Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

FOXP3 modifies the phenotypic and functional properties of regulatory T cells

Abstract

In the periphery, tolerance to self antigens is mainly mediated by the CD4+CD25+FOXP3+ subset of regulatory T cells, which can suppress the activity of autoreactive T cells that have escaped deletion in the thymus. The essential role of the transcription factor FOXP3 (forkhead box P3) in the development and function of these regulatory T cells has been well documented. It is also clear that regulatory T cells and effector T cells respond differently to T-cell receptor stimulation. In this Opinion article, we propose that these differences in responses are mediated by FOXP3, and are manifested by alterations in biochemical signalling pathways, patterns of gene expression and the appearance of cell-surface homing receptors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Functional domains of FOXP3.
Figure 2: Models for FOXP3-mediated regulation of T-cell activation.
Figure 3: TReg cells express various homing receptors to direct migration to different tissues and microenvironments.

Similar content being viewed by others

References

  1. Shevach, E. M. From vanilla to 28 flavors: multiple varieties of T regulatory cells. Immunity 25, 195–201 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Shevach, E. M. et al. The lifestyle of naturally occurring CD4+CD25+Foxp3+ regulatory T cells. Immunol. Rev. 212, 60–73 (2006).

    CAS  PubMed  Google Scholar 

  3. Bluestone, J. A. & Abbas, A. K. Natural versus adapted regulatory T cells. Nature Rev. Immunol. 3, 253–257 (2003).

    Article  CAS  Google Scholar 

  4. Fontenot, J. D. & Rudensky, A. Y. A well adapted regulatory contrivance: regulatory T cell development and the forkhead family transcription factor Foxp3. Nature Immunol. 6, 331–337 (2005).

    Article  CAS  Google Scholar 

  5. Sakaguchi, S. Regulatory T cells: key controllers of immunologic self-tolerance. Cell 101, 455–458 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Shevach, E. M. Regulatory T cells in autoimmunity. Annu. Rev. Immunol. 18, 423–449 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Godfrey, V., Wilkinson, J. E. & Russell, L. B. X-linked lymphoreticular disease in the scurfy (sf) mutant mouse. Am. J. Pathol. 138, 1379–1387 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Brunkow, M. E. et al. Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nature Genet. 27, 68–73 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Bennett, C. L. et al. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutation of FOXP3. Nature Genet. 27, 20–21 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Gambineri, E., Torgerson, T. R. & Ochs, H. D. Immune dysregulation, polyendocrinopathy, enteropathy, and X-linked inheritance (IPEX), a syndrome of systemic autoimmunity caused by mutations of FOXP3, a critical regulator of T cell homeostasis. Curr. Opin. Rheumatol. 15, 430–435 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Sakaguchi, S. Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self. Nature Immunol. 6, 345–352 (2005).

    Article  CAS  Google Scholar 

  12. Torgerson, T. R. & Ochs, H. D. Immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome: a model of immune dysregulation. Curr. Opin. Allergy Clin. Immunol. 2, 481–487 (2002).

    Article  PubMed  Google Scholar 

  13. Chae, W.-J., Henegariu, O., Lee, S.-K. & Bothwell, A. L. M. The mutant leucine-zipper domain impairs both dimerization and suppressive function of Foxp3 in T cells. Proc. Natl Acad. Sci. USA 103, 9631–9636 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lopes, J. E. et al. Analysis of FOXP3 reveals multiple domains required for its function as a transcriptional repressor. J. Immunol. 177, 3133–3142 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Wang, B., Lin, D., Li, C. & Tucker, P. W. Multiple domains define the expression and regulatory properties of Foxp1 forkhead transcriptional repressors. J. Biol. Chem. 278, 24259–24268 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Wu, Y. et al. FOXP3 controls regulatory T cell function through cooperation with NFAT. Cell 126, 375–387 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Chen, C., Rowell, E. A., Thomas, R. M., Hancock, W. W. & Wells, A. D. Transcriptional regulation by FOXP3 is associated with direct promoter occupancy and modulation of histone acetylation. J. Biol. Chem. 281, 36828–36834 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Bettelli, E., Dastrange, M. & Oukka, M. Foxp3 interacts with nuclear factor of activated T cells and NF-κB to repress cytokine gene expression and effector functions of T helper cells. Proc. Natl Acad. Sci. USA 102, 5138–5143 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Li, B. et al. FOXP3 ensembles in T-cell regulation. Immunol. Rev. 212, 99–113 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Zheng, Y. et al. Genome-wide analysis of Foxp3 target genes in developing and mature regulatory T cells. Nature 445, 936–940 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Marson, A. et al. Foxp3 occupancy and regulation of key target genes during T-cell stimulation. Nature 445, 931–935 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Liu, W. et al. CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells. J. Exp. Med. 203, 1701–1711 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gavin, M. A. et al. Foxp3-dependent programme of regulatory T-cell differentiation. Nature 445, 771–775 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Lin, W. et al. Regulatory T cell development in the absence of functional Foxp3. Nature Immunol. 2 Feb 2007 (doi: 10.1038/ni1445).

  25. Kim, J. M., Rasmussen, J. P. & Rudensky, A. Y. Regulatory T cells prevent catastrophic autoimmunity throughout the lifespan of mice. Nature Immunol. 8, 191–197 (2007).

    Article  CAS  Google Scholar 

  26. Lahl, K. et al. Selective depletion of Foxp3+ regulatory T cells induces a scurfy-like disease. J. Exp. Med. 204, 57–63 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Crabtree, G. R. & Clipstone, N. A. Signal transmission between the plasma membrane and the nucleus of T lymphocytes. Annu. Rev. Biochem. 63, 1045–1083 (1994).

    Article  CAS  PubMed  Google Scholar 

  28. Liu, J. O. The yins of T cell activation. Sci. STKE 265, re 1 (2005).

    Google Scholar 

  29. Laouar, Y. & Crispe, I. N. Functional flexibility in T cells: Independent regulation of CD4+ T cell proliferation and effector function in vivo. Immunity 13, 291–301 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Sechi, A. S. & Wehland, J. Interplay between TCR signaling and actin cytoskeleton dynamics. Trends Immunol. 25, 257–265 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Fuller, C. L., Braciale, V. L. & Samelson, L. E. All roads lead to actin: the intimate relationship between TCR signaling and the cytoskeleton. Immunol. Rev. 191, 220–236 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Baecher-Allan C., Brown, J. A., Freeman G. J. & Hafler, D. A. CD4+CD25high regulatory cells in human peripheral blood. J. Immunol. 167, 1245–1253 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Li, L. et al. CD4+CD25+ regulatory T-cell lines from human cord blood have functional and molecular properties of T-cell anergy. Blood 106, 3068–3073 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Itoh, M. et al. Thymus and autoimmunity: production of CD25+CD4+ naturally anergic and suppressive T cells as a key function of the thymus in maintaining immunologic self-tolerance. J. Immunol. 162, 5317–5326 (1999).

    CAS  PubMed  Google Scholar 

  35. Allan, S. E. et al. The role of FOXP3, and an isoform lacking exon 2, in the generation of human CD4+ T regulatory cells. J. Clin. Invest. 115, 3276–3284 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Baecher-Allan C., Viglietta, V. & Hafler, D. A. Human CD4+CD25+ regulatory T cells. Semin. Immunol. 16, 89–98 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Jonuleit, H. et al. Identification and functional characterization of human CD4+CD25+ T cells with regulatory properties isolated from peripheral blood. J. Exp. Med. 193, 1285–1294 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Thornton, A. M. & Shevach, E. M. CD4+CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production. J. Exp. Med. 188, 287–296 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gavin, M., Clarke, S. R., Negrou, E., Gallegos, A. & Rudensky, A. Homeostasis and anergy of CD4+CD25+ suppressor T cells in vivo. Nature Immunol. 3, 33–41 (2002).

    Article  CAS  Google Scholar 

  40. Carson, B. D. & Ziegler, S. F. Impaired T cell receptor signaling in Foxp3+ CD4 T cells. Ann. NY Acad. Sci. (in the press).

  41. Hickman, S. P., Yang, J., Thomas, R. M., Wells, A. D. & Turka, L. A. Defective activation of protein kinase C and Ras–Erk pathways limits IL-2 production and proliferation by CD4+CD25+ regulatory T cells. J. Immunol. 177, 2186–2194 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Tsang, J. Y.-S. et al. Altered proximal T cell receptor (TCR) signaling in human CD4+CD25+ regulatory T cells. J. Leukoc. Biol. 80, 145–151 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Fuller, C. L., Braciale, V. L. & Samelson, L. E. All roads lead to actin: the intimate relationship between TCR signaling and the cytoskeleton. Immunol. Rev. 191, 220–236 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. Clements, J. L., Boerth, N. J., Lee, J. R. & Koretzky, G. A. Integration of T cell receptor-dependent signaling pathways by adapter proteins. Annu. Rev. Immunol. 17, 89–108 (1999).

    Article  CAS  PubMed  Google Scholar 

  45. Miletic, A. V., Swat, M., Fujikawa, K. & Swat, W. Cytoskeletal remodeling in lymphocyte activation. Curr. Opin. Immunol. 15, 261–268 (2003).

    Article  CAS  PubMed  Google Scholar 

  46. Knoechel, B. et al. Functional and molecular comparison of anergic and regulatory T lymphocytes. J. Immunol. 176, 6473–6483 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Wang, J., Ioan-Facsinay, A., van der Voort, E. I. H., Huizinga, T. W. J. & Toes, R. E. M. Transient expression of FOXP3 in human activated nonregulatory CD4+ T cells. Eur. J. Immunol. 37, 129–138 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Morgan, M. E. et al. Expression of FOXP3 mRNA is not confined to CD4+CD25+ T regulatory cells in humans. Hum. Immunol. 66, 13–20 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Walker, M. R. et al. Induction of FoxP3 and acquisition of T regulatory activity by stimulated human CD4+CD25 T cells. J. Clin. Invest. 112, 1437–1443 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Gavin, M. A. et al. Single-cell analysis of normal and FOXP3-mutant human T cells: FOXP3 expression without regulatory T cell development. Proc. Natl Acad. Sci. USA 103, 6659–6664 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ziegler, S. F. FOXP3: Of mice and men. Annu. Rev. Immunol. 24, 209–226 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Ziegler, S. F. FOXP3: Not just for regulatory T cells any more. Eur. J. Immunol. 37, 21–23 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Kasprowicz, D. J., Smallwood, P. S., Tyznik, A. J. & Ziegler, S. F. Scurfin (FoxP3) controls T-dependent immune responses in vivo through regulation of CD4+ T cell effector function. J. Immunol. 171, 1216–1223 (2003).

    Article  CAS  PubMed  Google Scholar 

  54. Kasprowicz, D. J. et al. Dynamic regulation of FoxP3 expression controls the balance between CD4+ T cell activation and cell death. Eur. J. Immunol. 35, 3424–3432 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. Khattri, R. et al. The amount of scurfin protein determines peripheral T cell number and responsiveness. J. Immunol. 167, 6312–6320 (2001).

    Article  CAS  PubMed  Google Scholar 

  56. Burchill, M. A., Yang, J., Vogtenhuber, C., Blazar, B. R. & Farrar, M. A. IL-2 receptor β-dependent STAT5 activation is required for the development of Foxp3+ regulatory T cells. J. Immunol. 178, 280–290 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. Murawski, M. R., Llitherland, S. A., Clare-Salzler, M. J. & Davoodi-Semiromi, A. Upregulation of Foxp3 expression in mouse and human Treg is IL-2/STAT5 dependent: implications for the NOD STAT5B mutation in diabetes pathogenesis. Ann. NY Acad. Sci. 1079, 198–204 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. Zorn, E. et al. IL-2 regulates FOXP3 expression in human CD4+CD25+ regulatory T cells through a STAT-dependent mechanism and induces the expansion of these cells in vivo. Blood 108, 1571–1579 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Huehn, J. et al. Developmental stage, phenotype, and migration distinguish naive- and effector/memory-like CD4+ regulatory T cells. J. Exp. Med. 199, 303–313 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lee, J. H., Kang, S. G. & Kim, C. H. FoxP3+ T cells undergo conventional first switch to lymphoid tissue homing receptors in thymus but accelerated second switch to nonlymphoid tissue homing receptors in secondary lymphoid tissues. J. Immunol. 178, 301–311 (2007).

    Article  CAS  PubMed  Google Scholar 

  61. Campbell, D. J., Kim, C. H. & Butcher, E. C. Separable effector T cell populations specialized for B cell help or tissue inflammation. Nature Immunol. 2, 876–881 (2001).

    Article  CAS  Google Scholar 

  62. Kim, C. H. et al. Rules of chemokine receptor association with T cell polarization in vivo. J. Clin. Invest. 108, 1331–1339 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lametschwandtner, G. et al. Sustained T-bet expression confers polarized human TH2 cells with TH1-like cytokine production and migratory capacities. J. Allergy Clin. Immunol. 113, 987–994 (2004).

    Article  CAS  PubMed  Google Scholar 

  64. Lord, G. M. et al. T-bet is required for optimal proinflammatory CD4+ T-cell trafficking. Blood 106, 3432–3439 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lehmann, J. et al. Expression of the integrin αEβ7 identifies unique subsets of CD25+ as well as CD25 regulatory T cells. Proc. Natl Acad. Sci. USA 99, 13031–13036 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kleinewietfeld, M. et al. CCR6 expression defines regulatory effector/memory-like cells within the CD25+CD4+ T-cell subset. Blood 105, 2877–2886 (2005).

    Article  CAS  PubMed  Google Scholar 

  67. Kunkel, E. J., Campbell, D. J. & Butcher, E. C. Chemokines in lymphocyte trafficking and intestinal immunity. Microcirculation 10, 313–323 (2003).

    Article  CAS  PubMed  Google Scholar 

  68. Dieu-Nosjean, M. C. et al. Macrophage inflammatory protein 3α is expressed at inflamed epithelial surfaces and is the most potent chemokine known in attracting Langerhans cell precursors. J. Exp. Med. 192, 705–718 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Suffia, I., Reckling, S. K., Salay, G. & Belkaid, Y. A role for CD103 in the retention of CD4+CD25+ Treg and control of Leishmania major infection. J. Immunol. 174, 5444–5455 (2005).

    Article  CAS  PubMed  Google Scholar 

  70. Hori, S., Nomura, T. & Sakaguchi, S. Control of regulatory T cell development by the transcription factor FoxP3. Science 299, 1057–1061 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Warren for help in preparing this manuscript. Support for this work came in part from grants from the National Institutes of Health, USA (S.F.Z. and D.J.C.), the Juvenile Diabetes Research Foundation's Collaborative Center for Cellular Therapy (S.F.Z.) and the American Diabetes Association (S.F.Z.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven F. Ziegler.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Steven F. Ziegler's homepage

Daniel J. Campbell's homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Campbell, D., Ziegler, S. FOXP3 modifies the phenotypic and functional properties of regulatory T cells. Nat Rev Immunol 7, 305–310 (2007). https://doi.org/10.1038/nri2061

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri2061

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing