The IL-23–IL-17 immune axis: from mechanisms to therapeutic testing

Key Points

  • T helper 17 (TH17) cells activated by transforming growth factor-β (TGFβ) and interleukin-6 (IL-6) promote mucosal defence, barrier tissue integrity and curtail immunopathogenic responses, whereas IL-23-activated TH17 cells promote chronic tissue inflammation during infection, granuloma formation and autoimmunity.

  • Retinoic acid receptor-related orphan receptor-γt (RORγt) is a TH17 cell-specific master transcription factor. However, it does not act alone, but instead functions as part of a protein complex that regulates TH17 lineage fate. RORγt takes advantage of the open DNA conformation induced by basic leucine zipper transcription factor ATF-like (BATF) and interferon-regulatory factor 4 (IRF4) following T cell receptor stimulation. RORγt also requires the presence of inflammatory cytokine-induced signal transducer and activator of transcription 3 (STAT3) and, together, these transcription factors function as a 'rheostat' that fine-tunes a pre-established TH17 lineage programme.

  • IL-17 signalling is mediated through a distinct cytokine receptor family, which is characterized by a conserved SEF/IL-17R (SEFIR) domain in the cytoplasmic tail. All known IL-17-dependent signalling events occur through ACT1, which controls TNF receptor-associated factor (TRAF)-dependent activation of downstream signalling components (for example, mitogen-activated protein kinases) and transcription factors (for example, nuclear factor-κB (NF-κB) and CCAAT/enhancer-binding proteins (C/EBPs) and mRNA stability.

  • IL-17 signal transduction is restricted by multiple downstream events, involving inhibitory transcription factors, ubiquitylation/deubiquitylation of signalling intermediates, microRNA regulation and control of target mRNA stability.

  • In vivo, IL-17 is an essential regulator of immunity to fungi, particularly the commensal fungus Candida albicans. Humans with congenic or acquired blockade of the IL-17 signalling pathway are particularly susceptible to chronic mucosal candidiasis.

  • The therapeutic strategy of targeting IL-17 and IL-23 shows encouraging results for psoriasis, Crohn's disease, rheumatoid arthritis, psoriatic arthritis and ankylosing spondylitis.

Abstract

Following the discovery of T helper 17 (TH17) cells, the past decade has witnessed a major revision of the TH subset paradigm and substantial progress has been made in deciphering the molecular mechanisms of T cell lineage commitment and function. In this Review, we focus on the recent advances that have been made regarding the transcriptional control of TH17 cell plasticity and stability, as well as the effector functions of TH17 cells, and we highlight the mechanisms of IL-17 signalling in mesenchymal and barrier epithelial tissues. We also discuss the emerging clinical data showing that IL-17-specific and IL-23-specific antibody treatments are remarkably effective for treating many immune-mediated inflammatory diseases.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Timeline of the discovery and elucidation of IL-17 and IL-23 biology
Figure 2: Schematics of transcription factor regulation for TH17 cell lineage specification and function.
Figure 3: IL-17 ligand and receptor family members.
Figure 4: IL-17 receptor signal transduction.

References

  1. 1

    Cua, D. J. et al. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature 421, 744–748 (2003). This study shows that IL-23 controls a key checkpoint for the induction of autoimmune inflammation.

    CAS  Article  PubMed  Google Scholar 

  2. 2

    Oppmann, B. et al. Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity 13, 715–725 (2000).

    CAS  Article  PubMed  Google Scholar 

  3. 3

    Kastelein, R. A., Hunter, C. A. & Cua, D. J. Discovery and biology of IL-23 and IL-27: related but functionally distinct regulators of inflammation. Annu. Rev. Immunol. 25, 221–242 (2007).

    CAS  Article  PubMed  Google Scholar 

  4. 4

    Langrish, C. L. et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J. Exp. Med. 201, 233–240 (2005). This is the first study to suggest that IL-17-producing cells are crucial mediators of autoimmunity, and it led to the proposal of the T H 17 hypothesis.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. 5

    Murphy, C. A. et al. Divergent pro- and antiinflammatory roles for IL-23 and IL-12 in joint autoimmune inflammation. J. Exp. Med. 198, 1951–1957 (2003).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. 6

    Harrington, L. E. et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nature Immunol. 6, 1123–1132 (2005). This study coined the term 'T H 17' cells to describe a unique lineage that is STAT3 dependent, rather than STAT4- and STAT6-independent.

    CAS  Article  Google Scholar 

  7. 7

    Park, H. et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nature Immunol. 6, 1133–1141 (2005). This is one of the first papers suggesting the existence of IL-17-producing inflammatory T cells.

    CAS  Article  Google Scholar 

  8. 8

    Mosmann, T. R., Cherwinski, H., Bond, M. W., Giedlin, M. A. & Coffman, R. L. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J. Immunol. 136, 2348–2357 (1986). This is the landmark paper proposing the T H 1–T H 2 hypothesis.

    CAS  PubMed  Google Scholar 

  9. 9

    Mosmann, T. R. & Coffman, R. L. TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu. Rev. Immunol. 7, 145–173 (1989).

    CAS  Article  PubMed  Google Scholar 

  10. 10

    Parham, C. et al. A receptor for the heterodimeric cytokine IL-23 is composed of IL-12Rβ1 and a novel cytokine receptor subunit, IL-23R. J. Immunol. 168, 5699–5708 (2002).

    CAS  Article  PubMed  Google Scholar 

  11. 11

    Weaver, C. T., Hatton, R. D., Mangan, P. R. & Harrington, L. E. IL-17 family cytokines and the expanding diversity of effector T cell lineages. Annu. Rev. Immunol. 25, 821–852 (2007).

    CAS  Article  PubMed  Google Scholar 

  12. 12

    Ivanov, I. I. et al. The orphan nuclear receptor RORγt directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 126, 1121–1133 (2006). This study describes the discovery of a novel transcriptional regulator that controls Il17a expression and provides the definitive proof that T H 17 cells belong to a new lineage of CD4+ T H cells.

    CAS  Article  PubMed  Google Scholar 

  13. 13

    Cua, D. J. & Tato, C. M. Innate IL-17-producing cells: the sentinels of the immune system. Nature Rev. Immunol. 10, 479–489 (2010).

    CAS  Article  Google Scholar 

  14. 14

    Annunziato, F., Cosmi, L., Liotta, F., Maggi, E. & Romagnani, S. Type 17 T helper cells—origins, features and possible roles in rheumatic disease. Nature Rev. Rheumatol. 5, 325–331 (2009).

    CAS  Article  Google Scholar 

  15. 15

    Zuniga, L. A., Jain, R., Haines, C. & Cua, D. J. Th17 cell development: from the cradle to the grave. Immunol. Rev. 252, 78–88 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. 16

    Kim, J. S. et al. Natural and inducible TH17 cells are regulated differently by Akt and mTOR pathways. Nature Immunol. 14, 611–618 (2013).

    CAS  Article  Google Scholar 

  17. 17

    Marks, B. R. et al. Thymic self-reactivity selects natural interleukin 17-producing T cells that can regulate peripheral inflammation. Nature Immunol. 10, 1125–1132 (2009).

    CAS  Article  Google Scholar 

  18. 18

    Zheng, Y. et al. Interleukin-22, a TH17 cytokine, mediates IL-23-induced dermal inflammation and acanthosis. Nature 445, 648–651 (2007).

    CAS  Article  PubMed  Google Scholar 

  19. 19

    El-Behi, M. et al. The encephalitogenicity of TH17 cells is dependent on IL-1- and IL-23-induced production of the cytokine GM-CSF. Nature Immunol. 12, 568–575 (2011).

    CAS  Article  Google Scholar 

  20. 20

    Codarri, L. et al. RORγt drives production of the cytokine GM-CSF in helper T cells, which is essential for the effector phase of autoimmune neuroinflammation. Nature Immunol. 12, 560–567 (2011).

    CAS  Article  Google Scholar 

  21. 21

    McGeachy, M. J. et al. TGF-β and IL-6 drive the production of IL-17 and IL-10 by T cells and restrain TH-17 cell-mediated pathology. Nature Immunol. 8, 1390–1397 (2007).

    CAS  Article  Google Scholar 

  22. 22

    Hirota, K. et al. Plasticity of Th17 cells in Peyer's patches is responsible for the induction of T cell-dependent IgA responses. Nature Immunol. 14, 372–379 (2013).

    CAS  Article  Google Scholar 

  23. 23

    Esplugues, E. et al. Control of TH17 cells occurs in the small intestine. Nature 475, 514–518 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. 24

    Chackerian, A. A. et al. Neutralization or absence of the interleukin-23 pathway does not compromise immunity to mycobacterial infection. Infect. Immun. 74, 6092–6099 (2006).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. 25

    Chen, Y. et al. Anti-IL-23 therapy inhibits multiple inflammatory pathways and ameliorates autoimmune encephalomyelitis. J. Clin. Invest. 116, 1317–1326 (2006).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. 26

    Lieberman, L. A. et al. IL-23 provides a limited mechanism of resistance to acute toxoplasmosis in the absence of IL-12. J. Immunol. 173, 1887–1893 (2004).

    CAS  Article  PubMed  Google Scholar 

  27. 27

    Bettelli, E. et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441, 235–238 (2006).

    CAS  Article  PubMed  Google Scholar 

  28. 28

    Mangan, P. R. et al. Transforming growth factor-β induces development of the TH17 lineage. Nature 441, 231–234 (2006).

    CAS  Article  PubMed  Google Scholar 

  29. 29

    Veldhoen, M., Hocking, R. J., Atkins, C. J., Locksley, R. M. & Stockinger, B. TGFβ in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 24, 179–189 (2006). References 27–29 show the importance of TGFβ plus IL-6 in the lineage specification of T H 17 cells.

    CAS  Article  PubMed  Google Scholar 

  30. 30

    Yang, X. O. et al. STAT3 regulates cytokine-mediated generation of inflammatory helper T cells. J. Biol. Chem. 282, 9358–9363 (2007).

    CAS  Article  PubMed  Google Scholar 

  31. 31

    Durant, L. et al. Diverse targets of the transcription factor STAT3 contribute to T cell pathogenicity and homeostasis. Immunity 32, 605–615 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. 32

    Samoilova, E. B., Horton, J. L., Hilliard, B., Liu, T. S. & Chen, Y. IL-6-deficient mice are resistant to experimental autoimmune encephalomyelitis: roles of IL-6 in the activation and differentiation of autoreactive T cells. J. Immunol. 161, 6480–6486 (1998).

    CAS  PubMed  Google Scholar 

  33. 33

    Alonzi, T. et al. Interleukin 6 is required for the development of collagen-induced arthritis. J. Exp. Med. 187, 461–468 (1998).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. 34

    Korn, T. et al. IL-21 initiates an alternative pathway to induce proinflammatory TH17 cells. Nature 448, 484–487 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. 35

    Nurieva, R. et al. Essential autocrine regulation by IL-21 in the generation of inflammatory T cells. Nature 448, 480–483 (2007).

    CAS  Article  PubMed  Google Scholar 

  36. 36

    Spolski, R. & Leonard, W. J. The Yin and Yang of interleukin-21 in allergy, autoimmunity and cancer. Curr. Opin. Immunol. 20, 295–301 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. 37

    Sutton, C., Brereton, C., Keogh, B., Mills, K. H. & Lavelle, E. C. A crucial role for interleukin (IL)-1 in the induction of IL-17-producing T cells that mediate autoimmune encephalomyelitis. J. Exp. Med. 203, 1685–1691 (2006).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. 38

    Chung, Y. et al. Critical regulation of early Th17 cell differentiation by interleukin-1 signaling. Immunity 30, 576–587 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. 39

    Gulen, M. F. et al. The receptor SIGIRR suppresses Th17 cell proliferation via inhibition of the interleukin-1 receptor pathway and mTOR kinase activation. Immunity 32, 54–66 (2010). This paper shows that IL-1 is a key factor that provides a key competitive advantage for in vivo T H 17 cell expansion and survival during inflammatory conditions by inducing catabolic energy pathways.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. 40

    Veldhoen, M., Hocking, R. J., Flavell, R. A. & Stockinger, B. Signals mediated by transforming growth factor-β initiate autoimmune encephalomyelitis, but chronic inflammation is needed to sustain disease. Nature Immunol. 7, 1151–1156 (2006).

    CAS  Article  Google Scholar 

  41. 41

    Li, M. O., Wan, Y. Y. & Flavell, R. A. T cell-produced transforming growth factor-β1 controls T cell tolerance and regulates Th1- and Th17-cell differentiation. Immunity 26, 579–591 (2007).

    CAS  Article  PubMed  Google Scholar 

  42. 42

    Gutcher, I. et al. Autocrine transforming growth factor-β1 promotes in vivo Th17 cell differentiation. Immunity 34, 396–408.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. 43

    Das, J. et al. Transforming growth factor β is dispensable for the molecular orchestration of Th17 cell differentiation. J. Exp. Med. 206, 2407–2416 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. 44

    Volpe, E. et al. A critical function for transforming growth factor-β, interleukin 23 and proinflammatory cytokines in driving and modulating human TH-17 responses. Nature Immunol. 9, 650–657 (2008).

    CAS  Article  Google Scholar 

  45. 45

    Manel, N., Unutmaz, D. & Littman, D. R. The differentiation of human TH-17 cells requires transforming growth factor-β and induction of the nuclear receptor RORγt. Nature Immunol. 9, 641–649 (2008).

    CAS  Article  Google Scholar 

  46. 46

    Acosta-Rodriguez, E. V., Napolitani, G., Lanzavecchia, A. & Sallusto, F. Interleukins 1β and 6 but not transforming growth factor-β are essential for the differentiation of interleukin 17-producing human T helper cells. Nature Immunol. 8, 942–949 (2007).

    CAS  Article  Google Scholar 

  47. 47

    Wilson, N. J. et al. Development, cytokine profile and function of human interleukin 17-producing helper T cells. Nature Immunol. 8, 950–957 (2007).

    CAS  Article  Google Scholar 

  48. 48

    Chen, Z., Tato, C. M., Muul, L., Laurence, A. & O'Shea, J. J. Distinct regulation of interleukin-17 in human T helper lymphocytes. Arthritis Rheum. 56, 2936–2946 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  49. 49

    Yang, Y. et al. T-bet is essential for encephalitogenicity of both Th1 and Th17 cells. J. Exp. Med. 206, 1549–1564 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  50. 50

    Jager, A., Dardalhon, V., Sobel, R. A., Bettelli, E. & Kuchroo, V. K. Th1, Th17, and Th9 effector cells induce experimental autoimmune encephalomyelitis with different pathological phenotypes. J. Immunol. 183, 7169–7177 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. 51

    McGeachy, M. J. et al. The interleukin 23 receptor is essential for the terminal differentiation of interleukin 17-producing effector T helper cells in vivo. Nature Immunol. 10, 314–324 (2009). This paper describes the crucial roles of IL-23 for the in vivo expansion and function of T H 17 cells during inflammation.

    CAS  Article  Google Scholar 

  52. 52

    Haines, C. J. et al. Autoimmune memory T helper 17 cell function and expansion are dependent on interleukin-23. Cell Rep. 3, 1378–1388 (2013).

    CAS  Article  PubMed  Google Scholar 

  53. 53

    Ghoreschi, K. et al. Generation of pathogenic TH17 cells in the absence of TGF-β signalling. Nature 467, 967–971 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  54. 54

    Kebir, H. et al. Preferential recruitment of interferon-γ-expressing TH17 cells in multiple sclerosis. Ann. Neurol. 66, 390–402 (2009).

    CAS  Article  PubMed  Google Scholar 

  55. 55

    Hirota, K. et al. Fate mapping of IL-17-producing T cells in inflammatory responses. Nature Immunol. 12, 255–263 (2011). This elegant study used an Il17a fate-mapping strategy to demonstrate the existence of “ex-T H 17” cells driving autoimmune pathology.

    CAS  Article  Google Scholar 

  56. 56

    Lee, Y. et al. Induction and molecular signature of pathogenic TH17 cells. Nature Immunol. 13, 991–999 (2012).

    CAS  Article  Google Scholar 

  57. 57

    Duerr, R. H. et al. A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science 314, 1461–1463 (2006).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  58. 58

    Liu, Y. et al. A genome-wide association study of psoriasis and psoriatic arthritis identifies new disease loci. PLoS Genet. 4, e1000041 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. 59

    Reveille, J. D. et al. Genome-wide association study of ankylosing spondylitis identifies non-MHC susceptibility loci. Nature Genet. 42, 123–127 (2010).

    CAS  Article  PubMed  Google Scholar 

  60. 60

    Lock, C. et al. Gene-microarray analysis of multiple sclerosis lesions yields new targets validated in autoimmune encephalomyelitis. Nature Med. 8, 500–508 (2002).

    CAS  Article  PubMed  Google Scholar 

  61. 61

    Burton, P. R. et al. Association scan of 14,500 nonsynonymous SNPs in four diseases identifies autoimmunity variants. Nature Genet. 39, 1329–1337 (2007).

    CAS  Article  PubMed  Google Scholar 

  62. 62

    Ghoreschi, K. et al. Generation of pathogenic TH17 cells in the absence of TGF-β signalling. Nature 467, 967–971 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  63. 63

    Diveu, C. et al. IL-27 blocks RORc expression to inhibit lineage commitment of Th17 cells. J. Immunol. 182, 5748–5756 (2009). This study shows that IL-27 is an inhibitor of the T H 17 immune pathway and explores the mechanisms underlying IL-27-mediated regulation of inflammation.

    CAS  Article  PubMed  Google Scholar 

  64. 64

    Laurence, A. et al. Interleukin-2 signaling via STAT5 constrains T helper 17 cell generation. Immunity 26, 371–381 (2007).

    CAS  Article  PubMed  Google Scholar 

  65. 65

    El-behi, M. et al. Differential effect of IL-27 on developing versus committed Th17 cells. J. Immunol. 183, 4957–4967 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  66. 66

    Veldhoen, M. et al. The aryl hydrocarbon receptor links TH17-cell-mediated autoimmunity to environmental toxins. Nature 453, 106–109 (2008).

    CAS  Article  PubMed  Google Scholar 

  67. 67

    Quintana, F. J. et al. Control of Treg and TH17 cell differentiation by the aryl hydrocarbon receptor. Nature 453, 65–71 (2008).

    CAS  Article  PubMed  Google Scholar 

  68. 68

    Apetoh, L. et al. The aryl hydrocarbon receptor interacts with c-Maf to promote the differentiation of type 1 regulatory T cells induced by IL-27. Nature Immunol. 11, 854–861 (2010).

    CAS  Article  Google Scholar 

  69. 69

    Milner, J. D. et al. Impaired TH17 cell differentiation in subjects with autosomal dominant hyper-IgE syndrome. Nature 452, 773–776 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  70. 70

    Minegishi, Y. et al. Dominant-negative mutations in the DNA-binding domain of STAT3 cause hyper-IgE syndrome. Nature 448, 1058–1062 (2007).

    CAS  Article  PubMed  Google Scholar 

  71. 71

    Ise, W. et al. The transcription factor BATF controls the global regulators of class-switch recombination in both B cells and T cells. Nature Immunol. 12, 536–543 (2011).

    CAS  Article  Google Scholar 

  72. 72

    Schraml, B. U. et al. The AP-1 transcription factor Batf controls TH17 differentiation. Nature 460, 405–409 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  73. 73

    Lohoff, M. et al. Dysregulated T helper cell differentiation in the absence of interferon regulatory factor 4. Proc. Natl Acad. Sci. USA 99, 11808–11812 (2002).

    CAS  Article  PubMed  Google Scholar 

  74. 74

    Brustle, A. et al. The development of inflammatory TH-17 cells requires interferon-regulatory factor 4. Nature Immunol. 8, 958–966 (2007).

    Article  CAS  Google Scholar 

  75. 75

    Li, P. et al. BATF–JUN is critical for IRF4-mediated transcription in T cells. Nature 490, 543–546 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  76. 76

    Ciofani, M. et al. A validated regulatory network for Th17 cell specification. Cell 151, 289–303 (2012). This study argues against the hypothesis that RORγt is the only factor that regulates the specification of the T H 17 lineage.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  77. 77

    Oestreich, K. J. & Weinmann, A. S. Master regulators or lineage-specifying? Changing views on CD4+ T cell transcription factors. Nature Rev. Immunol. 12, 799–804 (2012).

    CAS  Article  Google Scholar 

  78. 78

    Vahedi, G. et al. STATs shape the active enhancer landscape of T cell populations. Cell 151, 981–993 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  79. 79

    Samstein, R. M. et al. Foxp3 exploits a pre-existent enhancer landscape for regulatory T cell lineage specification. Cell 151, 153–166 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  80. 80

    Dang, E. V. et al. Control of TH17/Treg balance by hypoxia-inducible factor 1. Cell 146, 772–784 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  81. 81

    Chen, Z. et al. The ubiquitin ligase Stub1 negatively modulates regulatory T cell suppressive activity by promoting degradation of the transcription factor Foxp3. Immunity 39, 272–285 (2013).

    CAS  Article  PubMed  Google Scholar 

  82. 82

    van Loosdregt, J. et al. Stabilization of the transcription factor Foxp3 by the deubiquitinase USP7 increases Treg-cell-suppressive capacity. Immunity 39, 259–271 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  83. 83

    Yang, X. O. et al. Molecular antagonism and plasticity of regulatory and inflammatory T cell programs. Immunity 29, 44–56 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  84. 84

    Wei, G. et al. Global mapping of H3K4me3 and H3K27me3 reveals specificity and plasticity in lineage fate determination of differentiating CD4+ T cells. Immunity 30, 155–167 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. 85

    Lee, Y. K. et al. Late developmental plasticity in the T helper 17 lineage. Immunity 30, 92–107 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  86. 86

    Morrison, P. J. et al. Th17-cell plasticity in Helicobacter hepaticus-induced intestinal inflammation. Mucosal Immunol. 6, 1143–1156 (2013).

    CAS  Article  PubMed  Google Scholar 

  87. 87

    Iwakura, Y., Ishigame, H., Saijo, S. & Nakae, S. Functional specialization of interleukin-17 family members. Immunity 34, 149–162 (2011).

    CAS  Article  PubMed  Google Scholar 

  88. 88

    Onishi, R. & Gaffen, S. L. IL-17 and its target genes: mechanisms of IL-17 function in disease. Immunology 129, 311–321 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  89. 89

    Yao, Z. et al. Herpesvirus Saimiri encodes a new cytokine, IL-17, which binds to a novel cytokine receptor. Immunity 3, 811–821 (1995).

    CAS  Article  PubMed  Google Scholar 

  90. 90

    Ishigame, H. et al. Differential roles of interleukin-17A and -17F in host defense against mucoepithelial bacterial infection and allergic responses. Immunity 30, 108–119 (2009).

    CAS  Article  PubMed  Google Scholar 

  91. 91

    Novatchkova, M., Leibbrandt, A., Werzowa, J., Neubuser, A. & Eisenhaber, F. The STIR-domain superfamily in signal transduction, development and immunity. Trends Biochem. Sci. 28, 226–229 (2003).

    CAS  Article  PubMed  Google Scholar 

  92. 92

    Rickel, E. A. et al. Identification of functional roles for both IL-17RB and IL-17RA in mediating IL-25-induced activities. J. Immunol. 181, 4299–4310 (2008).

    CAS  Article  PubMed  Google Scholar 

  93. 93

    Bordon, Y. Cytokines: IL-17C joins the family firm. Nature Rev. Immunol. 11, 805 (2011).

    CAS  Google Scholar 

  94. 94

    Qian, Y. et al. The adaptor Act1 is required for interleukin 17-dependent signaling associated with autoimmune and inflammatory disease. Nature Immunol. 8, 247–256 (2007).

    CAS  Article  Google Scholar 

  95. 95

    Chang, S. H., Park, H. & Dong, C. Act1 adaptor protein is an immediate and essential signaling component of interleukin-17 receptor. J. Biol. Chem. 281, 35603–35607 (2006).

    CAS  Article  PubMed  Google Scholar 

  96. 96

    Li, X. Act1 modulates autoimmunity through its dual functions in CD40L/BAFF and IL-17 signaling. Cytokine 41, 105–113 (2008).

    CAS  Article  PubMed  Google Scholar 

  97. 97

    Liu, C. et al. Act1, a U-box E3 ubiquitin ligase for IL-17 signaling. Sci. Signal. 2, ra63 (2009).

    PubMed  PubMed Central  Google Scholar 

  98. 98

    Schwandner, R., Yamaguchi, K. & Cao, Z. Requirement of tumor necrosis factor-associated factor (TRAF)6 in interleukin 17 signal transduction. J. Exp. Med. 191, 1233–1239 (2000).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  99. 99

    Sun, D. et al. Treatment with IL-17 prolongs the half-life of chemokine CXCL1 mRNA via the adaptor TRAF5 and the splicing-regulatory factor SF2 (ASF). Nature Immunol. 12, 853–860 (2011).

    CAS  Article  Google Scholar 

  100. 100

    Herjan, T. et al. HuR is required for IL-17-induced Act1-mediated CXCL1 and CXCL5 mRNA stabilization. J. Immunol. 191, 640–649 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  101. 101

    Bulek, K. et al. The inducible kinase IKKi is required for IL-17-dependent signaling associated with neutrophilia and pulmonary inflammation. Nature Immunol. 12, 844–852 (2011).

    CAS  Article  Google Scholar 

  102. 102

    Qu, F. et al. TRAF6-dependent Act1 phosphorylation by the IκB kinase-related kinases suppresses interleukin-17-induced NF-κB activation. Mol. Cell. Biol. 32, 3925–3937 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  103. 103

    Wang, C. et al. The psoriasis-associated D10N variant of the adaptor Act1 with impaired regulation by the molecular chaperone hsp90. Nature Immunol. 14, 72–81 (2013).

    CAS  Article  Google Scholar 

  104. 104

    Sonder, S. U. et al. IL-17-induced NF-κB activation via CIKS/Act1: physiologic significance and signaling mechanisms. J. Biol. Chem. 286, 12881–12890 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  105. 105

    Huffmeier, U. et al. Common variants at TRAF3IP2 are associated with susceptibility to psoriatic arthritis and psoriasis. Nature Genet. 42, 996–999 (2010).

    Article  CAS  PubMed  Google Scholar 

  106. 106

    Shen, F., Ruddy, M. J., Plamondon, P. & Gaffen, S. L. Cytokines link osteoblasts and inflammation: microarray analysis of interleukin-17- and TNF-α-induced genes in bone cells. J. Leukoc. Biol. 77, 388–399 (2005).

    CAS  Article  PubMed  Google Scholar 

  107. 107

    Acosta-Rodriguez, E. V. et al. Surface phenotype and antigenic specificity of human interleukin 17-producing T helper memory cells. Nature Immunol. 8, 639–646 (2007).

    CAS  Article  Google Scholar 

  108. 108

    Yang, D. et al. β-Defensins: Linking innate immunity and adaptive immunity through dendritic and T cell CCR6. Science 286, 525–528 (1999).

    CAS  Article  PubMed  Google Scholar 

  109. 109

    Goetz, D. H. et al. The neutrophil lipocalin NGAL is a bacteriostatic agent that interferes with siderophore-mediated iron acquisition. Mol. Cell 10, 1033–1043 (2002).

    CAS  Article  PubMed  Google Scholar 

  110. 110

    Ruddy, M. J. et al. Functional cooperation between interleukin-17 and tumor necrosis factor-a is mediated by CCAAT/enhancer binding protein family members. J. Biol. Chem. 279, 2559–2567 (2004).

    CAS  Article  PubMed  Google Scholar 

  111. 111

    Shen, F., Hu, Z., Goswami, J. & Gaffen, S. L. Identification of common transcriptional regulatory elements in interleukin-17 target genes. J. Biol. Chem. 281, 24138–24148 (2006).

    CAS  Article  PubMed  Google Scholar 

  112. 112

    Patel, D. N. et al. Interleukin-17 stimulates C-reactive protein expression in hepatocytes and smooth muscle cells via p38 MAPK and ERK1/2-dependent NF-κB and C/EBPβ activation. J. Biol. Chem. 282, 27229–27238 (2007).

    CAS  Article  PubMed  Google Scholar 

  113. 113

    Ramji, D. P. & Foka, P. CCAAT/enhancer-binding proteins: structure, function and regulation. Biochem. J. 365, 561–575 (2002).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  114. 114

    Shen, F. et al. IL-17 receptor signaling inhibits C/EBPβ by sequential phosphorylation of the regulatory 2 domain. Sci. Signal. 2, ra8 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  115. 115

    Zrioual, S. et al. Genome-wide comparison between IL-17A- and IL-17F-induced effects in human rheumatoid arthritis synoviocytes. J. Immunol. 182, 3112–3120 (2009).

    CAS  Article  PubMed  Google Scholar 

  116. 116

    Shen, F. & Gaffen, S. L. Structure–function relationships in the IL-17 receptor: Implications for signal transduction and therapy. Cytokine 41, 92–104 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  117. 117

    Karlsen, J. R., Borregaard, N. & Cowland, J. B. Induction of neutrophil gelatinase-associated lipocalin expression by co-stimulation with interleukin-17 and tumor necrosis factor-α is controlled by IκB-ζ but neither by C/EBP-β nor C/EBP-δ. J. Biol. Chem. 285, 14088–14100 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  118. 118

    Zhong, B. et al. Negative regulation of IL-17-mediated signaling and inflammation by the ubiquitin-specific protease USP25. Nature Immunol. 13, 1110–1117 (2012).

    CAS  Article  Google Scholar 

  119. 119

    Garg, A. V., Ahmed, M., Vallejo, A. N., Ma, A. & Gaffen, S. L. The deubiquitinase A20 mediates feedback inhibition of interleukin-17 receptor signaling. Sci. Signal. 6, ra44 (2013). References 118 and 119 show that IL-17R signalling is restrained by multiple deubiquitylating enzymes that target TRAF6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. 120

    Ma, A. & Malynn, B. A. A20: linking a complex regulator of ubiquitylation to immunity and human disease. Nature Rev. Immunol. 12, 774–785 (2012).

    CAS  Article  Google Scholar 

  121. 121

    Zhu, S. et al. Modulation of experimental autoimmune encephalomyelitis through TRAF3-mediated suppression of interleukin 17 receptor signaling. J. Exp. Med. 207, 2647–2662 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  122. 122

    Maitra, A. et al. Distinct functional motifs within the IL-17 receptor regulate signal transduction and target gene expression. Proc. Natl Acad. Sci, USA 104, 7506–7511 (2007).

    CAS  Article  PubMed  Google Scholar 

  123. 123

    Shembade, N. & Harhaj, E. W. Regulation of NF-κB signaling by the A20 deubiquitinase. Cell. Mol. Immunol. 9, 123–130 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  124. 124

    Iha, H. et al. Inflammatory cardiac valvulitis in TAX1BP1-deficient mice through selective NF-κB activation. EMBO J. 27, 629–641 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  125. 125

    Shembade, N. et al. The E3 ligase Itch negatively regulates inflammatory signaling pathways by controlling the function of the ubiquitin-editing enzyme A20. Nature Immunol. 9, 254–262 (2008).

    CAS  Article  Google Scholar 

  126. 126

    Garg, A. V. & Gaffen, S. L. IL-17 signaling and A20: a balancing act. Cell Cycle 12, 3459–3460 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  127. 127

    Ho, A. W. et al. The anaphase-promoting complex protein 5 (AnapC5) associates with A20 and inhibits IL-17-mediated signal transduction. PLoS ONE 8, e70168 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  128. 128

    Shi, P. et al. Persistent stimulation with interleukin-17 desensitizes cells through SCFβ-TrCP-mediated degradation of Act1. Sci. Signal. 4, ra73 (2011).

    Article  CAS  PubMed  Google Scholar 

  129. 129

    Xie, P. TRAF molecules in cell signaling and in human diseases. J. Mol. Signal 8, 1–31 (2013).

    Article  CAS  Google Scholar 

  130. 130

    Zepp, J. A. et al. Cutting edge: TNF receptor-associated factor 4 restricts IL-17-mediated pathology and signaling processes. J. Immunol. 189, 33–37 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  131. 131

    O'Connell, R. M. et al. MicroRNA-155 promotes autoimmune inflammation by enhancing inflammatory T cell development. Immunity 33, 607–619 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  132. 132

    Yao, R. et al. MicroRNA-155 modulates Treg and Th17 cells differentiation and Th17 cell function by targeting SOCS1. PLoS ONE 7, e46082 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  133. 133

    Murugaiyan, G., Beynon, V., Mittal, A., Joller, N. & Weiner, H. L. Silencing microRNA-155 ameliorates experimental autoimmune encephalomyelitis. J. Immunol. 187, 2213–2221 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  134. 134

    Zhu, S. et al. The microRNA miR-23b suppresses IL-17-associated autoimmune inflammation by targeting TAB2, TAB3 and IKK-α. Nature Med. 18, 1077–1086 (2012). This is the first identification of an miRNA feedback loop in the IL-17R signalling pathway.

    CAS  Article  PubMed  Google Scholar 

  135. 135

    Milner, J. D. & Holland, S. M. The cup runneth over: lessons from the ever-expanding pool of primary immunodeficiency diseases. Nature Rev. Immunol. 13, 635–648 (2013).

    CAS  Article  Google Scholar 

  136. 136

    von Bernuth, H. et al. Pyogenic bacterial infections in humans with MyD88 deficiency. Science 321, 691–696 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  137. 137

    Ma, C. S. et al. Deficiency of Th17 cells in hyper IgE syndrome due to mutations in STAT3. J. Exp. Med. 205, 1551–1557 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  138. 138

    Glocker, E. O. et al. A homozygous CARD9 mutation in a family with susceptibility to fungal infections. N. Engl. J. Med. 361, 1727–1735 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  139. 139

    Liu, L. et al. Gain-of-function human STAT1 mutations impair IL-17 immunity and underlie chronic mucocutaneous candidiasis. J. Exp. Med. 208, 1635–1648 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  140. 140

    van de Veerdonk, F. L. et al. STAT1 mutations in autosomal dominant chronic mucocutaneous candidiasis. N. Engl. J. Med. 365, 54–61 (2011).

    CAS  Article  PubMed  Google Scholar 

  141. 141

    Puel, A. et al. Autoantibodies against IL-17A, IL-17F, and IL-22 in patients with chronic mucocutaneous candidiasis and autoimmune polyendocrine syndrome type I. J. Exp. Med. 207, 291–297 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  142. 142

    Kisand, K. et al. Chronic mucocutaneous candidiasis in APECED or thymoma patients correlates with autoimmunity to Th17-associated cytokines. J. Exp. Med. 207, 299–308 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  143. 143

    Puel, A. et al. Chronic mucocutaneous candidiasis in humans with inborn errors of interleukin-17 immunity. Science 332, 65–68 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  144. 144

    Boisson, B. et al. A biallelic ACT1 mutation selectively abolishes interleukin-17 responses in humans with chronic mucocutaneous candidiasis. Immunity 39, 676–686 (2013). References 143 and 144 directly link mucosal C. albicans infections with the IL-17R-mediated signalling axis.

    CAS  Article  PubMed  Google Scholar 

  145. 145

    Hernández-Santos, N. & Gaffen, S. L. Th17 cells in immunity to Candida albicans. Cell Host Microbe 11, 425–435 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. 146

    Stark, M. A. et al. Phagocytosis of apoptotic neutrophils regulates granulopoiesis via IL-23 and IL-17. Immunity 22, 285–294 (2005).

    CAS  Article  PubMed  Google Scholar 

  147. 147

    Sherlock, J. P. et al. IL-23 induces spondyloarthropathy by acting on ROR-γt+ CD3+CD4CD8 entheseal resident T cells. Nature Med. 18, 1069–1076 (2012).

    CAS  Article  PubMed  Google Scholar 

  148. 148

    Chan, J. R. et al. IL-23 stimulates epidermal hyperplasia via TNF and IL-20R2-dependent mechanisms with implications for psoriasis pathogenesis. J. Exp. Med. 203, 2577–2587 (2006).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  149. 149

    Tonel, G. et al. Cutting edge: A critical functional role for IL-23 in psoriasis. J. Immunol. 185, 5688–5691 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  150. 150

    Perera, G. K., Di Meglio, P. & Nestle, F. O. Psoriasis. Annu. Rev. Pathol. 7, 385–422 (2012).

    CAS  Article  PubMed  Google Scholar 

  151. 151

    Villanova, F. et al. Characterization of innate lymphoid cells in human skin and blood demonstrates increase of NKp44+ ILC3 in psoriasis. J. Invest. Dermatol. 134, 984–991 (2014).

    CAS  Article  PubMed  Google Scholar 

  152. 152

    Guttman-Yassky, E. et al. Low expression of the IL-23/Th17 pathway in atopic dermatitis compared to psoriasis. J. Immunol. 181, 7420–7427 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  153. 153

    Rudwaleit, M. et al. The Assessment of SpondyloArthritis International Society classification criteria for peripheral spondyloarthritis and for spondyloarthritis in general. Ann. Rheum. Dis. 70, 25–31 (2011).

    CAS  Article  PubMed  Google Scholar 

  154. 154

    van Echteld, I. et al. Identification of the most common problems by patients with ankylosing spondylitis using the international classification of functioning, disability and health. J. Rheumatol 33, 2475–2483 (2006).

    PubMed  Google Scholar 

  155. 155

    Mielants, H. et al. The evolution of spondyloarthropathies in relation to gut histology. II. Histological aspects. J. Rheumatol 22, 2273–2278 (1995).

    CAS  PubMed  Google Scholar 

  156. 156

    Cotterill, L. et al. Replication and meta-analysis of 13,000 cases defines the risk for interleukin-23 receptor and autophagy-related 16-like 1 variants in Crohn's disease. Can. J. Gastroenterol. 24, 297–302 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  157. 157

    Lesage, S. et al. CARD15/NOD2 mutational analysis and genotype-phenotype correlation in 612 patients with inflammatory bowel disease. Am. J. Hum. Genet. 70, 845–857 (2002).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  158. 158

    Fujino, S. et al. Increased expression of interleukin 17 in inflammatory bowel disease. Gut 52, 65–70 (2003).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  159. 159

    Dige, A. et al. Increased levels of circulating Th17 cells in quiescent versus active Crohn's disease. J. Crohns Colitis 7, 248–255 (2013).

    Article  PubMed  Google Scholar 

  160. 160

    Leonardi, C. et al. Anti-interleukin-17 monoclonal antibody ixekizumab in chronic plaque psoriasis. N. Engl. J. Med. 366, 1190–1199 (2012).

    CAS  Article  PubMed  Google Scholar 

  161. 161

    Rich, P. et al. Secukinumab induction and maintenance therapy in moderate-to-severe plaque psoriasis: a randomized, double-blind, placebo-controlled, phase II regimen-finding study. Br. J. Dermatol. 168, 402–411 (2013).

    CAS  Article  PubMed  Google Scholar 

  162. 162

    Papp, K. A. et al. Brodalumab, an anti-interleukin-17-receptor antibody for psoriasis. N. Engl. J. Med. 366, 1181–1189 (2012). References 160–162 report clinical trials that reveal the remarkable efficacy of IL-17- or IL-17RA-specific antibody therapy for the treatment of psoriasis.

    CAS  Article  PubMed  Google Scholar 

  163. 163

    Papp, K. A. et al. Dose-dependent improvement in chronic plaque psoriasis following treatment with anti-IL-23p19 humanized monoclonal antibody (MK-3222). Late-breaking Research Symposium. 71st Annual Meeting of the American Academy of Dermatology (2013).

  164. 164

    Chiricozzi, A. & Krueger, J. G. IL-17 targeted therapies for psoriasis. Expert Opin. Investig. Drugs 22, 993–1005 (2013).

    CAS  Article  PubMed  Google Scholar 

  165. 165

    Sandborn, W. J. et al. Ustekinumab induction and maintenance therapy in refractory Crohn's disease. N. Engl. J. Med. 367, 1519–1528 (2012).

    CAS  Article  PubMed  Google Scholar 

  166. 166

    Hueber, W. et al. Secukinumab, a human anti-IL-17A monoclonal antibody, for moderate to severe Crohn's disease: unexpected results of a randomised, double-blind placebo-controlled trial. Gut 61, 1693–1700 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  167. 167

    Targan, S. R. et al. A randomized, double-blind, placebo-controlled study to evaluate the safety, tolerability, and efficacy of AMG 827 in subjects with moderate to severe Crohn's disease. 143, e26 (2012).

  168. 168

    Ogawa, A., Andoh, A., Araki, Y., Bamba, T. & Fujiyama, Y. Neutralization of interleukin-17 aggravates dextran sulfate sodium-induced colitis in mice. Clin. Immunol. 110, 55–62 (2004).

    CAS  Article  PubMed  Google Scholar 

  169. 169

    Patel, D. D., Lee, D. M., Kolbinger, F. & Antoni, C. Effect of IL-17A blockade with secukinumab in autoimmune diseases. Ann. Rheum. Dis. 72, Suppl. 2, iii116–iii123 (2013).

    Article  CAS  Google Scholar 

  170. 170

    Garber, K. Anti-IL-17 mAbs herald new options in psoriasis. Nature Biotech. 30, 475–477 (2012).

    CAS  Article  Google Scholar 

  171. 171

    Nakamura, R. et al. Tyk2-signaling plays an important role in host defense against Escherichia coli through IL-23-induced IL-17 production by γδ T cells. J. Immunol. 181, 2071–2075 (2008).

    CAS  Article  PubMed  Google Scholar 

  172. 172

    Ishizaki, M. et al. Tyk2 is a therapeutic target for psoriasis-like skin inflammation. Int. Immunol. 26, 257–267 (2013).

    Article  CAS  PubMed  Google Scholar 

  173. 173

    Solt, L. A. et al. Suppression of TH17 differentiation and autoimmunity by a synthetic ROR ligand. Nature 472, 491–494 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  174. 174

    Huh, J. R. et al. Digoxin and its derivatives suppress TH17 cell differentiation by antagonizing RORγt activity. Nature 472, 486–490 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  175. 175

    Xiao, S. et al. Small-molecule RORγt antagonists inhibit T helper 17 Cell transcriptional network by divergent mechanisms. Immunity 40, 477–489 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  176. 176

    Lee, J. S. & Cua, D. J. The emerging landscape of RORγt biology. Immunity 40, 451–452 (2014).

    CAS  Article  PubMed  Google Scholar 

  177. 177

    Stritesky, G. L., Jameson, S. C. & Hogquist, K. A. Selection of self-reactive T cells in the thymus. Annu. Rev. Immunol. 30, 95–114 (2012).

    CAS  Article  PubMed  Google Scholar 

  178. 178

    Kronenberg, M. Toward an understanding of NKT cell biology: progress and paradoxes. Annu. Rev. Immunol. 23, 877–900 (2005).

    CAS  Article  PubMed  Google Scholar 

  179. 179

    Spits, H. et al. Innate lymphoid cells—a proposal for uniform nomenclature. Nature Rev. Immunol. 13, 145–149 (2013).

    CAS  Article  Google Scholar 

  180. 180

    Plantinga, T. S. et al. Early stop polymorphism in human DECTIN-1 is associated with increased Candida colonization in hematopoietic stem cell transplant recipients. Clin. Infect. Dis. 49, 724–732 (2009).

    CAS  Article  PubMed  Google Scholar 

  181. 181

    Minegishi, Y. et al. Human tyrosine kinase 2 deficiency reveals its requisite roles in multiple cytokine signals involved in innate and acquired immunity. Immunity 25, 745–755 (2006).

    CAS  Article  PubMed  Google Scholar 

  182. 182

    Prando, C. et al. Inherited IL-12p40 deficiency: genetic, immunologic, and clinical features of 49 patients from 30 kindreds. Medicine 92, 109–122 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  183. 183

    de Beaucoudrey, L. et al. Revisiting human IL-12Rβ1 deficiency: a survey of 141 patients from 30 countries. Medicine 89, 381–402 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  184. 184

    Ouederni, M. et al. Clinical features of Candidiasis in patients with inherited interleukin 12 receptor β1 deficiency. Clin. Infect. Dis. 58, 204–213 (2014).

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

S.L.G. was supported by US National Institutes of Health (NIH) grants AI107825 and DE022550. The content of this review is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Daniel J. Cua.

Ethics declarations

Competing interests

S.L.G. has received research grants from Novartis and Janssen, and has consulted for and received travel reimbursements and/or honouraria from Novartis, Amgen, Pfizer, Eli Lilly and Janssen. R.J. and D.J.C. are employed by Merck and Co. A.V.G. declares no competing interests.

Related links

FURTHER INFORMATION

ClinicalTrials.gov

PowerPoint slides

Supplementary information

Supplementary information S1 (table)

Summary of phase II clinical trials of clinical testing of anti-interleukin-23 (IL-23) and anti-IL-17 treatment for psoriasis (PDF 616 kb)

Glossary

Crohn's disease

A type of inflammatory bowel disease that affects any part of the gastrointestinal tract from the mouth to the anus. Symptoms include abdominal pain, bloody diarrhoea, fever and weight loss. Other complications may occur outside the gastrointestinal tract and include anaemia, skin rashes, arthritis, inflammation of the eye and an increased risk of bowel cancer.

Chromatin immunoprecipitation followed by sequencing

(ChIP–seq). A technique used to analyse the interactions between transcription factors and their target DNA. ChIP–seq combines chromatin immunoprecipitation (ChIP) with massively parallel DNA sequencing to identify the specific sequences bound by regulatory proteins.

Hyper-IgE syndrome

An inherited immune deficiency that is usually caused by mutations in signal transducer and activator of transcription 3 (STAT3) and is associated with reduced T helper 17 (TH17) cell frequency. The disease is characterized by elevated levels of serum IgE, eosinophilia, 'cold' staphylococcal abscesses, eczema, pulmonary infections and chronic mucocutaneous candidiasis.

Antimicrobial peptides

Short peptides (typically 12–50 amino acids) with bactericidal and fungicidal activities. Some may also exhibit chemotactic activities.

A20

The product of the tumour necrosis factor-α-induced protein 3 (TNFAIP3) gene. This is a zinc finger-containing protein with E3 ligase and deubiquitylase activity that downregulates signalling by multiple inflammatory effectors.

microRNAs

(miRNAs). Single-stranded RNA molecules of approximately 21–23 nucleotides in length that regulate gene expression.

Autoimmune polyendocrinopathy syndrome 1

(APS1; also known as autoimmune polyendocrinopathy candidiasis ectodermal dystrophy (APECED) syndrome). An inherited autoimmune disorder that affects multiple endocrine tissues and is caused by mutations in the autoimmune regulator (AIRE) gene. The disease is associated with a high incidence of mucocutaneous candidiasis, which is thought to be owing to neutralizing autoantibodies against interleukin-17A (IL-17A), IL-17F and/or IL-22.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gaffen, S., Jain, R., Garg, A. et al. The IL-23–IL-17 immune axis: from mechanisms to therapeutic testing. Nat Rev Immunol 14, 585–600 (2014). https://doi.org/10.1038/nri3707

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing