How nutrition and the maternal microbiota shape the neonatal immune system

Key Points

  • The maternal microbiota itself affects the development of the fetus and the neonate.

  • Metabolic exposure of the fetus in utero depends on maternal nutrition and xenobiotic exposure, both of which are modulated by microbial metabolism.

  • Molecules that originate from the intestinal microorganisms of a mother reach her offspring via the placenta during fetal development, and through maternal milk during the postnatal period.

  • Maternal antibodies amplify microbial molecular transfer, both in utero and during lactation.

  • Signalling from maternal microbial molecules shapes the development and function of the immune system in early life.

Abstract

The mucosal surfaces of mammals are densely colonized with microorganisms that are commonly referred to as the commensal microbiota. It is believed that the fetus in utero is sterile and that colonization with microorganisms starts only after birth. Nevertheless, the unborn fetus is exposed to a multitude of metabolites that originate from the commensal microbiota of the mother that reach systemic sites of the maternal body. The intestinal microbiota is strongly personalized and influenced by environmental factors, including nutrition. Members of the maternal microbiota can metabolize dietary components, pharmaceuticals and toxins, which can subsequently be passed to the developing fetus or the breast-feeding neonate. In this Review, we discuss the complex interplay between nutrition, the maternal microbiota and ingested chemicals, and summarize their effects on immunity in the offspring.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Maternal stress weakens maternal and offspring immunity.
Figure 2: Placental development and fetal haematopoiesis.
Figure 3: A schematic of the effects of the maternal microbiota and maternal nutrition on immune development in the offspring.
Figure 4: Epigenetic reprogramming during mammalian development.

References

  1. 1

    Blackburn, D. G. Reconstructing the evolution of viviparity and placentation. J. Theor. Biol. 192, 183–190 (1998).

    CAS  PubMed  Google Scholar 

  2. 2

    Renfree, M. B., Hore, T. A., Shaw, G., Graves, J. A. & Pask, A. J. Evolution of genomic imprinting: insights from marsupials and monotremes. Annu. Rev. Genomics Hum. Genet. 10, 241–262 (2009).

    CAS  PubMed  Google Scholar 

  3. 3

    Millen, J. W. & Woollam, D. H. Maternal nutrition in relation to abnormal foetal development. Proc. Nutr. Soc. 19, 1–5 (1960).

    CAS  PubMed  Google Scholar 

  4. 4

    Pacha, J. Development of intestinal transport function in mammals. Physiol. Rev. 80, 1633–1667 (2000).

    CAS  PubMed  Google Scholar 

  5. 5

    Torow, N. & Hornef, M. W. The neonatal window of opportunity: setting the stage for life-long host–microbial interaction and immune homeostasis. J. Immunol. 198, 557–563 (2017). This article elegantly summarizes literature on the importance of the time period soon after birth in shaping an individual's immune system, its indigenous commensal microbiota and its disease susceptibility later in life.

    CAS  PubMed  Google Scholar 

  6. 6

    Buklijas, T. Food, growth and time: Elsie Widdowson's and Robert McCance's research into prenatal and early postnatal growth. Stud. Hist. Philos. Biol. Biomed. Sci. 47, 267–277 (2014).

    PubMed  Google Scholar 

  7. 7

    Walton, A. & Hammond, J. The maternal effects on growth and conformation in Shire Horse–Shetland Pony crosses. Proc. R. Soc. B 125, 311–335 (1938).

    Google Scholar 

  8. 8

    Ross, M. G. & Beall, M. H. Adult sequelae of intrauterine growth restriction. Semin. Perinatol. 32, 213–218 (2008).

    PubMed  PubMed Central  Google Scholar 

  9. 9

    Fall, C. H. Evidence for the intra-uterine programming of adiposity in later life. Ann. Hum. Biol. 38, 410–428 (2011).

    PubMed  PubMed Central  Google Scholar 

  10. 10

    Ravelli, A. C. et al. Glucose tolerance in adults after prenatal exposure to famine. Lancet 351, 173–177 (1998).

    CAS  PubMed  Google Scholar 

  11. 11

    Dennison, E. M. et al. Birthweight, vitamin D receptor genotype and the programming of osteoporosis. Paediatr. Perinat. Epidemiol. 15, 211–219 (2001).

    CAS  PubMed  Google Scholar 

  12. 12

    Thompson, C., Syddall, H., Rodin, I., Osmond, C. & Barker, D. J. Birth weight and the risk of depressive disorder in late life. Br. J. Psychiatry 179, 450–455 (2001).

    CAS  PubMed  Google Scholar 

  13. 13

    Bateson, P. et al. Developmental plasticity and human health. Nature 430, 419–421 (2004).

    CAS  PubMed  Google Scholar 

  14. 14

    Ho, S. M., Tang, W. Y., Belmonte de Frausto, J. & Prins, G. S. Developmental exposure to estradiol and bisphenol A increases susceptibility to prostate carcinogenesis and epigenetically regulates phosphodiesterase type 4 variant 4. Cancer Res. 66, 5624–5632 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15

    Zinkernagel, R. M. Maternal antibodies, childhood infections, and autoimmune diseases. N. Engl. J. Med. 345, 1331–1335 (2001).

    CAS  PubMed  Google Scholar 

  16. 16

    Kearney, J. F., Patel, P., Stefanov, E. K. & King, R. G. Natural antibody repertoires: development and functional role in inhibiting allergic airway disease. Annu. Rev. Immunol. 33, 475–504 (2015).

    CAS  PubMed  Google Scholar 

  17. 17

    Newbold, R. R. Lessons learned from perinatal exposure to diethylstilbestrol. Toxicol. Appl. Pharmacol. 199, 142–150 (2004).

    CAS  PubMed  Google Scholar 

  18. 18

    Breton, J. et al. Gut microbiota limits heavy metals burden caused by chronic oral exposure. Toxicol. Lett. 222, 132–138 (2013).

    CAS  PubMed  Google Scholar 

  19. 19

    Wilson, I. D. & Nicholson, J. K. Gut microbiome interactions with drug metabolism, efficacy, and toxicity. Transl Res. 179, 204–222 (2017).

    CAS  PubMed  Google Scholar 

  20. 20

    Palmer, A. C. Nutritionally mediated programming of the developing immune system. Adv. Nutr. 2, 377–395 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21

    Chen, X., Welner, R. S. & Kincade, P. W. A possible contribution of retinoids to regulation of fetal B lymphopoiesis. Eur. J. Immunol. 39, 2515–2524 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22

    van de Pavert, S. A. et al. Maternal retinoids control type 3 innate lymphoid cells and set the offspring immunity. Nature 508, 123–127 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23

    Fraker, P. J. & King, L. E. Reprogramming of the immune system during zinc deficiency. Annu. Rev. Nutr. 24, 277–298 (2004).

    CAS  PubMed  Google Scholar 

  24. 24

    Benediktsson, R., Calder, A. A., Edwards, C. R. & Seckl, J. R. Placental 11β-hydroxysteroid dehydrogenase: a key regulator of fetal glucocorticoid exposure. Clin. Endocrinol. (Oxf.) 46, 161–166 (1997).

    CAS  Google Scholar 

  25. 25

    Backhed, F. et al. The gut microbiota as an environmental factor that regulates fat storage. Proc. Natl Acad. Sci. USA 101, 15718–15723 (2004). This is a landmark paper that reports the pervasive metabolic consequences of microbial metabolism and molecular exchange for the host.

    PubMed  Google Scholar 

  26. 26

    Holmes, E., Li, J. V., Athanasiou, T., Ashrafian, H. & Nicholson, J. K. Understanding the role of gut microbiome–host metabolic signal disruption in health and disease. Trends Microbiol. 19, 349–359 (2011).

    CAS  PubMed  Google Scholar 

  27. 27

    Mandal, S. et al. Fat and vitamin intakes during pregnancy have stronger relations with a pro-inflammatory maternal microbiota than does carbohydrate intake. Microbiome 4, 55 (2016).

    PubMed  PubMed Central  Google Scholar 

  28. 28

    Clark, A. & Mach, N. Role of vitamin D in the hygiene hypothesis: the interplay between vitamin D, vitamin D receptors, gut microbiota, and immune response. Front. Immunol. 7, 627 (2016).

    PubMed  PubMed Central  Google Scholar 

  29. 29

    Holmes, E., Li, J. V., Marchesi, J. R. & Nicholson, J. K. Gut microbiota composition and activity in relation to host metabolic phenotype and disease risk. Cell Metab. 16, 559–564 (2012).

    CAS  PubMed  Google Scholar 

  30. 30

    Ma, J. et al. High-fat maternal diet during pregnancy persistently alters the offspring microbiome in a primate model. Nat. Commun. 5, 3889 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31

    Roediger, W. E. Role of anaerobic bacteria in the metabolic welfare of the colonic mucosa in man. Gut 21, 793–798 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32

    Furusawa, Y. et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 504, 446–450 (2013).

    CAS  PubMed  Google Scholar 

  33. 33

    Arpaia, N. et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 504, 451–455 (2013). References 31–33 show clear effects of microbial metabolites on host immune development and function.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34

    Smith, P. M. et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 341, 569–573 (2013).

    CAS  PubMed  Google Scholar 

  35. 35

    LeBlanc, J. G. et al. Bacteria as vitamin suppliers to their host: a gut microbiota perspective. Curr. Opin. Biotechnol. 24, 160–168 (2013).

    CAS  PubMed  Google Scholar 

  36. 36

    Schulman, S. G. Fundamentals of interaction of ionizing radiations with chemical, biochemical, and pharmaceutical systems. J. Pharm. Sci. 62, 1745–1757 (1973).

    CAS  PubMed  Google Scholar 

  37. 37

    Albert, M. J., Mathan, V. I. & Baker, S. J. Vitamin B12 synthesis by human small intestinal bacteria. Nature 283, 781–782 (1980).

    CAS  PubMed  Google Scholar 

  38. 38

    Camilo, E. et al. Folate synthesized by bacteria in the human upper small intestine is assimilated by the host. Gastroenterology 110, 991–998 (1996).

    CAS  PubMed  Google Scholar 

  39. 39

    Collado, M. C., Isolauri, E., Laitinen, K. & Salminen, S. Distinct composition of gut microbiota during pregnancy in overweight and normal-weight women. Am. J. Clin. Nutr. 88, 894–899 (2008).

    CAS  PubMed  Google Scholar 

  40. 40

    Koren, O. et al. Host remodeling of the gut microbiome and metabolic changes during pregnancy. Cell 150, 470–480 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41

    Rossant, J. & Cross, J. C. Placental development: lessons from mouse mutants. Nat. Rev. Genet. 2, 538–548 (2001).

    CAS  PubMed  Google Scholar 

  42. 42

    Sulik, K. K. Genesis of alcohol-induced craniofacial dysmorphism. Exp. Biol. Med. (Maywood) 230, 366–375 (2005).

    CAS  Google Scholar 

  43. 43

    Hilbert, J. M., Ning, J., Symchowicz, S. & Zampaglione, N. Placental transfer of quazepam in mice. Drug Metab. Dispos. 14, 310–312 (1986).

    CAS  PubMed  Google Scholar 

  44. 44

    Coan, P. M. et al. Adaptations in placental nutrient transfer capacity to meet fetal growth demands depend on placental size in mice. J. Physiol. 586, 4567–4576 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45

    Constancia, M. et al. Placental-specific IGF-II is a major modulator of placental and fetal growth. Nature 417, 945–948 (2002).

    CAS  PubMed  Google Scholar 

  46. 46

    Li, L. et al. Regulation of maternal behavior and offspring growth by paternally expressed Peg3. Science 284, 330–333 (1999).

    CAS  PubMed  Google Scholar 

  47. 47

    Heijmans, B. T. et al. Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc. Natl Acad. Sci. USA 105, 17046–17049 (2008).

    CAS  PubMed  Google Scholar 

  48. 48

    Eggert, H., Kurtz, J. & Diddens-de Buhr, M. F. Different effects of paternal trans-generational immune priming on survival and immunity in step and genetic offspring. Proc. Biol. Sci. 281, 20142089 (2014).

    PubMed  PubMed Central  Google Scholar 

  49. 49

    Koch, M. A. et al. Maternal IgG and IgA antibodies dampen mucosal T helper cell responses in early life. Cell 165, 827–841 (2016). This study demonstrates the presence of maternal microbiota-specific IgG and IgA in the maternal milk, and shows that they are transferred to the offspring to establish functional mutualism with its incoming microbiota.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50

    Grindstaff, J. L., Brodie, E. D. 3rd & Ketterson, E. D. Immune function across generations: integrating mechanism and evolutionary process in maternal antibody transmission. Proc. Biol. Sci. 270, 2309–2319 (2003).

    PubMed  PubMed Central  Google Scholar 

  51. 51

    Gautreaux, M. D., Deitch, E. A. & Berg, R. D. T lymphocytes in host defense against bacterial translocation from the gastrointestinal tract. Infect. Immun. 62, 2874–2884 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52

    O'Boyle, C. J. et al. Microbiology of bacterial translocation in humans. Gut 42, 29–35 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53

    Perez, P. F. et al. Bacterial imprinting of the neonatal immune system: lessons from maternal cells? Pediatrics 119, e724–e732 (2007).

    PubMed  Google Scholar 

  54. 54

    Fardini, Y., Chung, P., Dumm, R., Joshi, N. & Han, Y. W. Transmission of diverse oral bacteria to murine placenta: evidence for the oral microbiome as a potential source of intrauterine infection. Infect. Immun. 78, 1789–1796 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. 55

    Yajima, M. et al. Bacterial translocation in neonatal rats: the relation between intestinal flora, translocated bacteria, and influence of milk. J. Pediatr. Gastroenterol. Nutr. 33, 592–601 (2001).

    CAS  PubMed  Google Scholar 

  56. 56

    Aagaard, K. et al. The placenta harbors a unique microbiome. Sci. Transl Med. 6, 237ra65 (2014). This study demonstrates the presence of non-pathogenic commensal bacteria in human placental samples.

    PubMed  PubMed Central  Google Scholar 

  57. 57

    Goldenberg, R. L., Hauth, J. C. & Andrews, W. W. Intrauterine infection and preterm delivery. N. Engl. J. Med. 342, 1500–1507 (2000).

    CAS  PubMed  Google Scholar 

  58. 58

    Smith, K., McCoy, K. D. & Macpherson, A. J. Use of axenic animals in studying the adaptation of mammals to their commensal intestinal microbiota. Semin. Immunol. 19, 59–69 (2007).

    CAS  PubMed  Google Scholar 

  59. 59

    Hapfelmeier, S. et al. Reversible microbial colonization of germ-free mice reveals the dynamics of IgA immune responses. Science 328, 1705–1709 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. 60

    Gomez de Aguero, M. et al. The maternal microbiota drives early postnatal innate immune development. Science 351, 1296–1302 (2016). This paper describes the mechanism by which maternal gestational colonization shapes the composition and function of the early life immune system.

    PubMed  Google Scholar 

  61. 61

    Jacobowitz Israel, E., Patel, V. K., Taylor, S. F., Marshak-Rothstein, A. & Simister, N. E. Requirement for a β2-microglobulin-associated Fc receptor for acquisition of maternal IgG by fetal and neonatal mice. J. Immunol. 154, 6246–6251 (1995).

    Google Scholar 

  62. 62

    Malek, A., Sager, R., Kuhn, P., Nicolaides, K. H. & Schneider, H. Evolution of maternofetal transport of immunoglobulins during human pregnancy. Am. J. Reprod. Immunol. 36, 248–255 (1996).

    CAS  PubMed  Google Scholar 

  63. 63

    Neu, J. Gastrointestinal development and meeting the nutritional needs of premature infants. Am. J. Clin. Nutr. 85, 629S–634S (2007).

    CAS  PubMed  Google Scholar 

  64. 64

    Siggers, R. H., Siggers, J., Thymann, T., Boye, M. & Sangild, P. T. Nutritional modulation of the gut microbiota and immune system in preterm neonates susceptible to necrotizing enterocolitis. J. Nutr. Biochem. 22, 511–521 (2011).

    CAS  PubMed  Google Scholar 

  65. 65

    Kramer, D. R. & Cebra, J. J. Early appearance of “natural” mucosal IgA responses and germinal centers in suckling mice developing in the absence of maternal antibodies. J. Immunol. 154, 2051–2062 (1995).

    CAS  PubMed  Google Scholar 

  66. 66

    Harris, N. L. et al. Mechanisms of neonatal mucosal antibody protection. J. Immunol. 177, 6256–6262 (2006).

    CAS  PubMed  Google Scholar 

  67. 67

    Rogier, E. W. et al. Secretory antibodies in breast milk promote long-term intestinal homeostasis by regulating the gut microbiota and host gene expression. Proc. Natl Acad. Sci. USA 111, 3074–3079 (2014). This study provides clear evidence that maternal antibodies in breast milk have a protective role in the offspring.

    CAS  PubMed  Google Scholar 

  68. 68

    Kau, A. L. et al. Functional characterization of IgA-targeted bacterial taxa from undernourished Malawian children that produce diet-dependent enteropathy. Sci. Transl Med. 7, 276ra24 (2015). This is a key paper showing the interactions between human infant microbiotas and their immune systems that determine environmental intestinal enteropathy, which is a severe and generally underappreciated problem in the developing world that affects the long-term development and health of affected individuals.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. 69

    Blanton, L. V. et al. Gut bacteria that prevent growth impairments transmitted by microbiota from malnourished children. Science 351, aad3311 (2016).

    PubMed  Google Scholar 

  70. 70

    Waterland, R. A. & Jirtle, R. L. Transposable elements: targets for early nutritional effects on epigenetic gene regulation. Mol. Cell. Biol. 23, 5293–5300 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. 71

    Burris, H. H. et al. Offspring DNA methylation of the aryl-hydrocarbon receptor repressor gene is associated with maternal BMI, gestational age, and birth weight. Epigenetics 10, 913–921 (2015).

    PubMed  PubMed Central  Google Scholar 

  72. 72

    McGill, J. et al. Fetal exposure to ethanol has long-term effects on the severity of influenza virus infections. J. Immunol. 182, 7803–7808 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. 73

    Lee, G. R., Kim, S. T., Spilianakis, C. G., Fields, P. E. & Flavell, R. A. T helper cell differentiation: regulation by cis elements and epigenetics. Immunity 24, 369–379 (2006).

    CAS  PubMed  Google Scholar 

  74. 74

    Schuyler, R. P. et al. Distinct trends of DNA methylation patterning in the innate and adaptive immune systems. Cell Rep. 17, 2101–2111 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. 75

    Lipka, D. B. et al. Identification of DNA methylation changes at cis-regulatory elements during early steps of HSC differentiation using tagmentation-based whole genome bisulfite sequencing. Cell Cycle 13, 3476–3487 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. 76

    Cabezas-Wallscheid, N. et al. Identification of regulatory networks in HSCs and their immediate progeny via integrated proteome, transcriptome, and DNA methylome analysis. Cell Stem Cell 15, 507–522 (2014).

    CAS  PubMed  Google Scholar 

  77. 77

    Moles, L. et al. Bacterial diversity in meconium of preterm neonates and evolution of their fecal microbiota during the first month of life. PLoS ONE 8, e66986 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. 78

    Arrieta, M. C., Stiemsma, L. T., Amenyogbe, N., Brown, E. M. & Finlay, B. The intestinal microbiome in early life: health and disease. Front. Immunol. 5, 427 (2014).

    PubMed  PubMed Central  Google Scholar 

  79. 79

    Backhed, F. et al. Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe 17, 690–703 (2015).

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank colleagues in their laboratory and U. Sauer, W. Hardt and C. Mueller for helpful discussions on the topic. The work of A.J.M. is funded by grants from the Swiss National Science Foundation (SNSF 310030B_160262 and SNSF Sinergia CRSII3_154414) and the Swiss SystemsX programme (GutX)); M.G.A. holds an Ambizione Grant of the Swiss National Science Foundation (PZ00P3_168012); and S.C.G.-V. is supported by a European Molecular Biology Organization Long-Term Fellowship (ALTF 841–2013).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Andrew J. Macpherson or Stephanie C. Ganal-Vonarburg.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Thalidomide

A drug that was prescribed primarily as a sedative or hypnotic. It was used to treat nausea and to cure morning sickness in pregnant women until it was discovered that it caused an absence of limbs in the offspring at birth.

Hypothalamic–pituitary–adrenal axis

(HPA axis). One of the major neuroendocrine systems that controls, among other things, reactions to stress, the immune system, digestion and emotions. It consists of a complex set of feedforward and feedback mechanisms between the hypothalamus, the pituitary gland and the adrenal cortex. Neuroendocrine neurons in the hypothalamus produce corticotropin-releasing factor, which acts on the anterior pituitary gland to induce the production of adrenocorticotropic hormone (ACTH). ACTH induces the adrenal gland to release glucocorticoids, such as cortisol.

Coprophagia

The eating of faeces, which is a normal behaviour in many animals.

Haemochorial placenta

A type of placenta present in humans and some rodents, in which maternal blood is in direct contact with the chorion.

Allantois

A bag-like structure that forms part of the developing conceptus and that has a role in nutrition and excretion.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Macpherson, A., de Agüero, M. & Ganal-Vonarburg, S. How nutrition and the maternal microbiota shape the neonatal immune system. Nat Rev Immunol 17, 508–517 (2017). https://doi.org/10.1038/nri.2017.58

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing