Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Innovation
  • Published:

Strategies to discover regulatory circuits of the mammalian immune system

Abstract

Recent advances in technologies for genome- and proteome-scale measurements and perturbations promise to accelerate discovery in every aspect of biology and medicine. Although such rapid technological progress provides a tremendous opportunity, it also demands that we learn how to use these tools effectively. One application with great potential to enhance our understanding of biological systems is the unbiased reconstruction of genetic and molecular networks. Cells of the immune system provide a particularly useful model for developing and applying such approaches. Here, we review approaches for the reconstruction of signalling and transcriptional networks, with a focus on applications in the mammalian innate immune system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Immune cell activation, cell states and network reconstruction.
Figure 2: An overview of the proposed network reconstruction strategy.
Figure 3: Future clinical applications.

Similar content being viewed by others

References

  1. Haining, W. N. & Wherry, E. J. Integrating genomic signatures for immunologic discovery. Immunity 32, 152–161 (2010).

    Article  CAS  Google Scholar 

  2. Pascual, V., Chaussabel, D. & Banchereau, J. A genomic approach to human autoimmune diseases. Annu. Rev. Immunol. 28, 535–571 (2010).

    Article  CAS  Google Scholar 

  3. Berry, M. P. et al. An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis. Nature 466, 973–977 (2010).

    Article  CAS  Google Scholar 

  4. Diamond, D. L. et al. Temporal proteome and lipidome profiles reveal hepatitis C virus-associated reprogramming of hepatocellular metabolism and bioenergetics. PLoS Pathog. 6, e1000719 (2010).

    Article  Google Scholar 

  5. Querec, T. D. et al. Systems biology approach predicts immunogenicity of the yellow fever vaccine in humans. Nature Immunol. 10, 116–125 (2009).

    Article  CAS  Google Scholar 

  6. Alon, U. An Introduction to Systems Biology: Design Principles of Biological Circuits (Chapman & Hall/CRC Press, Boca Raton, Florida, 2007).

    Google Scholar 

  7. Barabasi, A. L. & Oltvai, Z. N. Network biology: understanding the cell's functional organization. Nature Rev. Genet. 5, 101–113 (2004).

    CAS  Google Scholar 

  8. Hyduke, D. R. & Palsson, B. O. Towards genome-scale signalling network reconstructions. Nature Rev. Genet. 11, 297–307 (2010).

    Article  CAS  Google Scholar 

  9. Kitano, H. Biological robustness. Nature Rev. Genet. 5, 826–837 (2004).

    Article  CAS  Google Scholar 

  10. Kim, H. D., Shay, T., O'Shea, E. K. & Regev, A. Transcriptional regulatory circuits: predicting numbers from alphabets. Science 325, 429–432 (2009).

    Article  CAS  Google Scholar 

  11. Istrail, S. & Davidson, E. H. Logic functions of the genomic cis-regulatory code. Proc. Natl Acad. Sci. USA 102, 4954–4959 (2005).

    Article  CAS  Google Scholar 

  12. Mason, P. B. Jr & Lis, J. T. Cooperative and competitive protein interactions at the hsp70 promoter. J. Biol. Chem. 272, 33227–33233 (1997).

    Article  CAS  Google Scholar 

  13. Litvak, V. et al. Function of C/EBPδ in a regulatory circuit that discriminates between transient and persistent TLR4-induced signals. Nature Immunol. 10, 437–443 (2009).

    Article  CAS  Google Scholar 

  14. Ramsey, S. A. et al. Uncovering a macrophage transcriptional program by integrating evidence from motif scanning and expression dynamics. PLoS Comput. Biol. 4, e1000021 (2008).

    Article  Google Scholar 

  15. Gilchrist, M. et al. Systems biology approaches identify ATF3 as a negative regulator of Toll-like receptor 4. Nature 441, 173–178 (2006).

    Article  CAS  Google Scholar 

  16. Novershtern, N. et al. Densely interconnected transcriptional circuits control cell states in human hematopoiesis. Cell 144, 296–309 (2011).

    Article  CAS  Google Scholar 

  17. Suzuki, H. et al. The transcriptional network that controls growth arrest and differentiation in a human myeloid leukemia cell line. Nature Genet. 41, 553–562 (2009).

    Article  CAS  Google Scholar 

  18. Schmidt, D. et al. Five-vertebrate ChIP-seq reveals the evolutionary dynamics of transcription factor binding. Science 328, 1036–1040 (2010).

    Article  CAS  Google Scholar 

  19. Badis, G. et al. Diversity and complexity in DNA recognition by transcription factors. Science 324, 1720–1723 (2009).

    Article  CAS  Google Scholar 

  20. Capaldi, A. P. et al. Structure and function of a transcriptional network activated by the MAPK Hog1. Nature Genet. 40, 1300–1306 (2008).

    Article  CAS  Google Scholar 

  21. Workman, C. T. et al. A systems approach to mapping DNA damage response pathways. Science 312, 1054–1059 (2006).

    Article  CAS  Google Scholar 

  22. Ernst, J. et al. Mapping and analysis of chromatin state dynamics in nine human cell types. Nature 473, 43–49 (2011).

    Article  CAS  Google Scholar 

  23. McLean, C. Y. et al. GREAT improves functional interpretation of cis-regulatory regions. Nature Biotech. 28, 495–501 (2010).

    Article  CAS  Google Scholar 

  24. Raveh-Sadka, T., Levo, M. & Segal, E. Incorporating nucleosomes into thermodynamic models of transcription regulation. Genome Res. 19, 1480–1496 (2009).

    Article  CAS  Google Scholar 

  25. Segal, E., Raveh-Sadka, T., Schroeder, M., Unnerstall, U. & Gaul, U. Predicting expression patterns from regulatory sequence in Drosophila segmentation. Nature 451, 535–540 (2008).

    Article  CAS  Google Scholar 

  26. Hu, Z., Killion, P. J. & Iyer, V. R. Genetic reconstruction of a functional transcriptional regulatory network. Nature Genet. 39, 683–687 (2007).

    Article  CAS  Google Scholar 

  27. Bandyopadhyay, S. et al. Rewiring of genetic networks in response to DNA damage. Science 330, 1385–1389 (2010).

    Article  CAS  Google Scholar 

  28. Costanzo, M. et al. The genetic landscape of a cell. Science 327, 425–431 (2010).

    Article  CAS  Google Scholar 

  29. Amit, I. et al. Unbiased reconstruction of a mammalian transcriptional network mediating pathogen responses. Science 326, 257–263 (2009).

    Article  CAS  Google Scholar 

  30. Chevrier, N. et al. Systematic discovery of TLR signaling components delineates viral-sensing circuits. Cell 147, 853–867 (2011).

    Article  CAS  Google Scholar 

  31. Geiss, G. K. et al. Direct multiplexed measurement of gene expression with color-coded probe pairs. Nature Biotech. 26, 317–325 (2008).

    Article  CAS  Google Scholar 

  32. Dolken, L. et al. High-resolution gene expression profiling for simultaneous kinetic parameter analysis of RNA synthesis and decay. RNA 14, 1959–1972 (2008).

    Article  Google Scholar 

  33. Schwanhausser, B. et al. Global quantification of mammalian gene expression control. Nature 473, 337–342 (2011).

    Article  Google Scholar 

  34. Rabani, M. et al. Metabolic labeling of RNA uncovers principles of RNA production and degradation dynamics in mammalian cells. Nature Biotech. 29, 436–442 (2011).

    Article  CAS  Google Scholar 

  35. Bendall, S. C. et al. Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science 332, 687–696 (2011).

    Article  CAS  Google Scholar 

  36. Picotti, P., Bodenmiller, B., Mueller, L. N., Domon, B. & Aebersold, R. Full dynamic range proteome analysis of S. cerevisiae by targeted proteomics. Cell 138, 795–806 (2009).

    Article  CAS  Google Scholar 

  37. Cox, R. S., Dunlop, M. J. & Elowitz, M. B. A synthetic three-color scaffold for monitoring genetic regulation and noise. J. Biol. Eng. 4, 10 (2010).

    Article  Google Scholar 

  38. Gertz, J., Siggia, E. D. & Cohen, B. A. Analysis of combinatorial cis-regulation in synthetic and genomic promoters. Nature 457, 215–218 (2009).

    Article  CAS  Google Scholar 

  39. Cox, R. S., Surette, M. G. & Elowitz, M. B. Programming gene expression with combinatorial promoters. Mol. Syst. Biol. 3, 145 (2007).

    PubMed  PubMed Central  Google Scholar 

  40. Zeevi, D. et al. Compensation for differences in gene copy number among yeast ribosomal proteins is encoded within their promoters. Genome Res. 18 Oct 2011 (doi:10.1101/gr.119669.110).

  41. Le Provost, F. et al. Zinc finger nuclease technology heralds a new era in mammalian transgenesis. Trends Biotechnol. 28, 134–141 (2010).

    Article  CAS  Google Scholar 

  42. Zhang, F. et al. Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription. Nature Biotech. 29, 149–153 (2011).

    Article  Google Scholar 

  43. Szita, N., Polizzi, K., Jaccard, N. & Baganz, F. Microfluidic approaches for systems and synthetic biology. Curr. Opin. Biotechnol. 21, 517–523 (2010).

    Article  CAS  Google Scholar 

  44. Zhou, L., Chong, M. M. & Littman, D. R. Plasticity of CD4+ T cell lineage differentiation. Immunity 30, 646–655 (2009).

    Article  CAS  Google Scholar 

  45. Astier, A. L. et al. RNA interference screen in primary human T cells reveals FLT3 as a modulator of IL-10 levels. J. Immunol. 184, 685–693 (2010).

    Article  CAS  Google Scholar 

  46. Heng, T. S. & Painter, M. W. The Immunological Genome Project: networks of gene expression in immune cells. Nature Immunol. 9, 1091–1094 (2008).

    Article  CAS  Google Scholar 

  47. Guttman, M. et al. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 458, 223–227 (2009).

    Article  CAS  Google Scholar 

  48. Lee, J. T. Lessons from X-chromosome inactivation: long ncRNA as guides and tethers to the epigenome. Genes Dev. 23, 1831–1842 (2009).

    Article  CAS  Google Scholar 

  49. Pang, K. C. et al. Genome-wide identification of long noncoding RNAs in CD8+ T cells. J. Immunol. 182, 7738–7748 (2009).

    Article  CAS  Google Scholar 

  50. Huarte, M. et al. A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell 142, 409–419 (2010).

    Article  CAS  Google Scholar 

  51. Khalil, A. M. et al. Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc. Natl Acad. Sci. USA 106, 11667–11672 (2009).

    Article  CAS  Google Scholar 

  52. Wang, K. C. et al. A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature 472, 120–124 (2011).

    Article  CAS  Google Scholar 

  53. Willingham, A. T. et al. A strategy for probing the function of noncoding RNAs finds a repressor of NFAT. Science 309, 1570–1573 (2005).

    Article  CAS  Google Scholar 

  54. Guttman, M. et al. lincRNAs act in the circuitry controlling pluripotency and differentiation. Nature 477, 295–300 (2011).

    Article  CAS  Google Scholar 

  55. Carette, J. E. et al. Ebola virus entry requires the cholesterol transporter Niemann-Pick C1. Nature 477, 340–343 (2011).

    Article  CAS  Google Scholar 

  56. Xavier, R. J. & Rioux, J. D. Genome-wide association studies: a new window into immune-mediated diseases. Nature Rev. Immunol. 8, 631–643 (2008).

    Article  CAS  Google Scholar 

  57. Musunuru, K. et al. From noncoding variant to phenotype via SORT1 at the 1p13 cholesterol locus. Nature 466, 714–719 (2010).

    Article  CAS  Google Scholar 

  58. Heinig, M. et al. A trans-acting locus regulates an anti-viral expression network and type 1 diabetes risk. Nature 467, 460–464 (2010).

    Article  CAS  Google Scholar 

  59. Schadt, E. E. Molecular networks as sensors and drivers of common human diseases. Nature 461, 218–223 (2009).

    Article  CAS  Google Scholar 

  60. Cox, J. & Mann, M. Quantitative, high-resolution proteomics for data-driven systems biology. Annu. Rev. Biochem. 80, 273–299 (2011).

    Article  CAS  Google Scholar 

  61. Spurgeon, S. L., Jones, R. C. & Ramakrishnan, R. High throughput gene expression measurement with real time PCR in a microfluidic dynamic array. PLoS ONE 3, e1662 (2008).

    Article  Google Scholar 

  62. Peck, D. et al. A method for high-throughput gene expression signature analysis. Genome Biol. 7, R61 (2006).

    Article  Google Scholar 

  63. Dunbar, S. A. Applications of Luminex xMAP technology for rapid, high-throughput multiplexed nucleic acid detection. Clin. Chim. Acta 363, 71–82 (2006).

    Article  CAS  Google Scholar 

  64. Ram, O. et al. Combinatorial patterning of chromatin regulators uncovered by genome-wide location analysis in human cells. Cell (in the press).

  65. Wolf-Yadlin, A., Sevecka, M. & MacBeath, G. Dissecting protein function and signaling using protein microarrays. Curr. Opin. Chem. Biol. 13, 398–405 (2009).

    Article  CAS  Google Scholar 

  66. Ciaccio, M. F., Wagner, J. P., Chuu, C. P., Lauffenburger, D. A. & Jones, R. B. Systems analysis of EGF receptor signaling dynamics with microwestern arrays. Nature Methods 7, 148–155 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the US National Institutes of Health, the Howard Hughes Medical Institute, the Human Frontier Science Program and the Broad Institute for funding the work presented here.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Ido Amit's homepage

Aviv Regev's homepage

Nir Hacohen's homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amit, I., Regev, A. & Hacohen, N. Strategies to discover regulatory circuits of the mammalian immune system. Nat Rev Immunol 11, 873–880 (2011). https://doi.org/10.1038/nri3109

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri3109

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing