Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Immune regulation by atypical chemokine receptors

Subjects

Key Points

  • Leukocyte migration is a central component of all physiological and pathological immune and inflammatory responses. Chemokines, functioning through conventional G protein-coupled chemokine receptors, are the key molecules that are involved in coordinating this process.

  • Atypical chemokine receptors (ACKRs) are structurally related to conventional chemokine receptors but are unable to initiate classical chemokine receptor signalling after ligand binding. This family of chemokine receptors currently has four members: ACKR1 (also known as DARC), ACKR2 (also known as D6), ACKR3 (also known as CXCR7) and ACKR4 (also known as CCRL1).

  • ACKRs use a variety of strategies to regulate chemokines and chemokine-driven responses, including chemokine degradation and transport, and chemokine receptor regulation. Endothelial cells of the lymphatic and blood vasculature are prominent sites of ACKR expression.

  • Studies investigating genetic variation in human ACKRs and the effect of ACKR deficiency in mice and zebrafish have showed that some ACKRs have key developmental and homeostatic functions in the immune system and elsewhere.

  • ACKRs have emerged as important regulators of immune and inflammatory responses, infectious disease, and cancer, and could represent plausible therapeutic targets.

Abstract

Chemokines have fundamental roles in regulating immune and inflammatory responses, primarily through their control of leukocyte migration and localization. The biological functions of chemokines are typically mediated by signalling through G protein-coupled chemokine receptors, but chemokines are also bound by a small family of atypical chemokine receptors (ACKRs), the members of which are unified by their inability to initiate classical signalling pathways after ligand binding. These ACKRs are emerging as crucial regulatory components of chemokine networks in a wide range of developmental, physiological and pathological contexts. In this Review, we discuss the biochemical and immunological properties of ACKRs and the potential unifying themes in this family, and we highlight recent studies that identify novel roles for these molecules in development, homeostasis, inflammatory disease, infection and cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Chemokine binding profiles of ACKRs.
Figure 2: Cellular functions of ACKRs.
Figure 3: Models for immune and inflammatory functions of ACKRs in vivo.
Figure 4: Roles for ACKRs in cancer.

Similar content being viewed by others

References

  1. Zlotnik, A. & Yoshie, O. The chemokine superfamily revisited. Immunity 36, 705–716 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Rot, A. & von Andrian, U. H. Chemokines in innate and adaptive host defense: basic chemokinese grammar for immune cells. Annu. Rev. Immunol. 22, 891–928 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Hansell, C. A. H., Hurson, C. E. & Nibbs, R. J. B. DARC and D6: silent partners in chemokine regulation? Immunol. Cell Biol. 89, 197–206 (2011).

    Article  CAS  PubMed  Google Scholar 

  4. Graham, G. J., Locati, M., Mantovani, A., Rot, A. & Thelen, M. The biochemistry and biology of the atypical chemokine receptors. Immunol. Lett. 145, 30–38 (2012).

    Article  CAS  PubMed  Google Scholar 

  5. Bachelerie, F. et al. International Union of Pharmacology. Update on the extended family of chemokine receptors and introducing a new nomenclature for atypical chemokine receptors. Pharmacol. Rev. (in the press).

  6. Mantovani, A., Bonecchi, R. & Locati, M. Tuning inflammation and immunity by chemokine sequestration: decoys and more. Nature Rev. Immunol. 6, 907–918 (2006).

    Article  CAS  Google Scholar 

  7. Gardner, L., Patterson, A. M., Ashton, B. A., Stone, M. A. & Middleton, J. The human Duffy antigen binds selected inflammatory but not homeostatic chemokines. Biochem. Biophys. Res. Commun. 321, 306–312 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Nibbs, R. J., Wylie, S. M., Pragnell, I. B. & Graham, G. J. Cloning and characterization of a novel murine β-chemokine receptor, D6. Comparison to three other related macrophage inflammatory protein-1α-receptors, CCR-1, CCR-3, and CCR-5. J. Biol. Chem. 272, 12495–12504 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. Nibbs, R. J., Wylie, S. M., Yang, J., Landau, N. R. & Graham, G. J. Cloning and characterization of a novel promiscuous human β-chemokine receptor D6. J. Biol. Chem. 272, 32078–32083 (1997).

    Article  CAS  PubMed  Google Scholar 

  10. Bonini, J. A. & Steiner, D. F. Molecular cloning and expression of a novel rat CC-chemokine receptor (rCCR10rR) that binds MCP-1 and MIP-1β with high affinity. DNA Cell Biol. 16, 1023–1030 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Bonecchi, R. et al. Differential recognition and scavenging of native and truncated macrophage-derived chemokine (macrophage-derived chemokine/CC chemokine ligand 22) by the D6 decoy receptor. J. Immunol. 172, 4972–4976 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Savino, B. et al. Recognition versus adaptive up-regulation and degradation of CC chemokines by the chemokine decoy receptor D6 are determined by their N-terminal sequence. J. Biol. Chem. 284, 26207–26215 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Nibbs, R. J., Yang, J., Landau, N. R., Mao, J. H. & Graham, G. J. LD78β, a non-allelic variant of human MIP-1α (LD78α), has enhanced receptor interactions and potent HIV suppressive activity. J. Biol. Chem. 274, 17478–17483 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. Hansell, C. A. H. et al. Universal expression and dual function of the atypical chemokine receptor D6 on innate-like B cells in mice. Blood 117, 5413–5424 (2011). This paper shows expression of functional ACKR2 on innate-like B cells and is the first to describe a steady-state phenotype in ACKR2-deficient mice.

    Article  PubMed  CAS  Google Scholar 

  15. Burns, J. M. et al. A novel chemokine receptor for SDF-1 and I-TAC involved in cell survival, cell adhesion, and tumor development. J. Exp. Med. 203, 2201–2213 (2006). This seminal paper describes the characterization of ACKR3 and its role in tumorigenesis.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Balabanian, K. et al. The chemokine SDF-1/CXCL12 binds to and signals through the orphan receptor RDC1 in T lymphocytes. J. Biol. Chem. 280, 35760–35766 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Townson, J. R. & Nibbs, R. J. B. Characterization of mouse CCX-CKR, a receptor for the lymphocyte-attracting chemokines TECK/mCCL25, SLC/mCCL21 and MIP-3β/mCCL19: comparison to human CCX-CKR. Eur. J. Immunol. 32, 1230–1241 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Gosling, J. et al. Cutting edge: identification of a novel chemokine receptor that binds dendritic cell- and T cell-active chemokines including ELC, SLC, and TECK. J. Immunol. 164, 2851–2856 (2000). This study is the first to identify and characterize human ACKR4.

    Article  CAS  PubMed  Google Scholar 

  19. Watts, A. O. et al. β-arrestin recruitment and G protein signaling by the atypical human chemokine decoy receptor CCX-CKR. J. Biol. Chem. 288, 7169–7181 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Bondue, B., Wittamer, V. & Parmentier, M. Chemerin and its receptors in leukocyte trafficking, inflammation and metabolism. Cytokine Growth Factor Rev. 22, 331–338 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. Leick, M. et al. CCL19 is a specific ligand of the constitutively recycling atypical human chemokine receptor CRAM-B. Immunology 129, 536–546 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Hartmann, T. N. et al. Human B cells express the orphan chemokine receptor CRAM-A/B in a maturation-stage-dependent and CCL5-modulated manner. Immunology 125, 252–262 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. McCulloch, C. V. et al. Multiple roles for the C-terminal tail of the chemokine scavenger D6. J. Biol. Chem. 283, 7972–7982 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Weber, M. et al. The chemokine receptor D6 constitutively traffics to and from the cell surface to internalize and degrade chemokines. Mol. Biol. Cell 15, 2492–2508 (2004). This work provides a detailed in vitro analysis of ACKR2 internalization and recycling during chemokine scavenging.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Galliera, E. et al. β-arrestin-dependent constitutive internalization of the human chemokine decoy receptor D6. J. Biol. Chem. 279, 25590–25597 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Fra, A. M. et al. Cutting edge: scavenging of inflammatory CC chemokines by the promiscuous putatively silent chemokine receptor D6. J. Immunol. 170, 2279–2282 (2003). As the first report of chemokine scavenging by ACKR2, this study helps to establish an important paradigm in the biology of ACKRs.

    Article  CAS  PubMed  Google Scholar 

  27. Madigan, J. et al. Chemokine scavenger D6 is expressed by trophoblasts and AIDS the survival of mouse embryos transferred into allogeneic recipients. J. Immunol. 184, 3202–3212 (2010).

    Article  CAS  PubMed  Google Scholar 

  28. Bonecchi, R. et al. Regulation of D6 chemokine scavenging activity by ligand- and Rab11-dependent surface up-regulation. Blood 112, 493–503 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Borroni, E. M. et al. β-arrestin-dependent activation of the cofilin pathway is required for the scavenging activity of the atypical chemokine receptor D6. Sci. Signal. 6, ra30 (2013).

    Article  PubMed  Google Scholar 

  30. Hoffmann, F. et al. Rapid uptake and degradation of CXCL12 depend on CXCR7 carboxyl-terminal serine/threonine residues. J. Biol. Chem. 287, 28362–28377 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Luker, K. E., Steele, J. M., Mihalko, L. A., Ray, P. & Luker, G. D. Constitutive and chemokine-dependent internalization and recycling of CXCR7 in breast cancer cells to degrade chemokine ligands. Oncogene 29, 4599–4610 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Naumann, U. et al. CXCR7 Functions as a scavenger for CXCL12 and CXCL11. PLoS ONE 5, e9175 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Comerford, I., Milasta, S., Morrow, V., Milligan, G. & Nibbs, R. The chemokine receptor CCX-CKR mediates effective scavenging of CCL19 in vitro. Eur. J. Immunol. 36, 1904–1916 (2006). Using in vitro models, this study is the first to describe ACKR4-mediated scavenging of CCL19.

    Article  CAS  PubMed  Google Scholar 

  34. Heinzel, K., Benz, C. & Bleul, C. C. A silent chemokine receptor regulates steady-state leukocyte homing in vivo. Proc. Natl Acad. Sci. USA 104, 8421–8426 (2007). This report describes the generation of ACKR4–GFP-knock-in mice and uses them to identify cells that express Ackr4 and to show the role of ACKR4 in controlling DC abundance in steady-state skin-draining lymph nodes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Canals, M. et al. Ubiquitination of CXCR7 controls receptor trafficking. PLoS ONE 7, e34192 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Sánchez-Alcañiz, J. A. et al. Cxcr7 controls neuronal migration by regulating chemokine responsiveness. Neuron 69, 77–90 (2011).

    Article  CAS  PubMed  Google Scholar 

  37. Ray, P. et al. Carboxy-terminus of CXCR7 regulates receptor localization and function. Int. J. Biochem. Cell Biol. 44, 669–678 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Rajagopal, S. et al. β-arrestin- but not G protein-mediated signaling by the 'decoy' receptor CXCR7. Proc. Natl Acad. Sci. USA 107, 628–632 (2010). This study is the first to show the ability of ACKR3 to couple to signal transduction pathways after chemokine engagement.

    Article  PubMed  Google Scholar 

  39. Kalatskaya, I. et al. AMD3100 is a CXCR7 ligand with allosteric agonist properties. Mol. Pharmacol. 75, 1240–1247 (2009).

    Article  CAS  PubMed  Google Scholar 

  40. Zabel, B. A. et al. Elucidation of CXCR7-mediated signaling events and inhibition of CXCR4-mediated tumor cell transendothelial migration by CXCR7 ligands. J. Immunol. 183, 3204–3211 (2009).

    Article  CAS  PubMed  Google Scholar 

  41. Luker, K. E., Gupta, M., Steele, J. M., Foerster, B. R. & Luker, G. D. Imaging ligand-dependent activation of CXCR7. Neoplasia 11, 1022–1035 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Mahabaleshwar, H., Tarbashevich, K., Nowak, M., Brand, M. & Raz, E. β-arrestin control of late endosomal sorting facilitates decoy receptor function and chemokine gradient formation. Development 139, 2897–2902 (2012).

    Article  CAS  PubMed  Google Scholar 

  43. Kumar, R. et al. CXCR7 mediated Giα independent activation of ERK and Akt promotes cell survival and chemotaxis in T cells. Cell. Immunol. 272, 230–241 (2011).

    Article  CAS  PubMed  Google Scholar 

  44. Odemis, V., Boosmann, K., Heinen, A., Küry, P. & Engele, J. CXCR7 is an active component of SDF-1 signalling in astrocytes and Schwann cells. J. Cell Sci. 123, 1081–1088 (2010).

    Article  CAS  PubMed  Google Scholar 

  45. Göttle, P. et al. Activation of CXCR7 receptor promotes oligodendroglial cell maturation. Ann. Neurol. 68, 915–924 (2010).

    Article  CAS  PubMed  Google Scholar 

  46. Lipfert, J., Odemis, V. & Engele, J. Grk2 is an essential regulator of CXCR7 signalling in astrocytes. Cell. Mol. Neurobiol. 33, 111–118 (2012).

    Article  CAS  PubMed  Google Scholar 

  47. Singh, R. K. & Lokeshwar, B. L. The IL-8-regulated chemokine receptor CXCR7 stimulates EGFR signaling to promote prostate cancer growth. Cancer Res. 71, 3268–3277 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Liberman, J. et al. Involvement of the CXCR7/CXCR4/CXCL12 axis in the malignant progression of human neuroblastoma. PLoS ONE 7, e43665 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Wang, Y. et al. CXCR4 and CXCR7 have distinct functions in regulating interneuron migration. Neuron 69, 61–76 (2011). References 36 and 49 elegantly show the role of ACKR3 in controlling interneuron migration during mouse brain development.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Odemis, V. et al. The presumed atypical chemokine receptor CXCR7 signals through G(i/o) proteins in primary rodent astrocytes and human glioma cells. Glia 60, 372–381 (2012).

    Article  PubMed  Google Scholar 

  51. Heinrich, E. L., Lee, W., Lu, J., Lowy, A. M. & Kim, J. Chemokine CXCL12 activates dual CXCR4 and CXCR7-mediated signaling pathways in pancreatic cancer cells. J. Trans. Med. 10, 68 (2012).

    Article  CAS  Google Scholar 

  52. Hattermann, K. et al. The chemokine receptor CXCR7 is highly expressed in human glioma cells and mediates antiapoptotic effects. Cancer Res. 70, 3299–3308 (2010).

    Article  CAS  PubMed  Google Scholar 

  53. Costello, C. M. et al. A role for the CXCL12 receptor, CXCR7, in the pathogenesis of human pulmonary vascular disease. Eur. Respir. J. 39, 1415–1424 (2012).

    Article  CAS  PubMed  Google Scholar 

  54. Luker, K. E., Gupta, M. & Luker, G. D. Imaging chemokine receptor dimerization with firefly luciferase complementation. FASEB J. 23, 823–834 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Hartmann, T. N. et al. A crosstalk between intracellular CXCR7 and CXCR4 involved in rapid CXCL12-triggered integrin activation but not in chemokine-triggered motility of human T lymphocytes and CD34+ cells. J. Leukoc. Biol. 84, 1130–1140 (2008).

    Article  CAS  PubMed  Google Scholar 

  56. Décaillot, F. M. et al. CXCR7/CXCR4 heterodimer constitutively recruits β-arrestin to enhance cell migration. J. Biol. Chem. 286, 32188–32197 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Sierro, F. et al. Disrupted cardiac development but normal hematopoiesis in mice deficient in the second CXCL12/SDF-1 receptor, CXCR7. Proc. Natl Acad. Sci. USA 104, 14759–14764 (2007). This study shows the role of ACKR3 in heart development in mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Levoye, A., Balabanian, K., Baleux, F., Bachelerie, F. & Lagane, B. CXCR7 heterodimerizes with CXCR4 and regulates CXCL12-mediated G protein signaling. Blood 113, 6085–6093 (2009).

    Article  CAS  PubMed  Google Scholar 

  59. Chakera, A., Seeber, R. M., John, A. E., Eidne, K. A. & Greaves, D. R. The Duffy antigen/receptor for chemokines exists in an oligomeric form in living cells and functionally antagonizes CCR5 signaling through hetero-oligomerization. Mol. Pharmacol. 73, 1362–1370 (2008).

    Article  CAS  PubMed  Google Scholar 

  60. Rot, A. et al. Cell-autonomous regulation of neutrophil migration by the D6 chemokine decoy receptor. J. Immunol. 190, 6450–6456 (2013).

    Article  PubMed  CAS  Google Scholar 

  61. Zhao, Y. et al. Duffy antigen receptor for chemokines mediates chemokine endocytosis through a macropinocytosis-like process in endothelial cells. PLoS ONE 6, e29624 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Pruenster, M. et al. The Duffy antigen receptor for chemokines transports chemokines and supports their promigratory activity. Nature Immunol. 10, 101–108 (2009).

    Article  CAS  Google Scholar 

  63. Lee, J. S. et al. Duffy antigen facilitates movement of chemokine across the endothelium in vitro and promotes neutrophil transmigration in vitro and in vivo. J. Immunol. 170, 5244–5251 (2003). References 62 and 63 show that ACKR1 can transport chemokines across cells to aid leukocyte transmigration.

    Article  PubMed  CAS  Google Scholar 

  64. Martinez de la Torre, Y. et al. Protection against inflammation- and autoantibody-caused fetal loss by the chemokine decoy receptor D6. Proc. Natl Acad. Sci. USA 104, 2319–2324 (2007). This study shows the importance of ACKR2 in suppressing experimentally induced fetal loss in mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Bordon, Y. et al. The atypical chemokine receptor D6 contributes to the development of experimental colitis. J. Immunol. 182, 5032–5040 (2009).

    Article  PubMed  CAS  Google Scholar 

  66. Kin, N. W., Crawford, D. M., Liu, J., Behrens, T. W. & Kearney, J. F. DNA microarray gene expression profile of marginal zone versus follicular B cells and idiotype positive marginal zone B cells before and after immunization with Streptococcus pneumoniae. J. Immunol. 180, 6663–6674 (2008).

    Article  PubMed  CAS  Google Scholar 

  67. Infantino, S., Moepps, B. & Thelen, M. Expression and regulation of the orphan receptor RDC1 and its putative ligand in human dendritic and B cells. J. Immunol. 176, 2197–2207 (2006).

    Article  CAS  PubMed  Google Scholar 

  68. Berahovich, R. D. et al. CXCR7 protein is not expressed on human or mouse leukocytes. J. Immunol. 185, 5130–5139 (2010).

    Article  CAS  PubMed  Google Scholar 

  69. Humpert, M.-L. et al. Complementary methods provide evidence for the expression of CXCR7 on human B cells. Proteomics 12, 1938–1948 (2012).

    Article  CAS  PubMed  Google Scholar 

  70. Wang, H. et al. The CXCR7 chemokine receptor promotes B-cell retention in the splenic marginal zone and serves as a sink for CXCL12. Blood 119, 465–468 (2011).

    Article  CAS  PubMed  Google Scholar 

  71. Cruz-Orengo, L. et al. CXCR7 influences leukocyte entry into the CNS parenchyma by controlling abluminal CXCL12 abundance during autoimmunity. J. Exp. Med. 208, 327–339 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Winkelmann, R. et al. B cell homeostasis and plasma cell homing controlled by Krüppel-like factor 2. Proc. Natl Acad. Sci. USA 108, 710–715 (2011).

    Article  CAS  PubMed  Google Scholar 

  73. McKimmie, C. S. et al. Hemopoietic cell expression of the chemokine decoy receptor D6 is dynamic and regulated by GATA1. J. Immunol. 181, 3353–3363 (2008).

    Article  CAS  PubMed  Google Scholar 

  74. Vetrano, S. et al. The lymphatic system controls intestinal inflammation and inflammation-associated colon cancer through the chemokine decoy receptor D6. Gut 59, 197–206 (2010).

    Article  PubMed  Google Scholar 

  75. Bazzan, E. et al. Expression of the atypical chemokine receptor D6 in human alveolar macrophages in COPD. Chest 143, 98–106 (2012).

    Article  Google Scholar 

  76. Nibbs, R. J. et al. The β-chemokine receptor D6 is expressed by lymphatic endothelium and a subset of vascular tumors. Am. J. Pathol. 158, 867–877 (2001). This paper describes the first comprehensive analysis of ACKR2 expression in human tissues, identifying LECs as the principal ACKR2-expressing cells.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Malhotra, D. et al. Transcriptional profiling of stroma from inflamed and resting lymph nodes defines immunological hallmarks. Nature Immunol. 13, 499–510 (2012). This study provides a comprehensive transcriptional profile of distinct lymph node stromal cell populations and shows the restricted expression of ACKRs to specific endothelial cell types.

    Article  CAS  Google Scholar 

  78. Di Liberto, D. et al. Role of the chemokine decoy receptor D6 in balancing inflammation, immune activation, and antimicrobial resistance in Mycobacterium tuberculosis infection. J. Exp. Med. 205, 2075–2084 (2008). This is a key paper that describes the importance of ACKR2 in limiting inflammatory responses to microbial infections.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Singh, M. D. et al. Elevated expression of the chemokine-scavenging receptor D6 is associated with impaired lesion development in psoriasis. Am. J. Pathol. 181, 1158–1164 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Nibbs, R. J. B. et al. The atypical chemokine receptor D6 suppresses the development of chemically induced skin tumors. J. Clin. Invest. 117, 1884–1892 (2007). This work is the first to provide evidence of the in vivo tumour suppressor properties of ACKR2.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Wick, N. et al. Lymphatic precollectors contain a novel, specialized subpopulation of podoplanin low, CCL27-expressing lymphatic endothelial cells. Am. J. Pathol. 173, 1202–1209 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Gerrits, H. et al. Early postnatal lethality and cardiovascular defects in CXCR7-deficient mice. Genesis 46, 235–245 (2008).

    Article  CAS  PubMed  Google Scholar 

  83. Neusser, M. A. et al. The chemokine receptor CXCR7 is expressed on lymphatic endothelial cells during renal allograft rejection. Kidney Int. 77, 801–808 (2010).

    Article  CAS  PubMed  Google Scholar 

  84. Watanabe, K. et al. Pathogenic role of CXCR7 in rheumatoid arthritis. Arthritis Rheum. 62, 3211–3220 (2010).

    Article  CAS  PubMed  Google Scholar 

  85. Miao, Z. et al. CXCR7 (RDC1) promotes breast and lung tumor growth in vivo and is expressed on tumor-associated vasculature. Proc. Natl Acad. Sci. USA 104, 15735–15740 (2007). This study provides important insights into the role of ACKR3 in tumorigenesis and its importance in regulating the tumour-associated vasculature.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Luker, K. E. et al. Scavenging of CXCL12 by CXCR7 promotes tumor growth and metastasis of CXCR4-positive breast cancer cells. Oncogene 31, 4750–4758 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Gebauer, F. et al. Prognostic impact of CXCR4 and CXCR7 expression in pancreatic adenocarcinoma. J. Surg. Oncol. 104, 140–145 (2011).

    Article  CAS  PubMed  Google Scholar 

  88. Monnier, J. et al. CXCR7 is up-regulated in human and murine hepatocellular carcinoma and is specifically expressed by endothelial cells. Eur. J. Cancer 48, 138–148 (2012).

    Article  CAS  PubMed  Google Scholar 

  89. Guillemot, E. et al. CXCR7 receptors facilitate the progression of colon carcinoma within lung not within liver. Br. J. Cancer 107, 1944–1949 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Maishi, N. et al. CXCR7: A novel tumor endothelial marker in renal cell carcinoma. Pathol. Int. 62, 309–317 (2012).

    Article  CAS  PubMed  Google Scholar 

  91. Schanz, A. et al. CXCR7 and syndecan-4 are potential receptors for CXCL12 in human cytotrophoblasts. J. Reprod. Immunol. 89, 18–25 (2011).

    Article  CAS  PubMed  Google Scholar 

  92. Wiederholt, T. & Wasmuth, H. E. Genetic variations of the chemokine scavenger receptor D6 are associated with liver inflammation in chronic hepatitis C. Hum. Immunol. 69, 861–866 (2008).

    Article  CAS  PubMed  Google Scholar 

  93. Berres, M.-L. et al. The chemokine scavenging receptor D6 limits acute toxic liver injury in vivo. Biol. Chem. 390, 1039–1045 (2009).

    Article  CAS  PubMed  Google Scholar 

  94. Bunting, M. D. et al. CCX-CKR deficiency alters thymic stroma impairing thymocyte development and promoting autoimmunity. Blood 121, 118–128 (2013). This article describes defects in the thymus of ACKR4-deficient mice and the susceptibility of these mice to spontaneous autoimmunity.

    Article  CAS  PubMed  Google Scholar 

  95. Rode, I. & Boehm, T. Regenerative capacity of adult cortical thymic epithelial cells. Proc. Natl Acad. Sci. USA 109, 3463–3468 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Horuk, R. et al. Expression of chemokine receptors by subsets of neurons in the central nervous system. J. Immunol. 158, 2882–2890 (1997).

    CAS  PubMed  Google Scholar 

  97. Yu, S., Crawford, D., Tsuchihashi, T., Behrens, T. W. & Srivastava, D. The chemokine receptor CXCR7 functions to regulate cardiac valve remodeling. Dev. Dyn. 240, 384–393 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Shimizu, S., Brown, M., Sengupta, R., Penfold, M. E. & Meucci, O. CXCR7 protein expression in human adult brain and differentiated neurons. PLoS ONE 6, e20680 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Tiveron, M.-C., Boutin, C., Daou, P., Moepps, B. & Cremer, H. Expression and function of CXCR7 in the mouse forebrain. J. Neuroimmunol. 224, 72–79 (2010).

    Article  CAS  PubMed  Google Scholar 

  100. Zimmerman, P. A., Ferreira, M. U., Howes, R. E. & Mercereau-Puijalon, O. Red blood cell polymorphism and susceptibility to Plasmodium vivax. Adv. Parasitol. 81, 27–76 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Tournamille, C., Colin, Y., Cartron, J. P. & Le Van Kim, C. Disruption of a GATA motif in the Duffy gene promoter abolishes erythroid gene expression in Duffy-negative individuals. Nature Genet. 10, 224–228 (1995). This study provides the molecular explanation for the Duffy-null phenotype.

    Article  CAS  PubMed  Google Scholar 

  102. Fukuma, N. et al. A role of the Duffy antigen for the maintenance of plasma chemokine concentrations. Biochem. Biophys. Res. Commun. 303, 137–139 (2003).

    Article  CAS  PubMed  Google Scholar 

  103. Mayr, F. B. et al. Duffy antigen modifies the chemokine response in human endotoxemia. Crit. Care Med. 36, 159–165 (2008).

    Article  CAS  PubMed  Google Scholar 

  104. Mayr, F. B. et al. Influence of the Duffy antigen on pharmacokinetics and pharmacodynamics of recombinant monocyte chemoattractant protein (MCP-1, CCL-2) in vivo. Int. J. Immunopathol. Pharmacol. 22, 615–625 (2009).

    Article  CAS  PubMed  Google Scholar 

  105. Jilma-Stohlawetz, P. et al. Fy phenotype and gender determine plasma levels of monocyte chemotactic protein. Transfusion 41, 378–381 (2001).

    Article  CAS  PubMed  Google Scholar 

  106. Darbonne, W. C. et al. Red blood cells are a sink for interleukin 8, a leukocyte chemotaxin. J. Clin. Invest. 88, 1362–1369 (1991).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Luo, H. et al. Cloning, characterization, and mapping of a murine promiscuous chemokine receptor gene: homolog of the human Duffy gene. Genome Res. 7, 932–941 (1997).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Serbina, N. V. & Pamer, E. G. Monocyte emigration from bone marrow during bacterial infection requires signals mediated by the chemokine receptor CCR2. Nature Immunol. 7, 311–317 (2006).

    Article  CAS  Google Scholar 

  109. Cacalano, G. et al. Neutrophil and B cell expansion in mice that lack the murine IL-8 receptor homolog. Science 265, 682–684 (1994).

    Article  CAS  PubMed  Google Scholar 

  110. Schnabel, R. B. et al. Duffy antigen receptor for chemokines (Darc) polymorphism regulates circulating concentrations of monocyte chemoattractant protein-1 and other inflammatory mediators. Blood 115, 5289–5299 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Nalls, M. A. et al. Admixture mapping of white cell count: genetic locus responsible for lower white blood cell count in the Health ABC and Jackson Heart studies. Am. J. Hum. Genet. 82, 81–87 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Reich, D. et al. Reduced neutrophil count in people of African descent is due to a regulatory variant in the Duffy antigen receptor for chemokines gene. PLoS Genet. 5, e1000360 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Crosslin, D. R. et al. Genetic variants associated with the white blood cell count in 13,923 subjects in the eMERGE Network. Hum. Genet. 131, 639–652 (2011). References 111–113 show the striking association between the absence of erythrocyte ACKR1 and reduced neutrophil counts.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Grann, V. R. et al. Duffy (Fy), DARC, and neutropenia among women from the United States, Europe and the Caribbean. Br. J. Haematol. 143, 288–293 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Mei, J. et al. CXCL5 regulates chemokine scavenging and pulmonary host defense to bacterial infection. Immunity 33, 106–117 (2010). This paper reports how steady-state chemokine loading onto erythrocyte ACKR1 can influence the ability of this ACKR to regulate other chemokines during inflammation.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Middleton, J. et al. Transcytosis and surface presentation of IL-8 by venular endothelial cells. Cell 91, 385–395 (1997). This elegant study is the first to provide evidence of chemokine transcytosis in living tissue.

    Article  CAS  PubMed  Google Scholar 

  117. Zarbock, A. et al. Chemokine homeostasis versus chemokine presentation during severe acute lung injury: the other side of the Duffy antigen receptor for chemokines. Am. J. Physiol. Lung Cell. Mol. Physiol. 298, L462–L471 (2010).

    Article  CAS  PubMed  Google Scholar 

  118. Zarbock, A. et al. The Duffy antigen receptor for chemokines in acute renal failure: a facilitator of renal chemokine presentation. Crit. Care Med. 35, 2156–2163 (2007).

    Article  CAS  PubMed  Google Scholar 

  119. Lee, J. S. et al. The Duffy antigen modifies systemic and local tissue chemokine responses following lipopolysaccharide stimulation. J. Immunol. 177, 8086–8094 (2006).

    Article  PubMed  CAS  Google Scholar 

  120. Luo, H., Chaudhuri, A., Zbrzezna, V., He, Y. & Pogo, A. O. Deletion of the murine Duffy gene (Dfy) reveals that the Duffy receptor is functionally redundant. Mol. Cell. Biol. 20, 3097–3101 (2000).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Dawson, T. C. et al. Exaggerated response to endotoxin in mice lacking the Duffy antigen/receptor for chemokines (DARC). Blood 96, 1681–1684 (2000).

    CAS  PubMed  Google Scholar 

  122. Reutershan, J., Harry, B., Chang, D., Bagby, G. J. & Ley, K. DARC on RBC limits lung injury by balancing compartmental distribution of CXC chemokines. Eur. J. Immunol. 39, 1597–1607 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Vielhauer, V. et al. Efficient renal recruitment of macrophages and T cells in mice lacking the duffy antigen/receptor for chemokines. Am. J. Pathol. 175, 119–131 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Novitzky-Basso, I. & Rot, A. Duffy antigen receptor for chemokines and its involvement in patterning and control of inflammatory chemokines. Front. Immunol. 3, 266 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Ansel, K. M., Harris, R. B. S. & Cyster, J. G. CXCL13 is required for B1 cell homing, natural antibody production, and body cavity immunity. Immunity 16, 67–76 (2002).

    Article  CAS  PubMed  Google Scholar 

  126. Savino, B. et al. Control of murine Ly6Chigh monocyte traffic and immunosuppressive activities by atypical chemokine receptor D6. Blood 119, 5250–5260 (2012).

    Article  CAS  PubMed  Google Scholar 

  127. Crosslin, D. R. et al. Genetic variation associated with circulating monocyte count in the eMERGE Network. Hum. Mol. Genet. 22, 2119–2127 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Graham, G. J. & Locati, M. Regulation of the immune and inflammatory responses by the 'atypical' chemokine receptor D6. J. Pathol. 229, 168–175 (2013).

    Article  CAS  PubMed  Google Scholar 

  129. Jamieson, T. et al. The chemokine receptor D6 limits the inflammatory response in vivo. Nature Immunol. 6, 403–411 (2005). This study provides novel insights into the role of ACKR2 in controlling the resolution of inflammation in the skin of mice.

    Article  CAS  Google Scholar 

  130. Martinez de la Torre, Y. et al. Increased inflammation in mice deficient for the chemokine decoy receptor D6. Eur. J. Immunol. 35, 1342–1346 (2005).

    Article  CAS  PubMed  Google Scholar 

  131. Whitehead, G. S. et al. The chemokine receptor D6 has opposing effects on allergic inflammation and airway reactivity. Am. J. Respir. Crit. Care Med. 175, 243–249 (2007).

    Article  CAS  PubMed  Google Scholar 

  132. Codullo, V. et al. An investigation of the inflammatory cytokine and chemokine network in systemic sclerosis. Ann. Rheum. Dis. 70, 1115–1121 (2011).

    Article  CAS  PubMed  Google Scholar 

  133. Alexander-Sefre, F. et al. Clinical value of immunohistochemically detected lymphatic and vascular invasions in clinically staged endometrioid endometrial cancer. Int. J. Gynecol. Cancer 19, 1074–1079 (2009).

    Article  PubMed  Google Scholar 

  134. Lee, K. M. et al. D6 facilitates cellular migration, and fluid flow, to lymph nodes by suppressing lymphatic congestion. Blood 118, 6220–6229 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Lee, K. M., Nibbs, R. J. B. & Graham, G. J. D6: the 'crowd controller' at the immune gateway. Trends Immunol. 34, 7–12 (2012).

    Article  CAS  PubMed  Google Scholar 

  136. Liu, L. et al. Cutting edge: the silent chemokine receptor D6 is required for generating T cell responses that mediate experimental autoimmune encephalomyelitis. J. Immunol. 177, 17–21 (2006).

    Article  CAS  PubMed  Google Scholar 

  137. Cruz-Orengo, L. et al. CXCR7 antagonism prevents axonal injury during experimental autoimmune encephalomyelitis as revealed by in vivo axial diffusivity. J. Neuroinflamm. 8, 170 (2011).

    Article  CAS  Google Scholar 

  138. Mazzinghi, B. et al. Essential but differential role for CXCR4 and CXCR7 in the therapeutic homing of human renal progenitor cells. J. Exp. Med. 205, 479–490 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Bunting, M. D., Comerford, I. & McColl, S. R. Finding their niche: chemokines directing cell migration in the thymus. Immunol. Cell Biol. 89, 185–196 (2010).

    Article  CAS  PubMed  Google Scholar 

  140. Braun, A. et al. Afferent lymph-derived T cells and DCs use different chemokine receptor CCR7-dependent routes for entry into the lymph node and intranodal migration. Nature Immunol. 12, 879–887 (2011).

    Article  CAS  Google Scholar 

  141. Comerford, I. et al. The atypical chemokine receptor CCX-CKR scavenges homeostatic chemokines in circulation and tissues and suppresses Th17 responses. Blood 116, 4130–4140 (2010). This paper is the first to define the consequences of ACKR4 deletion on the development of adaptive immune responses.

    Article  CAS  PubMed  Google Scholar 

  142. Miller, L. H., Mason, S. J., Clyde, D. F. & McGinniss, M. H. The resistance factor to Plasmodium vivax in blacks. The Duffy-blood-group genotype, FyFy. N. Engl. J. Med. 295, 302–304 (1976). This important early work shows the key role that the Duffy blood group determinant has in P. vivax malaria in humans.

    Article  CAS  PubMed  Google Scholar 

  143. Allison, A. C. Genetic control of resistance to human malaria. Curr. Opin. Immunol. 21, 499–505 (2009).

    Article  CAS  PubMed  Google Scholar 

  144. King, C. L. et al. Fya/Fyb antigen polymorphism in human erythrocyte Duffy antigen affects susceptibility to Plasmodium vivax malaria. Proc. Natl Acad. Sci. USA 108, 20113–20118 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Miller, L. H., Mason, S. J., Dvorak, J. A., McGinniss, M. H. & Rothman, I. K. Erythrocyte receptors for (Plasmodium knowlesi) malaria: Duffy blood group determinants. Science 189, 561–563 (1975). This is a seminal paper that provides the first evidence for a role for the Duffy blood group determinant in malaria.

    Article  CAS  PubMed  Google Scholar 

  146. Tung, J. et al. Evolution of a malaria resistance gene in wild primates. Nature 460, 388–391 (2009).

    Article  CAS  PubMed  Google Scholar 

  147. Crosnier, C. et al. Basigin is a receptor essential for erythrocyte invasion by Plasmodium falciparum. Nature 480, 534–537 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. McMorran, B. J. et al. Platelet factor 4 and Duffy antigen required for platelet killing of Plasmodium falciparum. Science 338, 1348–1351 (2012). This recent paper raises the idea that ACKR1, and the chemokine CXCL4, might be important to control P. falciparum infection.

    Article  CAS  PubMed  Google Scholar 

  149. Lauer, S. et al. Vacuolar uptake of host components, and a role for cholesterol and sphingomyelin in malarial infection. EMBO J. 19, 3556–3564 (2000).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Samuel, B. U. et al. The role of cholesterol and glycosylphosphatidylinositol-anchored proteins of erythrocyte rafts in regulating raft protein content and malarial infection. J. Biol. Chem. 276, 29319–29329 (2001).

    Article  CAS  PubMed  Google Scholar 

  151. Szabo, M. C., Soo, K. S., Zlotnik, A. & Schall, T. J. Chemokine class differences in binding to the Duffy antigen-erythrocyte chemokine receptor. J. Biol. Chem. 270, 25348–25351 (1995).

    Article  CAS  PubMed  Google Scholar 

  152. Chaudhuri, A. et al. Expression of the Duffy antigen in K562 cells. Evidence that it is the human erythrocyte chemokine receptor. J. Biol. Chem. 269, 7835–7838 (1994).

    CAS  PubMed  Google Scholar 

  153. Tang, Y.-Q., Yeaman, M. R. & Selsted, M. E. Antimicrobial peptides from human platelets. Infect. Immun. 70, 6524–6533 (2002).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Yeaman, M. R. et al. Modular determinants of antimicrobial activity in platelet factor-4 family kinocidins. Biochim. Biophys. Acta 1768, 609–619 (2007).

    Article  CAS  PubMed  Google Scholar 

  155. Lachgar, A. et al. Binding of HIV-1 to RBCs involves the Duffy antigen receptors for chemokines (DARC). Biomed. Pharmacother. 52, 436–439 (1998).

    Article  CAS  PubMed  Google Scholar 

  156. He, W. et al. Duffy antigen receptor for chemokines mediates trans-infection of HIV-1 from red blood cells to target cells and affects HIV-AIDS susceptibility. Cell Host Microbe 4, 52–62 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Kulkarni, H. et al. The Duffy-null state is associated with a survival advantage in leukopenic HIV-infected persons of African ancestry. Blood 114, 2783–2792 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  158. Horne, K. C. et al. Duffy antigen polymorphisms do not alter progression of HIV in African Americans in the MACS cohort. Cell Host Microbe 5, 415–419 (2009).

    Article  CAS  PubMed  Google Scholar 

  159. Julg, B. et al. Lack of Duffy antigen receptor for chemokines: no influence on HIV disease progression in an African treatment-naive population. Cell Host Microbe 5, 413–415; author reply 418–419 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  160. Walley, N. M. et al. The Duffy antigen receptor for chemokines null promoter variant does not influence HIV-1 acquisition or disease progression. Cell Host Microbe 5, 408–410; author reply 418–419 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Winkler, C. A., An, P., Johnson, R., Nelson, G. W. & Kirk, G. Expression of Duffy antigen receptor for chemokines (DARC) has no effect on HIV-1 acquisition or progression to AIDS in African Americans. Cell Host Microbe 5, 411–413; author reply 418–419 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Neil, S. J. D. et al. The promiscuous CC chemokine receptor D6 is a functional coreceptor for primary isolates of human immunodeficiency virus type 1 (HIV-1) and HIV-2 on astrocytes. J. Virol. 79, 9618–9624 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  163. Shimizu, N. et al. A putative G protein-coupled receptor, RDC1, is a novel coreceptor for human and simian immunodeficiency viruses. J. Virol. 74, 619–626 (2000).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. Wiederholt, T. et al. Genetic variations of the chemokine scavenger receptor D6 are associated with liver inflammation in chronic hepatitis C. Hum. Immunol. 69, 861–866 (2008).

    Article  CAS  PubMed  Google Scholar 

  165. Balkwill, F. Cancer and the chemokine network. Nature Rev. Cancer 4, 540–550 (2004).

    Article  CAS  Google Scholar 

  166. Shen, H., Schuster, R., Stringer, K. F., Waltz, S. E. & Lentsch, A. B. The Duffy antigen/receptor for chemokines (DARC) regulates prostate tumor growth. FASEB J. 20, 59–64 (2006).

    Article  CAS  PubMed  Google Scholar 

  167. Addison, C. L., Belperio, J. A., Burdick, M. D. & Strieter, R. M. Overexpression of the duffy antigen receptor for chemokines (DARC) by NSCLC tumor cells results in increased tumor necrosis. BMC Cancer 4, 28 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  168. Wang, J. H. et al. Enhanced expression of Duffy antigen receptor for chemokines by breast cancer cells attenuates growth and metastasis potential. Oncogene 25, 7201–7211 (2006).

    Article  CAS  PubMed  Google Scholar 

  169. Horton, L. W., Yu, Y., Zaja-Milatovic, S., Strieter, R. M. & Richmond, A. Opposing roles of murine duffy antigen receptor for chemokine and murine CXC chemokine receptor-2 receptors in murine melanoma tumor growth. Cancer Res. 67, 9791–9799 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  170. Elson, J. K. et al. The Duffy antigen/receptor for chemokines (DARC) and prostate-cancer risk among Jamaican men. J. Immigr. Minor. Health 13, 36–41 (2010).

    Article  Google Scholar 

  171. Bandyopadhyay, S. et al. Interaction of KAI1 on tumor cells with DARC on vascular endothelium leads to metastasis suppression. Nature Med. 12, 933–938 (2006).

    Article  CAS  PubMed  Google Scholar 

  172. Schneider, C. et al. Adaptive immunity suppresses formation and progression of diethylnitrosamine-induced liver cancer. Gut 61, 1733–1743 (2012).

    Article  PubMed  CAS  Google Scholar 

  173. Wu, F.-Y. et al. Chemokine decoy receptor D6 plays a negative role in human breast cancer. Mol. Cancer Res. 6, 1276–1288 (2008).

    Article  CAS  PubMed  Google Scholar 

  174. McKimmie, C. S. et al. An analysis of the function and expression of D6 on lymphatic endothelial cells. Blood 121, 3768–3777 (2013).

    Article  CAS  PubMed  Google Scholar 

  175. Cancian, L., Hansen, A. & Boshoff, C. Cellular origin of Kaposi's sarcoma and Kaposi's sarcoma-associated herpesvirus-induced cell reprogramming. Trends Cell Biol. 23, 421–432 (2013).

    Article  CAS  PubMed  Google Scholar 

  176. Ma, M., Ye, J. Y., Deng, R., Dee, C. M. & Chan, G. C.-F. Mesenchymal stromal cells may enhance metastasis of neuroblastoma via SDF-1/CXCR4 and SDF-1/CXCR7 signaling. Cancer Lett. 312, 1–10 (2011).

    Article  CAS  PubMed  Google Scholar 

  177. Calatozzolo, C. et al. Expression of the new CXCL12 receptor, CXCR7, in gliomas. Cancer Biol. Ther. 11, 242–253 (2011).

    Article  CAS  PubMed  Google Scholar 

  178. Zheng, K. et al. Chemokine receptor CXCR7 regulates the invasion, angiogenesis and tumor growth of human hepatocellular carcinoma cells. J. Exp. Clin. Cancer Res. 29, 31 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  179. Xue, T.-C. et al. Down-regulation of CXCR7 inhibits the growth and lung metastasis of human hepatocellular carcinoma cells with highly metastatic potential. Exp. Ther. Med. 3, 117–123 (2012).

    Article  CAS  PubMed  Google Scholar 

  180. Yao, X., Zhou, L., Han, S. & Chen, Y. High expression of CXCR4 and CXCR7 predicts poor survival in gallbladder cancer. J. Int. Med. Res. 39, 1253–1264 (2011).

    Article  CAS  PubMed  Google Scholar 

  181. Iwakiri, S. et al. Higher expression of chemokine receptor CXCR7 is linked to early and metastatic recurrence in pathological stage I nonsmall cell lung cancer. Cancer 115, 2580–2593 (2009).

    Article  CAS  PubMed  Google Scholar 

  182. Yates, T. J. et al. C-X-C chemokine receptor 7: a functionally associated molecular marker for bladder cancer. Cancer 119, 61–71 (2013).

    Article  CAS  PubMed  Google Scholar 

  183. Hao, M. et al. Role of chemokine receptor CXCR7 in bladder cancer progression. Biochem. Pharmacol. 84, 204–214 (2012).

    Article  CAS  PubMed  Google Scholar 

  184. Liu, Z. et al. Expression of stromal cell-derived factor 1 and CXCR7 in papillary thyroid carcinoma. Endocr. Pathol. 23, 247–253 (2012).

    Article  CAS  PubMed  Google Scholar 

  185. Hassan, S. et al. The influence of tumor-host interactions in the stromal cell-derived factor-1/CXCR4 ligand/receptor axis in determining metastatic risk in breast cancer. Am. J. Pathol. 175, 66–73 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  186. Schrevel, M. et al. CXCR7 expression is associated with disease-free and disease-specific survival in cervical cancer patients. Br. J. Cancer 106, 1520–1525 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  187. Wang, J. et al. The role of CXCR7/RDC1 as a chemokine receptor for CXCL12/SDF-1 in prostate cancer. J. Biol. Chem. 283, 4283–4294 (2008).

    Article  CAS  PubMed  Google Scholar 

  188. Hernandez, L., Magalhaes, M. A. O., Coniglio, S. J., Condeelis, J. S. & Segall, J. E. Opposing roles of CXCR4 and CXCR7 in breast cancer metastasis. Breast Cancer Res. 13, R128 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  189. Zabel, B. A., Lewén, S., Berahovich, R. D., Jaen, J. C. & Schall, T. J. The novel chemokine receptor CXCR7 regulates trans-endothelial migration of cancer cells. Mol. Cancer 10, 73 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  190. Nomiyama, H., Osada, N. & Yoshie, O. Systematic classification of vertebrate chemokines based on conserved synteny and evolutionary history. Genes Cells 18, 1–16 (2013).

    Article  CAS  PubMed  Google Scholar 

  191. Zlotnik, A. & Yoshie, O. Chemokines: a new classification system and their role in immunity. Immunity 12, 121–127 (2000).

    Article  CAS  PubMed  Google Scholar 

  192. David, N. B. et al. Molecular basis of cell migration in the fish lateral line: role of the chemokine receptor CXCR4 and of its ligand, SDF1. Proc. Natl Acad. Sci. USA 99, 16297–16302 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Valentin, G., Haas, P. & Gilmour, D. The chemokine SDF1a coordinates tissue migration through the spatially restricted activation of Cxcr7 and Cxcr4b. Curr. Biol. 17, 1026–1031 (2007).

    Article  CAS  PubMed  Google Scholar 

  194. Dambly-Chaudière, C., Cubedo, N. & Ghysen, A. Control of cell migration in the development of the posterior lateral line: antagonistic interactions between the chemokine receptors CXCR4 and CXCR7/RDC1. BMC Dev. Biol. 7, 23 (2007). References 193 and 194 show how CXCL12, CXCR4 and ACKR3 work together to control collective cell migration during the development of the lateral line in zebrafish.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  195. Boldajipour, B. et al. Control of chemokine-guided cell migration by ligand sequestration. Cell 132, 463–473 (2008). This elegant study shows the effect of CXCL12 scavenging by ACKR3 on CXCR4-driven primordial germ cell migration during zebrafish embryogenesis.

    Article  CAS  PubMed  Google Scholar 

  196. Nagasawa, T. et al. Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature 382, 635–638 (1996).

    Article  CAS  PubMed  Google Scholar 

  197. Zou, Y. R., Kottmann, A. H., Kuroda, M., Taniuchi, I. & Littman, D. R. Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature 393, 595–599 (1998).

    Article  CAS  PubMed  Google Scholar 

  198. Haege, S. et al. CXC-chemokine receptor 7 (CXCR7) regulates CXCR4 protein expression and capillary tuft development in mouse kidney. PLoS ONE 7, e42814 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  199. Cubedo, N., Cerdan, E., Sapède, D. & Rossel, M. CXCR4 and CXCR7 cooperate during tangential migration of facial motoneurons. Mol. Cell. Neurosci. 40, 474–484 (2009).

    Article  CAS  PubMed  Google Scholar 

  200. Zhu, B. et al. CXCL12 enhances human neural progenitor cell survival through a CXCR7- and CXCR4- mediated endocytotic signaling pathway. Stem Cells 30, 2571–2583 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

Work in the authors's laboratories is supported by a programme grant from the UK Medical Research Council. G.J.G. is also the recipient of a Wellcome Trust Senior Investigator Award.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Robert J. B. Nibbs or Gerard J. Graham.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

FURTHER INFORMATION

Immunological Genome Project

PowerPoint slides

Glossary

Chemerin

A protease-activated chemoattractant protein that induces leukocyte migration during inflammation through the seven transmembrane-spanning G protein-coupled chemerin receptor.

Transcytosis

The transport of intact macromolecules across cells.

DRYLAIV motif

The amino acid sequence DRYLAIV (Asp-Arg-Tyr-Leu-Ala-Ile-Val), or subtle variations of that sequence, is found at the junction of the third transmembrane domain and the second intracellular loop in conventional chemokine receptors. It has a crucial role in coupling these receptors to intracellular signal transduction pathways after chemokine engagement.

Marginal zone B cells

A distinct lineage of B cells that reside in the splenic marginal zone of mice and that are involved in, amongst other things, the rapid T cell-independent production of antibodies in response to blood-borne infection.

B1 B cells

A distinct subclass of B cells that dominate the B cell compartment of the body cavities of mice and that are involved in the rapid T cell-independent production of germline antibodies in response to infection and immunization.

Trophoblasts

Fetal-derived cells that form the interface between the mother and the developing fetus. They form the outer surface of the early embryo, give rise to the fetal placenta, invade the maternal decidua and contribute to the formation of the gestational membranes. Trophoblasts that line placental villi fuse to form the syncytiotrophoblast layer through which gases and nutrients pass to ensure fetal survival.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nibbs, R., Graham, G. Immune regulation by atypical chemokine receptors. Nat Rev Immunol 13, 815–829 (2013). https://doi.org/10.1038/nri3544

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri3544

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing