How poverty affects diet to shape the microbiota and chronic disease

Abstract

Here, we discuss the link between nutrition, non-communicable chronic diseases and socio-economic standing, with a special focus on the microbiota. We provide a theoretical framework and several lines of evidence from both animal and human studies that support the idea that income inequality is an underlying factor for the maladaptive changes seen in the microbiota in certain populations. We propose that this contributes to the health disparities that are seen between lower-income and higher-income populations in high-income countries.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Proposed framework for interplay between socio-economic status, the microbiota and metabolic diseases in high-income countries.
Figure 2: Example of how income influences health through the physiological effects of fibre.

References

  1. 1

    Sleator, R. D. The human superorganism — of microbes and men. Med. Hypotheses 74, 214–215 (2010).

    PubMed  Google Scholar 

  2. 2

    Sender, R., Fuchs, S. & Milo, R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol. 14, e1002533 (2016).

    PubMed  PubMed Central  Google Scholar 

  3. 3

    Bäckhed, F. et al. The gut microbiota as an environmental factor that regulates fat storage. Proc. Natl Acad. Sci. USA 101, 15718–15723 (2004).

    Google Scholar 

  4. 4

    Yamanaka, M., Nomura, T. & Kametaka, M. Influence of intestinal microbes on heat production in germ-free, gnotobiotic and conventional mice. J. Nutr. Sci. Vitaminol. 23, 221–226 (1977).

    CAS  PubMed  Google Scholar 

  5. 5

    Sonnenburg, J. L. et al. Glycan foraging in vivo by an intestine-adapted bacterial symbiont. Science 307, 1955–1959 (2005).

    CAS  PubMed  Google Scholar 

  6. 6

    Watkins, B. A. & Miller, B. F. Competitive gut exclusion of avian pathogens by Lactobacillus acidophilus in gnotobiotic chicks. Poult. Sci. 62, 1772–1779 (1983).

    CAS  PubMed  Google Scholar 

  7. 7

    Faust, K. et al. Microbial co-occurrence relationships in the human microbiome. PLoS Comput. Biol. 8, e1002606 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8

    Lozupone, C. A., Stombaugh, J. I., Gordon, J. I., Jansson, J. K. & Knight, R. Diversity, stability and resilience of the human gut microbiota. Nature 489, 220–230 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9

    Round, J. L. & Mazmanian, S. K. The gut microbiota shapes intestinal immune responses during health and disease. Nat. Rev. Immunol. 9, 313–323 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10

    Minemura, M. & Shimizu, Y. Gut microbiota and liver diseases. World J. Gastroenterol. 21, 1691–1702 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11

    Wu, X. et al. Molecular insight into gut microbiota and rheumatoid arthritis. Int. J. Mol. Sci. 17, 431 (2016).

    PubMed  PubMed Central  Google Scholar 

  12. 12

    Mayer, E. A., Tillisch, K. & Gupta, A. Gut/brain axis and the microbiota. J. Clin. Invest. 125, 926–938 (2015).

    PubMed  PubMed Central  Google Scholar 

  13. 13

    Goodrich, J. K. et al. Human genetics shape the gut microbiome. Cell 159, 789–799 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14

    Dominguez-Bello, M. G. et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc. Natl Acad. Sci. USA 107, 11971–11975 (2010).

    PubMed  PubMed Central  Google Scholar 

  15. 15

    Galley, J. D., Bailey, M., Kamp Dush, C., Schoppe-Sullivan, S. & Christian, L. M. Maternal obesity is associated with alterations in the gut microbiome in toddlers. PLoS ONE 9, e113026 (2014).

    PubMed  PubMed Central  Google Scholar 

  16. 16

    Ma, J. et al. High-fat maternal diet during pregnancy persistently alters the offspring microbiome in a primate model. Nat. Commun. 5, 3889 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17

    Chu, D. M. et al. The early infant gut microbiome varies in association with a maternal high-fat diet. Genome Med. 8, 77 (2016).

    PubMed  PubMed Central  Google Scholar 

  18. 18

    David, L. A. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559–563 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19

    Turnbaugh, P. J. et al. The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci. Transl Med. 1, 6ra14 (2009).

    PubMed  PubMed Central  Google Scholar 

  20. 20

    Poti, J. M., Mendez, M. A., Ng, S. W. & Popkin, B. M. Is the degree of food processing and convenience linked with the nutritional quality of foods purchased by US households? Am. J. Clin. Nutr. 101, 1251–1262 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21

    Zizza, C., Siega-Riz, A. M. & Popkin, B. M. Significant increase in young adults' snacking between 1977–1978 and 1994–1996 represents a cause for concern! Prev. Med. 32, 303–310 (2001).

    CAS  PubMed  Google Scholar 

  22. 22

    Nielsen, S. J., Siega-Riz, A. M. & Popkin, B. M. Trends in energy intake in U. S. between 1977 and 1996: similar shifts seen across age groups. Obes. Res. 10, 370–378 (2012).

    Google Scholar 

  23. 23

    Martínez Steele, E. et al. Ultra-processed foods and added sugars in the US diet: evidence from a nationally representative cross-sectional study. BMJ Open 6, e009892 (2016).

    PubMed  PubMed Central  Google Scholar 

  24. 24

    Neumark-Sztainer, D., Story, M., Hannan, P. J. & Croll, J. Overweight status and eating patterns among adolescents: where do youths stand in comparison with the healthy people 2010 objectives? Am. J. Publ. Health 92, 844–851 (2011).

    Google Scholar 

  25. 25

    Darmon, N., Ferguson, E. L. & Briend, A. A cost constraint alone has adverse effects on food selection and nutrient density: an analysis of human diets by linear programming. J. Nutr. 132, 3764–3771 (2002).

    CAS  PubMed  Google Scholar 

  26. 26

    Popkin, B. M. Nutrition transition and the global diabetes epidemic. Curr. Diab. Rep. 15, 64 (2015).

    PubMed  PubMed Central  Google Scholar 

  27. 27

    Delisle, H. & Batal, M. The double burden of malnutrition associated with poverty. Lancet 387, 2504–2505 (2016).

    PubMed  Google Scholar 

  28. 28

    Black, R. E. et al. Maternal and child undernutrition and overweight in low-income and middle-income countries. Lancet 382, 427–451 (2013).

    Google Scholar 

  29. 29

    Lear, S. A. et al. The association between ownership of common household devices and obesity and diabetes in high, middle and low income countries. CMAJ 186, 258–266 (2014).

    PubMed  PubMed Central  Google Scholar 

  30. 30

    Leone, V. et al. Effects of diurnal variation of gut microbes and high-fat feeding on host circadian clock function and metabolism. Cell Host Microbe 17, 681–689 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31

    Caesar, R., Tremaroli, V., Kovatcheva-Datchary, P., Cani, P. D. & Bäckhed, F. Crosstalk between gut microbiota and dietary lipids aggravates WAT inflammation through TLR signaling. Cell Metab. 22, 658–668 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32

    Ley, R. E., Turnbaugh, P. J., Klein, S. & Gordon, J. I. Microbial ecology: human gut microbes associated with obesity. Nature 444, 1022–1023 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33

    Yatsunenko, T. et al. Human gut microbiome viewed across age and geography. Nature 486, 222–227 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34

    Martin, F.-P. J. et al. A top-down systems biology view of microbiome-mammalian metabolic interactions in a mouse model. Mol. Syst. Biol. 3, 112 (2007).

    PubMed  PubMed Central  Google Scholar 

  35. 35

    Bach, J.-F. The effect of infections on susceptibility to autoimmune and allergic diseases. N. Engl. J. Med. 347, 911–920 (2002).

    PubMed  Google Scholar 

  36. 36

    GBD 2013 Risk Factors Collaborators et al. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks in 188 countries, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 386, 2287–2323 (2015).

  37. 37

    Braveman, P. A., Cubbin, C., Egerter, S., Williams, D. R. & Pamuk, E. Socioeconomic disparities in health in the United States: what the patterns tell us. Am. J. Publ. Health 100, S186–S196 (2010).

    Google Scholar 

  38. 38

    McDonough, P., Duncan, G. J., Williams, D. & House, J. Income dynamics and adult mortality in the United States, 1972 through 1989. Am. J. Publ. Health 87, 1476–1483 (2011).

    Google Scholar 

  39. 39

    Komro, K. A., Livingston, M. D., Markowitz, S. & Wagenaar, A. C. The effect of an increased minimum wage on infant mortality and birth weight. Am. J. Publ. Health 106, 1514–1516 (2016).

    Google Scholar 

  40. 40

    Yousey-Hindes, K. M. & Hadler, J. L. Neighborhood socioeconomic status and influenza hospitalizations among children: New Haven County, Connecticut, 2003–2010. Am. J. Publ. Health 101, 1785–1789 (2012).

    Google Scholar 

  41. 41

    Swinburn, B. A. et al. The global obesity pandemic: shaped by global drivers and local environments. Lancet 378, 804–814 (2011).

    PubMed  Google Scholar 

  42. 42

    Pampel, F. C., Denney, J. T. & Krueger, P. M. Obesity, SES, and economic development: a test of the reversal hypothesis. Social Sci. Med. 74, 1073–1081 (2012).

    Google Scholar 

  43. 43

    Wang, Y. Cross-national comparison of childhood obesity: the epidemic and the relationship between obesity and socioeconomic status. Int. J. Epidemiol. 30, 1129–1136 (2001).

    CAS  PubMed  Google Scholar 

  44. 44

    Drewnowski, A. Obesity, diets, and social inequalities. Nutr. Rev. 67 (Suppl. 1), S36–S39 (2009).

    PubMed  Google Scholar 

  45. 45

    Drewnowski, A. The real contribution of added sugars and fats to obesity. Epidemiol. Rev. 29, 160–171 (2007).

    PubMed  Google Scholar 

  46. 46

    Drewnowski, A. Fat and sugar: an economic analysis. J. Nutr. 133, 838S–840S (2003).

    CAS  PubMed  Google Scholar 

  47. 47

    Mendez, M. A., Monteiro, C. A. & Popkin, B. M. Overweight exceeds underweight among women in most developing countries. Am. J. Clin. Nutr. 81, 714–721 (2005).

    CAS  PubMed  Google Scholar 

  48. 48

    Dagogo-Jack, S. in Diabetes Mellitus in Developing Countries and Underserved Communities (ed. Dagogo-Jack, S.) 7–31 (Springer International Publishing, 2017).

    Google Scholar 

  49. 49

    Bäckhed, F., Manchester, J. K., Semenkovich, C. F. & Gordon, J. I. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc. Natl Acad. Sci. USA 104, 979–984 (2007).

    Google Scholar 

  50. 50

    Schwiertz, A. et al. Microbiota and SCFA in lean and overweight healthy subjects. Obesity 18, 190–195 (2010).

    PubMed  Google Scholar 

  51. 51

    Cotillard, A. et al. Dietary intervention impact on gut microbial gene richness. Nature 500, 585–588 (2013).

    CAS  Google Scholar 

  52. 52

    Le Chatelier, E. et al. Richness of human gut microbiome correlates with metabolic markers. Nature 500, 541–546 (2013).

    CAS  PubMed  Google Scholar 

  53. 53

    Turnbaugh, P. J. et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444, 1027–1031 (2006).

    Google Scholar 

  54. 54

    Shoaie, S. et al. Quantifying diet-induced metabolic changes of the human gut microbiome. Cell Metab. 22, 320–331 (2015).

    CAS  PubMed  Google Scholar 

  55. 55

    Serino, M. et al. Metabolic adaptation to a high-fat diet is associated with a change in the gut microbiota. Gut 61, 543–553 (2012).

    CAS  PubMed  Google Scholar 

  56. 56

    Thaiss, C. A. et al. Persistent microbiome alterations modulate the rate of post-dieting weight regain. Nature 540, 544–551 (2016).

    CAS  PubMed  Google Scholar 

  57. 57

    Devkota, S. et al. Dietary-fat-induced taurocholic acid promotes pathobiont expansion and colitis in Il10−/− mice. Nature 487, 104–108 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. 58

    Huang, E. Y. et al. Composition of dietary fat source shapes gut microbiota architecture and alters host inflammatory mediators in mouse adipose tissue. JPEN J. Parenter. Enteral. Nutr. 37, 746–754 (2013).

    CAS  PubMed  Google Scholar 

  59. 59

    Daniel, H. et al. High-fat diet alters gut microbiota physiology in mice. ISME J. 8, 295–308 (2014).

    CAS  PubMed  Google Scholar 

  60. 60

    Wahlström, A., Sayin, S. I., Marschall, H.-U. & Bäckhed, F. Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism. Cell Metab. 24, 41–50 (2016).

    PubMed  Google Scholar 

  61. 61

    Chassaing, B. et al. Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome. Nature 519, 92–96 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. 62

    Zarrinpar, A., Chaix, A., Yooseph, S. & Panda, S. Diet and feeding pattern affect the diurnal dynamics of the gut microbiome. Cell Metab. 20, 1006–1017 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. 63

    Lemas, D. et al. Human milk leptin, insulin and N6/N3 fatty acids are associated with early differences in gut microbiome of infants born to normal weight and obese mothers. FASEB J. 29 (Suppl. 1), 121.1 (2015).

    Google Scholar 

  64. 64

    Bailey, L. C. et al. Association of antibiotics in infancy with early childhood obesity. JAMA Pediatr. 168, 1063–1069 (2014).

    PubMed  PubMed Central  Google Scholar 

  65. 65

    Saari, A., Virta, L. J., Sankilampi, U., Dunkel, L. & Saxen, H. Antibiotic exposure in infancy and risk of being overweight in the first 24 months of life. Pediatrics 135, 617–626 (2015).

    PubMed  Google Scholar 

  66. 66

    Cox, L. M. & Blaser, M. J. Antibiotics in early life and obesity. Nat. Rev. Endocrinol. 11, 182–190 (2015).

    PubMed  Google Scholar 

  67. 67

    Vidal, A. C. et al. Associations between antibiotic exposure during pregnancy, birth weight and aberrant methylation at imprinted genes among offspring. Int. J. Obes. 37, 907–913 (2013).

    CAS  Google Scholar 

  68. 68

    Ibanez, G. et al. Prevalence of breastfeeding in industrialized countries. Rev. Epidemiol. Sante Publique 60, 305–320 (2012).

    CAS  PubMed  Google Scholar 

  69. 69

    Planta, M. B. The role of poverty in antimicrobial resistance. J. Am. Board Fam. Med. 20, 533–539 (2007).

    PubMed  Google Scholar 

  70. 70

    Geiss, L. S. et al. Prevalence and incidence trends for diagnosed diabetes among adults aged 20 to 79 years, United States, 1980–2012. JAMA 312, 1218–1226 (2014).

    CAS  PubMed  Google Scholar 

  71. 71

    Zimmet, P. Z. & Alberti, K. G. Epidemiology of diabetes — status of a pandemic and issues around metabolic surgery. Diabetes Care 39, 878–883 (2016).

    PubMed  Google Scholar 

  72. 72

    Basu, S., Yoffe, P., Hills, N. & Lustig, R. H. The relationship of sugar to population-level diabetes prevalence: an econometric analysis of repeated cross-sectional data. PLoS ONE 8, e57873 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. 73

    Connolly, V., Unwin, N., Sherriff, P., Bilous, R. & Kelly, W. Diabetes prevalence and socioeconomic status: a population based study showing increased prevalence of type 2 diabetes mellitus in deprived areas. J. Epidemiol. Commun. Health 54, 173–177 (2000).

    CAS  Google Scholar 

  74. 74

    Hu, F. B. Globalization of diabetes: the role of diet, lifestyle, and genes. 34, 1249–1257 (2011).

  75. 75

    Suez, J. et al. Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature 514, 181–186 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. 76

    Larsen, N. et al. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS ONE 5, e9085 (2010).

    PubMed  PubMed Central  Google Scholar 

  77. 77

    Karlsson, F. H. et al. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 498, 99–103 (2013).

    CAS  PubMed  Google Scholar 

  78. 78

    Qin, J. et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490, 55–60 (2012).

    CAS  Google Scholar 

  79. 79

    Smith, P. M. et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 341, 569–573 (2013).

    CAS  PubMed  Google Scholar 

  80. 80

    Ilan, Y. et al. Induction of regulatory T cells decreases adipose inflammation and alleviates insulin resistance in ob/ob mice. Proc. Natl Acad. Sci. USA 107, 9765–9770 (2010).

    CAS  PubMed  Google Scholar 

  81. 81

    Marmot, M. G., Shipley, M. J. & Rose, G. Inequalities in death — specific explanations of a general pattern? Lancet 323, 1003–1006 (1984).

    Google Scholar 

  82. 82

    Doubeni, C. A. et al. Health status, neighborhood socioeconomic context, and premature mortality in the United States: the National Institutes of Health–AARP Diet and Health Study. Am. J. Public Health 102, 680–688 (2012).

    PubMed  PubMed Central  Google Scholar 

  83. 83

    van den Berg, G. J., Doblhammer-Reiter, G. & Christensen, K. Being born under adverse economic conditions leads to a higher cardiovascular mortality rate later in life: evidence based on individuals born at different stages of the business cycle. Demography 48, 507–530 (2011).

    PubMed  Google Scholar 

  84. 84

    Avendano, M. et al. Socioeconomic status and ischaemic heart disease mortality in 10 western European populations during the 1990s. Heart 92, 461–467 (2006).

    CAS  PubMed  Google Scholar 

  85. 85

    Rawshani, A. et al. Association between socioeconomic status and mortality, cardiovascular disease, and cancer in patients with type 2 diabetes. JAMA Intern. Med. 176, 1146–1154 (2016).

    PubMed  Google Scholar 

  86. 86

    Reedy, J. et al. Higher diet quality is associated with decreased risk of all-cause, cardiovascular disease, and cancer mortality among older adults. J. Nutr. 144, 881–889 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. 87

    Kannel, W. B., McGee, D. & Gordon, T. A general cardiovascular risk profile: the Framingham Study. Am. J. Cardiol. 38, 46–51 (1976).

    CAS  PubMed  Google Scholar 

  88. 88

    Dauchet, L., Amouyel, P., Hercberg, S. & Dallongeville, J. Fruit and vegetable consumption and risk of coronary heart disease: a meta-analysis of cohort studies. J. Nutr. 136, 2588–2593 (2006).

    CAS  PubMed  Google Scholar 

  89. 89

    Bazzano, L. A. Agreement on nutrient Intake between the databases of the First National Health and Nutrition Examination Survey and the ESHA Food Processor. Am. J. Epidemiol. 156, 78–85 (2002).

    PubMed  Google Scholar 

  90. 90

    Bazzano, L. A. et al. Fruit and vegetable intake and risk of cardiovascular disease in US adults: the first National Health and Nutrition Examination Survey Epidemiologic Follow-up Study. Am. J. Clin. Nutr. 76, 93–99 (2002).

    CAS  PubMed  Google Scholar 

  91. 91

    Tang, W. H. W. et al. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N. Engl. J. Med. 368, 1575–1584 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. 92

    Wang, Z. et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472, 57–63 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. 93

    Koeth, R. A. et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat. Med. 19, 576–585 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. 94

    Warrier, M. et al. The TMAO-generating enzyme flavin monooxygenase 3 is a central regulator of cholesterol balance. Cell Rep. 10, 326–338 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. 95

    Boutagy, N. E. et al. Short-term high-fat diet increases postprandial trimethylamine-N-oxide in humans. Nutr. Res. 35, 858–864 (2015).

    CAS  PubMed  Google Scholar 

  96. 96

    Li, Z. & Vance, D. E. Thematic Review Series: Glycerolipids. Phosphatidylcholine and choline homeostasis. J. Lipid Res. 49, 1187–1194 (2008).

    CAS  PubMed  Google Scholar 

  97. 97

    Yang, T. et al. Gut dysbiosis is linked to hypertension. Hypertension 65, 1331–1340 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. 98

    Pickup, J. C. Inflammation and activated innate immunity in the pathogenesis of type 2 diabetes. Diabetes Care 27, 813–823 (2004).

    PubMed  Google Scholar 

  99. 99

    Ammirati, E., Moroni, F., Magnoni, M. & Camici, P. G. The role of T and B cells in human atherosclerosis and atherothrombosis. Clin. Exp. Immunol. 179, 173–187 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. 100

    Nishimura, S. et al. CD8+ effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity. Nat. Med. 15, 914–920 (2009).

    CAS  PubMed  Google Scholar 

  101. 101

    Lantz, P. M., House, J. S., Mero, R. P. & Williams, D. R. Stress, life events, and socioeconomic disparities in health: results from the Americans' Changing Lives Study. J. Health Soc. Behav. 46, 274–288 (2005).

    PubMed  Google Scholar 

  102. 102

    McEwen, B. S. Stress and the individual. Mechanisms leading to disease. Arch. Intern. Med. 153, 2093–2101 (1993).

    CAS  PubMed  Google Scholar 

  103. 103

    Peters, A. & Mcewen, B. S. Stress habituation, body shape and cardiovascular mortality. Neurosci. Biobehav Rev. 56, 139–150 (2015).

    PubMed  Google Scholar 

  104. 104

    Becofsky, K. M. et al. Influence of the source of social support and size of social network on all-cause mortality. Mayo Clin. Proc. 90, 895–902 (2015).

    PubMed  PubMed Central  Google Scholar 

  105. 105

    Marcus, A. F., Echeverria, S. E., Holland, B. K., Abraido-Lanza, A. F. & Passannante, M. R. The joint contribution of neighborhood poverty and social integration to mortality risk in the United States. Ann. Epidemiol. 26, 261–266 (2016).

    PubMed  Google Scholar 

  106. 106

    Menéndez-Villalva, C., Gamarra-Mondelo, M. T., Alonso-Fachado, A., Naveira-Castelo, A. & Montes-Martínez, A. Social network, presence of cardiovascular events and mortality in hypertensive patients. J. Hum. Hypertens. 29, 417–423 (2015).

    PubMed  Google Scholar 

  107. 107

    Snyder-Mackler, N. et al. Social status alters immune regulation and response to infection in macaques. Science 354, 1041–1045 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. 108

    Felten, S. Y. & Felten, D. L. in Neuroscience: From the Molecular to the Cognitive Vol.100 (ed. Bloom, F.) 157–162 (Elsevier, 1994).

    Google Scholar 

  109. 109

    Voorhees, J. L. et al. Prolonged restraint stress increases IL-6, reduces IL-10, and causes persistent depressive-like behavior that is reversed by recombinant IL-10. PLoS ONE 8, e58488 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. 110

    Cohen, S. et al. Chronic stress, glucocorticoid receptor resistance, inflammation, and disease risk. Proc. Natl Acad. Sci. USA 109, 5995–5999 (2012).

    CAS  PubMed  Google Scholar 

  111. 111

    Ridker, P. M., Rifai, N., Stampfer, M. J. & Hennekens, C. H. Plasma concentration of interleukin-6 and the risk of future myocardial infarction among apparently healthy men. Circulation 101, 1767–1772 (2000).

    CAS  PubMed  Google Scholar 

  112. 112

    Howren, M. B., Lamkin, D. M. & Suls, J. Associations of depression with C-reactive protein, IL-1, and IL-6: a meta-analysis. Psychosomat. Med. 71, 171–186 (2009).

    CAS  Google Scholar 

  113. 113

    Chourbaji, S. et al. IL-6 knockout mice exhibit resistance to stress-induced development of depression-like behaviors. Neurobiol. Dis. 23, 587–594 (2006).

    CAS  PubMed  Google Scholar 

  114. 114

    Basterzi, A. D. et al. IL-6 levels decrease with SSRI treatment in patients with major depression. Hum. Psychopharmacol. 20, 473–476 (2005).

    CAS  PubMed  Google Scholar 

  115. 115

    Tracey, K. J. Physiology and immunology of the cholinergic antiinflammatory pathway. J. Clin. Invest. 117, 289–296 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. 116

    Bailey, M. T. et al. Exposure to a social stressor alters the structure of the intestinal microbiota: implications for stressor-induced immunomodulation. Brain Behav. Immun. 25, 397–407 (2011).

    CAS  PubMed  Google Scholar 

  117. 117

    Bharwani, A. et al. Structural and functional consequences of chronic psychosocial stress on the microbiome and host. Psychoneuroendocrinology 63, 217–227 (2016).

    CAS  PubMed  Google Scholar 

  118. 118

    De Palma, G. et al. Microbiota and host determinants of behavioural phenotype in maternally separated mice. Nat. Commun. 6, 7735 (2015).

    CAS  PubMed  Google Scholar 

  119. 119

    Nishino, R. et al. Commensal microbiota modulate murine behaviors in a strictly contamination-free environment confirmed by culture-based methods. Neurogastroenterol. Motil. 25, 521–528 (2013).

    CAS  PubMed  Google Scholar 

  120. 120

    O'Mahony, S. M. et al. Disturbance of the gut microbiota in early-life selectively affects visceral pain in adulthood without impacting cognitive or anxiety-related behaviors in male rats. Neuroscience 277, 885–901 (2014).

    CAS  PubMed  Google Scholar 

  121. 121

    Messaoudi, M. et al. Beneficial psychological effects of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in healthy human volunteers. Gut Microbes 2, 256–261 (2011).

    PubMed  Google Scholar 

  122. 122

    Dumas, Y., Dadomo, M., Di Lucca, G. & Grolier, P. Effects of environmental factors and agricultural techniques on antioxidantcontent of tomatoes. J. Sci. Food Agric. 83, 369–382 (2003).

    CAS  Google Scholar 

  123. 123

    Kalt, W. Effects of production and processing factors on major fruit and vegetable antioxidants. J. Food Sci. 70, R11–R19 (2005).

    CAS  Google Scholar 

  124. 124

    Promsong, A., Chung, W. O., Satthakarn, S. & Nittayananta, W. Ellagic acid modulates the expression of oral innate immune mediators: potential role in mucosal protection. J. Oral Pathol. Med. 44, 214–221 (2015).

    CAS  PubMed  Google Scholar 

  125. 125

    Neyrinck, A. M. et al. Polyphenol-rich extract of pomegranate peel alleviates tissue inflammation and hypercholesterolaemia in high-fat diet-induced obese mice: potential implication of the gut microbiota. Br. J. Nutr. 109, 802–809 (2013).

    CAS  PubMed  Google Scholar 

  126. 126

    Panchal, S. K., Ward, L. & Brown, L. Ellagic acid attenuates high-carbohydrate, high-fat diet-induced metabolic syndrome in rats. Eur. J. Nutr. 52, 559–568 (2013).

    CAS  PubMed  Google Scholar 

  127. 127

    Karlsen, A. et al. Anthocyanins inhibit nuclear factor-kappaB activation in monocytes and reduce plasma concentrations of pro-inflammatory mediators in healthy adults. J. Nutr. 137, 1951–1954 (2007).

    CAS  PubMed  Google Scholar 

  128. 128

    Park, S.-J., Shin, W.-H., Seo, J.-W. & Kim, E.-J. Anthocyanins inhibit airway inflammation and hyperresponsiveness in a murine asthma model. Food Chem. Toxicol. 45, 1459–1467 (2007).

    CAS  PubMed  Google Scholar 

  129. 129

    Bowen-Forbes, C. S., Zhang, Y. & Nair, M. G. Anthocyanin content, antioxidant, anti-inflammatory and anticancer properties of blackberry and raspberry fruits. J. Food Compos. Analysis 23, 554–560 (2010).

    CAS  Google Scholar 

  130. 130

    Jennings, A., Welch, A. A., Spector, T., Macgregor, A. & Cassidy, A. Intakes of anthocyanins and flavones are associated with biomarkers of insulin resistance and inflammation in women. J. Nutr. 144, 202–208 (2014).

    CAS  PubMed  Google Scholar 

  131. 131

    Morais, C. A., de Rosso, V. V., Estadella, D. & Pisani, L. P. Anthocyanins as inflammatory modulators and the role of the gut microbiota. J. Nutrit. Biochem. 33, 1–7 (2016).

    CAS  Google Scholar 

  132. 132

    Jung, C. H., Cho, I., Ahn, J., Jeon, T. I. & Ha, T. Y. Quercetin reduces high-fat diet-induced fat accumulation in the liver by regulating lipid metabolism genes. Phytother. Res. 27, 139–143 (2013).

    CAS  PubMed  Google Scholar 

  133. 133

    Rivera, L., Morón, R., Sánchez, M., Zarzuelo, A. & Galisteo, M. Quercetin ameliorates metabolic syndrome and improves the inflammatory status in obese Zucker rats. Obesity 16, 2081–2087 (2008).

    CAS  PubMed  Google Scholar 

  134. 134

    Overman, A., Chuang, C. C. & McIntosh, M. Quercetin attenuates inflammation in human macrophages and adipocytes exposed to macrophage-conditioned media. Int. J. Obes. 35, 1165–1172 (2011).

    CAS  Google Scholar 

  135. 135

    Etxeberria, U. et al. Reshaping faecal gut microbiota composition by the intake of trans-resveratrol and quercetin in high-fat sucrose diet-fed rats. J. Nutrit. Biochem. 26, 651–660 (2015).

    CAS  Google Scholar 

  136. 136

    Aune, D. et al. Fruit and vegetable intake and the risk of cardiovascular disease, total cancer and all-cause mortality — a systematic review and dose-response meta-analysis of prospective studies. Int. J. Epidemiol. 46, 1029–1056 (2017).

    PubMed  PubMed Central  Google Scholar 

  137. 137

    Darmon, N. & Drewnowski, A. Contribution of food prices and diet cost to socioeconomic disparities in diet quality and health: a systematic review and analysis. Nutr. Rev. 73, 643–660 (2015).

    PubMed  PubMed Central  Google Scholar 

  138. 138

    Aagaard, K. et al. The placenta harbors a unique microbiome. Sci. Transl Med. 6, 237ra65 (2014).

    PubMed  PubMed Central  Google Scholar 

  139. 139

    Gomez de Aguero, M. et al. The maternal microbiota drives early postnatal innate immune development. Science 351, 1296–1302 (2016).

    PubMed  Google Scholar 

  140. 140

    Turnbaugh, P. J. & Gordon, J. I. The core gut microbiome, energy balance and obesity. J. Physiol. 587, 4153–4158 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. 141

    Roediger, W. E. Role of anaerobic bacteria in the metabolic welfare of the colonic mucosa in man. Gut 21, 793–798 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. 142

    Peng, L., Li, Z.-R., Green, R. S., Holzman, I. R. & Lin, J. Butyrate enhances the intestinal barrier by facilitating tight junction assembly via activation of AMP-activated protein kinase in Caco-2 cell monolayers. J. Nutr. 139, 1619–1625 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. 143

    Turner, J. R. Intestinal mucosal barrier function in health and disease. Nat. Rev. Immunol. 9, 799–809 (2009).

    CAS  PubMed  Google Scholar 

  144. 144

    Place, R. F., Noonan, E. J. & Giardina, C. HDAC inhibition prevents NF-κB activation by suppressing proteasome activity: down-regulation of proteasome subunit expression stabilizes IκBα. Biochem. Pharmacol. 70, 394–406 (2005).

    CAS  PubMed  Google Scholar 

  145. 145

    Singh, N. et al. Blockade of dendritic cell development by bacterial fermentation products butyrate and propionate through a transporter (Slc5a8)-dependent inhibition of histone deacetylases. J. Biol. Chem. 285, 27601–27608 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. 146

    Zimmerman, M. A. et al. Butyrate suppresses colonic inflammation through HDAC1-dependent Fas upregulation and Fas-mediated apoptosis of T cells. Am. J. Physiol. Gastrointest. Liver Physiol. 302, G1405–G1415 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. 147

    Park, J. et al. Short-chain fatty acids induce both effector and regulatory T cells by suppression of histone deacetylases and regulation of the mTOR-S6K pathway. Mucosal Immunol. 8, 80–93 (2015).

    CAS  PubMed  Google Scholar 

  148. 148

    Zeevi, D. et al. Personalized nutrition by prediction of glycemic responses. Cell 163, 1079–1094 (2015).

    CAS  PubMed  Google Scholar 

  149. 149

    Swann, J. R. et al. Systemic gut microbial modulation of bile acid metabolism in host tissue compartments. Proc. Natl Acad. Sci. USA 108 (Suppl. 1), 4523–4530 (2011).

    CAS  PubMed  Google Scholar 

  150. 150

    Islam, K. B. M. S. et al. Bile acid is a host factor that regulates the composition of the cecal microbiota in rats. Gastroenterology 141, 1773–1781 (2011).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Financial support: Dorrance Endowed Fellowship in Pediatric Gastroenterology and Nutrition, University of Arizona Department of Pediatrics

Author information

Affiliations

Authors

Contributions

The authors contributed equally to researching, writing and editing the review.

Corresponding author

Correspondence to Douglas Taren.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Harrison, C., Taren, D. How poverty affects diet to shape the microbiota and chronic disease. Nat Rev Immunol 18, 279–287 (2018). https://doi.org/10.1038/nri.2017.121

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing