for lateral membrane organization in erythroid cells. J. Biol. Chem. 287, 18974–18984 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Podkalicka, J., Biernatowska, A., Majkowski, M., Grzybek, M. & Sikorski, A. F. MPP1 as a factor regulating phase separation in giant plasma membrane-derived vesicles. Biophys. J. 108, 2201–2211 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Heberle, F. A. et al. Bilayer thickness mismatch controls domain size in model membranes. J. Am. Chem. Soc. 135, 6853–6859 (2013).

    Article  CAS  PubMed  Google Scholar 

  147. Jensen, M. O. & Mouritsen, O. G. Lipids do influence protein function — the hydrophobic matching hypothesis revisited. Biochim. Biophys. Acta 1666, 205–226 (2004).

    Article  CAS  PubMed  Google Scholar 

  148. Kaiser, H.-J. et al. Lateral sorting in model membranes by cholesterol-mediated hydrophobic matching. Proc. Natl Acad. Sci. USA 108, 16628–16633 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Koster, D. V. & Mayor, S. Cortical actin and the plasma membrane: inextricably intertwined. Curr. Opin. Cell Biol. 38, 81–89 (2016).

    Article  CAS  PubMed  Google Scholar 

  150. Fritzsche, M., Erlenkamper, C., Moeendarbary, E., Charras, G. & Kruse, K. Actin kinetics shapes cortical network structure and mechanics. Sci. Adv. 2, e1501337 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Fujiwara, T. K. et al. Confined diffusion of transmembrane proteins and lipids induced by the same actin meshwork lining the plasma membrane. Mol. Biol. Cell 27, 1101–1119 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Saha, S. et al. Diffusion of GPI-anchored proteins is influenced by the activity of dynamic cortical actin. Mol. Biol. Cell 26, 4033–4045 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Honigmann, A. et al. A lipid bound actin meshwork organizes liquid phase separation in model membranes. eLife 3, e01671 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Mueller, V. et al. STED nanoscopy reveals molecular details of cholesterol- and cytoskeleton-modulated lipid interactions in living cells. Biophys. J. 101, 1651–1660 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Ehrig, J., Petrov, E. P. & Schwille, P. Near-critical fluctuations and cytoskeleton-assisted phase separation lead to subdiffusion in cell membranes. Biophys. J. 100, 80–89 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Machta, B. B., Papanikolaou, S., Sethna, J. P. & Veatch, S. L. Minimal model of plasma membrane heterogeneity requires coupling cortical actin to criticality. Biophys. J. 100, 1668–1677 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Liu, A. P. & Fletcher, D. A. Actin polymerization serves as a membrane domain switch in model lipid bilayers. Biophys. J. 91, 4064–4070 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Gowrishankar, K. et al. Active remodeling of cortical actin regulates spatiotemporal organization of cell surface molecules. Cell 149, 1353–1367 (2012). Provides a compelling theoretical framework to understand how actomyosin-driven activity can create non-equilibrium clusters of membrane proteins.

    Article  CAS  PubMed  Google Scholar 

  159. Fritzsche, M. et al. Self-organizing actin patterns shape membrane architecture but not cell mechanics. Nat. Commun. 8, 14347 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Koster, D. V. et al. Actomyosin dynamics drive local membrane component organization in an in vitro active composite layer. Proc. Natl Acad. Sci. USA 113, E1645–E1654 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Rao, M. & Mayor, S. Active organization of membrane constituents in living cells. Curr. Opin. Cell Biol. 29, 126–132 (2014).

    Article  CAS  PubMed  Google Scholar 

  162. Lingwood, D. et al. Cholesterol modulates glycolipid conformation and receptor activity. Nat. Chem. Biol. 7, 260–262 (2011).

    Article  CAS  PubMed  Google Scholar 

  163. Laganowsky, A. et al. Membrane proteins bind lipids selectively to modulate their structure and function. Nature 510, 172–175 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Filipp, D., Leung, B. L., Zhang, J., Veillette, A. & Julius, M. Enrichment of lck in lipid rafts regulates colocalized fyn activation and the initiation of proximal signals through TCR alpha beta. J. Immunol. 172, 4266–4274 (2004).

    Article  CAS  PubMed  Google Scholar 

  165. Zhang, M. et al. CD45 signals outside of lipid rafts to promote ERK activation, synaptic raft clustering, and IL-2 production. J. Immunol. 174, 1479–1490 (2005).

    Article  CAS  PubMed  Google Scholar 

  166. Field, K. A., Holowka, D. & Baird, B. Fc epsilon RI-mediated recruitment of p53/56lyn to detergent-resistant membrane domains accompanies cellular signaling. Proc. Natl Acad. Sci. USA 92, 9201–9205 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Varshney, P., Yadav, V. & Saini, N. Lipid rafts in immune signaling: current progress and future perspective. Immunology 149, 13–24 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Dinic, J., Riehl, A., Adler, J. & Parmryd, I. The T cell receptor resides in ordered plasma membrane nanodomains that aggregate upon patching of the receptor. Sci. Rep. 5, 10082 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Beck-Garcia, K. et al. Nanoclusters of the resting T cell antigen receptor (TCR) localize to non-raft domains. Biochim. Biophys. Acta 1853, 802–809 (2015).

    Article  CAS  PubMed  Google Scholar 

  170. Sproul, T. W., Malapati, S., Kim, J. & Pierce, S. K. Cutting edge: B cell antigen receptor signaling occurs outside lipid rafts in immature B cells. J. Immunol. 165, 6020–6023 (2000).

    Article  CAS  PubMed  Google Scholar 

  171. Stone, M. B., Shelby, S. A., Nunez, M. F., Wisser, K. & Veatch, S. L. Protein sorting by lipid phase-like domains supports emergent signaling function in B lymphocyte plasma membranes. eLife 6, e19891 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Wright, S. D., Ramos, R. A., Tobias, P. S., Ulevitch, R. J. & Mathison, J. C. CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science 249, 1431–1433 (1990).

    Article  CAS  PubMed  Google Scholar 

  173. Beissert, S. et al. Impaired cutaneous immune responses in Thy-1-deficient mice. J. Immunol. 161, 5296–5302 (1998).

    CAS  PubMed  Google Scholar 

  174. Lorizate, M. et al. Comparative lipidomics analysis of HIV-1 particles and their producer cell membrane in different cell lines. Cell. Microbiol. 15, 292–304 (2013).

    Article  CAS  PubMed  Google Scholar 

  175. Farnoud, A. M., Toledo, A. M., Konopka, J. B., Del Poeta, M. & London, E. Raft-like membrane domains in pathogenic microorganisms. Curr. Top. Membr. 75, 233–268 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  176. Iwabuchi, K. Involvement of glycosphingolipid-enriched lipid rafts in inflammatory responses. Front. Biosci. (Landmark Ed.) 20, 325–334 (2015).

    Article  CAS  Google Scholar 

  177. Teissier, E. & Pecheur, E. I. Lipids as modulators of membrane fusion mediated by viral fusion proteins. Eur. Biophys. J. 36, 887–899 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Dick, R. A., Goh, S. L., Feigenson, G. W. & Vogt, V. M. HIV-1 Gag protein can sense the cholesterol and acyl chain environment in model membranes. Proc. Natl Acad. Sci. USA 109, 18761–18766 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Staubach, S., Razawi, H. & Hanisch, F. G. Proteomics of MUC1-containing lipid rafts from plasma membranes and exosomes of human breast carcinoma cells MCF-7. Proteomics 9, 2820–2835 (2009).

    Article  CAS  PubMed  Google Scholar 

  180. Raghu, H. et al. Localization of uPAR and MMP-9 in lipid rafts is critical for migration, invasion and angiogenesis in human breast cancer cells. BMC Cancer 10, 647 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Larsen, J. B. et al. Membrane curvature enables N-Ras lipid anchor sorting to liquid-ordered membrane phases. Nat. Chem. Biol. 11, 192–194 (2015).

    Article  CAS  PubMed  Google Scholar 

  182. Cuesta-Marban, A. et al. Drug uptake, lipid rafts, and vesicle trafficking modulate resistance to an anticancer lysophosphatidylcholine analogue in yeast. J. Biol. Chem. 288, 8405–8418 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Gajate, C. & Mollinedo, F. Edelfosine and perifosine induce selective apoptosis in multiple myeloma by recruitment of death receptors and downstream signaling molecules into lipid rafts. Blood 109, 711–719 (2007).

    Article  CAS  PubMed  Google Scholar 

  184. Shashkin, P., Dragulev, B. & Ley, K. Macrophage differentiation to foam cells. Curr. Pharm. Des. 11, 3061–3072 (2005).

    Article  CAS  PubMed  Google Scholar 

  185. Rios, F. J. et al. Uptake of oxLDL and IL-10 production by macrophages requires PAFR and CD36 recruitment into the same lipid rafts. PLoS ONE 8, e76893 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Maguy, A., Hebert, T. E. & Nattel, S. Involvement of lipid rafts and caveolae in cardiac ion channel function. Cardiovasc. Res. 69, 798–807 (2006).

    Article  CAS  PubMed  Google Scholar 

  187. van Zanten, T. S. & Mayor, S. Current approaches to studying membrane organization. F1000Res. 4, 1380 (2015).

    Article  Google Scholar 

  188. Toulmay, A. & Prinz, W. A. Direct imaging reveals stable, micrometer-scale lipid domains that segregate proteins in live cells. J. Cell Biol. 202, 35–44 (2013). The first demonstration of microscopic raft-like domain formation in the vacuoles of live yeast cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Kahya, N., Scherfeld, D., Bacia, K. & Schwille, P. Lipid domain formation and dynamics in giant unilamellar vesicles explored by fluorescence correlation spectroscopy. J. Struct. Biol. 147, 77–89 (2004).

    Article  CAS  PubMed  Google Scholar 

  190. Shogomori, H. et al. Palmitoylation and intracellular domain interactions both contribute to raft targeting of linker for activation of T cells. J. Biol. Chem. 280, 18931–18942 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

C.E. and E.S. are supported by the UK Wolfson Foundation, the UK Medical Research Council (MRC; grant number MC_UU_12010/unit programmes G0902418 and MC_UU_12025), MRC/BBSRC/ESPRC (grant number MR/K01577X/1) and the UK Wellcome Trust (grant Ref. 104924/14/Z/14). E.S. is also supported by an EMBO Long Term Fellowship (ALTF 636–2013) and a Marie Curie Intra-European Fellowship (MEMBRANE DYNAMICS). S.M. is supported by a JC Bose fellowship from the Department of Science and Technology, Ministry of Science and Technology, Government of India, New Delhi, and a Margadarshi fellowship (DBT-Wellcome Trust Alliance grant Ref. IA/M/15/1/502018). I.L. is supported by the Cancer Prevention and Research Institute of Texas (R1215) and the US National Institutes of Health (grant 1R01GM114282).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Satyajit Mayor or Christian Eggeling.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information S1 (box)

Rafts in the tree of life (PDF 162 kb)

Supplementary information S2 (box)

Diffraction limit and super-resolution microscopy (PDF 421 kb)

PowerPoint slides

Glossary

Liquid–liquid phase separation

The coexistence of two phases with distinct compositions and biophysical properties. The components of both phases can diffuse and rearrange rapidly.

Sphingolipid

A class of lipids that comprise a long-chain sphingosine base coupled to a fatty acid chain and often a large polar head group.

Glycosylphosphatidylinositol (GPI)-anchored proteins

Cell surface proteins that are post-translationally modified to carry a GPI moiety as an anchor to the membrane.

Cholera toxin

Proteinaceous toxin secreted by Vibrio cholerae that binds to glycolipids on the cell surface and is responsible for the symptoms of cholera infection.

Single-particle tracking

(SPT). A single-molecule technique in which the motion of individual molecules is tracked with high temporal resolution over relatively long timescales (seconds); these tracks can be used to determine the diffusion properties of a molecule.

Confined diffusion

A mode of diffusion in which the motion of the molecule is transiently arrested by molecular obstacles such as immobile clusters. It is also known as trapped diffusion.

Hop diffusion

A mode of diffusion in which molecules diffuse freely in the membrane except when they encounter a barrier (such as a structure (or structures) associated with actin filaments), the crossing of which hinders diffusion.

Interferometric scattering microscopy

(iSCAT). A microscopy technique to enhance contrast by using the interference from coherent light scattering in the focal plane and of the microscope cover glass.

Fluorescence correlation spectroscopy

(FCS). A single-molecule-based technique in which fluorescence intensity fluctuations from a microscopic observation spot are used to obtain information about molecular diffusion.

Förster resonance energy transfer

(FRET). A fluorescence spectroscopy and imaging technique that is based on the distance-dependent transfer of the excited state energy of a fluorescent donor molecule to a fluorescent acceptor molecule; efficient and widely used to measure intermolecular distances in the range of 1–10 nm.

Amphiphilic properties

Displaying both hydrophilic and hydrophobic character, such as for lipids with hydrophobic acyl chains and hydrophilic head groups.

Raman spectroscopy

A spectroscopy technique whereby vibrational energy of the molecules is used as their 'fingerprint'.

Ganglioside lipid

A class of glycosphingolipids with sialic acid moieties on the head group.

Ceramides

A class of lipids composed of sphingosine and a fatty acid.

Coarse-grained simulations

Simulations that rely on simplified representations of the simulated components.

Hydrogen bonding

Non-covalent chemical bonds between a hydrogen covalently bound to an electronegative atom (as in the -NH group of sphingolipids) and another electronegative atom (such as the oxygen in the -OH group of cholesterol).

Epithelial–mesenchymal transition

A developmental transcriptional programme that imparts mesenchymal characteristics (for example, motility) to epithelial cells.

Viral envelope

The lipid membrane that covers the viral capsid and is derived from the plasma membrane of the host cell.

Caveolae

Specialized invaginations in the plasma membrane that are enriched in caveolin, sphingolipids and cholesterol.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sezgin, E., Levental, I., Mayor, S. et al. The mystery of membrane organization: composition, regulation and roles of lipid rafts. Nat Rev Mol Cell Biol 18, 361–374 (2017). https://doi.org/10.1038/nrm.2017.16

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm.2017.16

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing