Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Headwaters of the zebrafish — emergence of a new model vertebrate

Abstract

The understanding of vertebrate development has advanced considerably in recent years, primarily due to the study of a few model organisms. The zebrafish, the newest of these models, has risen to prominence because both genetic and experimental embryological methods can be easily applied to this animal. The combination of approaches has proven powerful, yielding insights into the formation and function of individual tissues, organ systems and neural networks, and into human disease mechanisms. Here, we provide a personal perspective on the history of zebrafish research, from the assembly of the first genetic and embryological tools through to sequencing of the genome.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Principal architects of zebrafish developmental genetics.
Figure 2: The debut publication.
Figure 3: Determining cell autonomy of gene function.
Figure 4: Results of the the 'Big Screen' are announced.

References

  1. Driever, W. et al. A genetic screen for mutations affecting embryogenesis in zebrafish. Development 123, 37–46 (1996).

    CAS  PubMed  Google Scholar 

  2. Haffter, P. et al. The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. Development 123, 1–36 (1996).

    CAS  PubMed  Google Scholar 

  3. Stainier, D. Y. A glimpse into the molecular entrails of endoderm formation. Genes Dev. 16, 893–907 (2002).

    CAS  Article  PubMed  Google Scholar 

  4. Thisse, C. & Zon, L. I. Organogenesis — heart and blood formation from the zebrafish point of view. Science 295, 457–462 (2002).

    CAS  Article  PubMed  Google Scholar 

  5. Weinstein, B. M., Stemple, D. L., Driever, W. & Fishman, M. C. Gridlock, a localized heritable vascular patterning defect in the zebrafish. Nature Med. 1, 1143–1147 (1995).

    CAS  Article  PubMed  Google Scholar 

  6. Zhong, T. P., Rosenberg, M., Mohideen, M. A., Weinstein, B. & Fishman, M. C. gridlock, an HLH gene required for assembly of the aorta in zebrafish. Science 287, 1820–1824 (2000).

    CAS  Article  PubMed  Google Scholar 

  7. Baier, H. Zebrafish on the move: towards a behavior–genetic analysis of vertebrate vision. Curr. Opin. Neurobiol. 10, 451–455 (2000).

    CAS  Article  PubMed  Google Scholar 

  8. Darland, T. & Dowling, J. E. Behavioral screening for cocaine sensitivity in mutagenized zebrafish. Proc. Natl Acad. Sci. USA 98, 11691–11696 (2001).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. Warren, K. S., Wu, J. C., Pinet, F. & Fishman, M. C. The genetic basis of cardiac function: dissection by zebrafish (Danio rerio) screens. Phil. Trans. R. Soc. Lond. B 355, 939–944 (2000).

    CAS  Article  Google Scholar 

  10. Force, A. et al. Preservation of duplicate genes by complementary, degenerative mutations. Genetics 151, 1531–1545 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Kimmel, C. B., Miller, C. T. & Keynes, R. J. Neural crest patterning and the evolution of the jaw. J. Anat. 199, 105–120 (2001).

    CAS  Article  PubMed  Google Scholar 

  12. Barinaga, M. Zebrafish: swimming into the development mainstream. Science 250, 34–35 (1990).

    CAS  Article  PubMed  Google Scholar 

  13. Okada, Y. et al. Molecular basis of a mutational hot spot in the lysozyme gene of bacteriophage T4. Nature 236, 338–341 (1972).

    CAS  Article  PubMed  Google Scholar 

  14. Streisinger, G., Edgar, R. S. & Denhardt, G. H. Chromosome structure in phage T4. I. Circularity of the linkage map. Proc. Natl Acad. Sci. USA 51, 775–779 (1964).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. Streisinger, G. et al. Frameshift mutations and the genetic code. Cold Spring Harbor Symp. Quant. Biol. 31, 77–84 (1966).

    CAS  Article  PubMed  Google Scholar 

  16. Tsugita, A. et al. Frameshift mutations resulting in the changes of the same amino acid residue (140) in T4 bacteriophage lysozyme and in vivo codons for Trp, Tyr, Met, Val, and Ile. J. Mol. Biol. 41, 349–364 (1969).

    CAS  Article  PubMed  Google Scholar 

  17. Brenner, S. in The Nematode Caenorhabditis elegans (ed. Wood, W. B.) ix–xiii (Cold Spring Harbor Laboratory Press, New York, 1988).

    Google Scholar 

  18. Jacob, F. & Monod, J. Genetic regulatory mechanisms in the synthesis of proteins. J. Mol. Biol. 3, 318–356 (1961).

    CAS  Article  PubMed  Google Scholar 

  19. Streisinger, G., Walker, C., Dower, N., Knauber, D. & Singer, F. Production of clones of homozygous diploid zebra fish (Brachydanio rerio). Nature 291, 293–296 (1981).

    CAS  Article  PubMed  Google Scholar 

  20. Streisinger, G., Singer, F., Walker, C., Knauber, D. & Dower, N. Segregation analyses and gene–centromere distances in zebrafish. Genetics 112, 311–319 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Chakrabarti, S., Streisinger, G., Singer, F. & Walker, C. Frequency of γ-ray-induced specific locus and recessive lethal mutations in mature germ cells of the zebrafish. Genetics 103, 109–124 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Walker, C. & Streisinger, G. Induction of mutations by γ-rays in pregonial germ cells of zebrafish. Genetics 103, 125–136 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Streisinger, G., Coale, F., Taggart, C., Walker, C. & Grunwald, D. J. Clonal origins of cells in the pigmented retina of the zebrafish eye. Dev. Biol. 131, 60–69 (1989).

    CAS  Article  PubMed  Google Scholar 

  24. Streisinger, G. Attainment of minimal biological variability and measurements of genotoxicity: production of homozygous diploid zebra fish. Natl Cancer Inst. Monogr. 65, 53–58 (1984).

    CAS  PubMed  Google Scholar 

  25. Streisinger, G. & Levinthal, C. Report to the Planning Committee to build a new Marine Resources Center at Woods Hole Marine Biological Laboratory (1976).Their report emphasized “the use of isogenic marine forms for the testing of teratogenicity”. They argued that “Successful achievements in biomedical research have always depended in a critical way on the selection of appropriate model animal systems in which to study phenomena of concern... It is important to test whether agents give rise to teratogenic effects with linear dose response. In order for dose response curves to be interpretable, isogenic strains need to be used”.

  26. Branchek, T. A. Functional and Structural Development of Photoreceptors in Zebrafish. Ph.D. thesis, University of Oregon, Eugene, Oregon (1981).

    Google Scholar 

  27. Clark, D. T. Visual Responses in Developing Zebrafish (Brachydanio rerio). Ph.D. thesis, University of Oregon, Eugene, Oregon (1981).

    Google Scholar 

  28. Felsenfeld, A. L., Walker, C., Westerfield, M., Kimmel, C. & Streisinger, G. Mutations affecting skeletal muscle myofibril structure in the zebrafish. Development 108, 443–459 (1990).

    CAS  PubMed  Google Scholar 

  29. Grunwald, D. J., Kimmel, C. B., Westerfield, M., Walker, C. & Streisinger, G. A neural degeneration mutation that spares primary neurons in the zebrafish. Dev. Biol. 126, 115–128 (1988).

    CAS  Article  PubMed  Google Scholar 

  30. Hatta, K., Kimmel, C. B., Ho, R. K. & Walker, C. The cyclops mutation blocks specification of the floor plate of the zebrafish central nervous system. Nature 350, 339–341 (1991).

    CAS  Article  PubMed  Google Scholar 

  31. Kimmel, C. B. Reticulospinal and vestibulospinal neurons in the young larva of a teleost fish, Brachydanio rerio. Prog. Brain Res. 57, 1–23 (1982).

    CAS  Article  PubMed  Google Scholar 

  32. Eisen, J. S., Myers, P. Z. & Westerfield, M. Pathway selection by growth cones of identified motoneurones in live zebra fish embryos. Nature 320, 269–271 (1986).

    CAS  Article  PubMed  Google Scholar 

  33. Westerfield, M. The Zebrafish Book 4th Edn (University of Oregon Press, Eugene, Oregon, 2000).

    Google Scholar 

  34. Kimmel, C. B., Warga, R. M. & Schilling, T. F. Origin and organization of the zebrafish fate map. Development 108, 581–594 (1990).

    CAS  PubMed  Google Scholar 

  35. Kimmel, C. B. Genetics and early development of zebrafish. Trends Genet. 5, 283–288 (1989).

    CAS  Article  PubMed  Google Scholar 

  36. Griffin, K. J., Amacher, S. L., Kimmel, C. B. & Kimelman, D. Molecular identification of spadetail: regulation of zebrafish trunk and tail mesoderm formation by T-box genes. Development 125, 3379–3388 (1998).

    CAS  PubMed  Google Scholar 

  37. Kimmel, C. B., Kane, D. A., Walker, C., Warga, R. M. & Rothman, M. B. A mutation that changes cell movement and cell fate in the zebrafish embryo. Nature 337, 358–362 (1989).

    CAS  Article  PubMed  Google Scholar 

  38. Ho, R. K. & Kane, D. A. Cell-autonomous action of zebrafish spt-1 mutation in specific mesodermal precursors. Nature 348, 728–730 (1990).

    CAS  Article  PubMed  Google Scholar 

  39. Schulte-Merker, S., van Eeden, F. J., Halpern, M. E., Kimmel, C. B. & Nüsslein-Volhard, C. no tail (ntl) is the zebrafish homologue of the mouse T (Brachyury) gene. Development 120, 1009–1015 (1994).

    CAS  PubMed  Google Scholar 

  40. Driever, W., Stemple, D., Schier, A. & Solnica-Krezel, L. Zebrafish: genetic tools for studying vertebrate development. Trends Genet. 10, 152–159 (1994).

    CAS  Article  PubMed  Google Scholar 

  41. Mullins, M. C., Hammerschmidt, M., Haffter, P. & Nüsslein-Volhard, C. Large-scale mutagenesis in the zebrafish: in search of genes controlling development in a vertebrate. Curr. Biol. 4, 189–202 (1994).

    CAS  Article  PubMed  Google Scholar 

  42. Hammerschmidt, M. et al. dino and mercedes, two genes regulating dorsal development in the zebrafish embryo. Development 123, 95–102 (1996).

    CAS  PubMed  Google Scholar 

  43. Mullins, M. C. et al. Genes establishing dorsoventral pattern formation in the zebrafish embryo: the ventral specifying genes. Development 123, 81–93 (1996).

    CAS  PubMed  Google Scholar 

  44. Patton, E. E. & Zon, L. I. The art and design of genetic screens: zebrafish. Nature Rev. Genet. 2, 956–966 (2001).

    CAS  Article  PubMed  Google Scholar 

  45. Anderson, K. V. Finding the genes that direct mammalian development : ENU mutagenesis in the mouse. Trends Genet. 16, 99–102 (2000).

    CAS  Article  PubMed  Google Scholar 

  46. Postlethwait, J. H. et al. A genetic linkage map for the zebrafish. Science 264, 699–703 (1994).

    CAS  Article  PubMed  Google Scholar 

  47. Johnson, S. L. et al. Centromere-linkage analysis and consolidation of the zebrafish genetic map. Genetics 142, 1277–1288 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Postlethwait, J. H. & Talbot, W. S. Zebrafish genomics: from mutants to genes. Trends Genet. 13, 183–190 (1997).

    CAS  Article  PubMed  Google Scholar 

  49. Bamford, R. N. et al. Loss-of-function mutations in the EGF-CFC gene CFC1 are associated with human left–right laterality defects. Nature Genet. 26, 365–369 (2000).

    CAS  Article  PubMed  Google Scholar 

  50. Amsterdam, A. et al. A large-scale insertional mutagenesis screen in zebrafish. Genes Dev. 13, 2713–2724 (1999).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  51. Talbot, W. S. & Hopkins, N. Zebrafish mutations and functional analysis of the vertebrate genome. Genes Dev. 14, 755–762 (2000).

    CAS  PubMed  Google Scholar 

  52. Nasevicius, A. & Ekker, S. C. Effective targeted gene 'knockdown' in zebrafish. Nature Genet. 26, 216–220 (2000).

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

Many colleagues have been extremely generous with their time, contributing to this project by supplying us with written and verbal accounts of their perspectives on the origin of the zebrafish field. In particular, we thank T. Alber, J. Campos-Ortega, M. Capecchi, C. Kimmel, K. G. Lark, C. Nüsslein-Volhard, F. Stahl, L. Streisinger, P. von Hippel, C. Walker and E. Wilson for their insights and patience, and the University of Oregon Division of Archives for its assistance. D.J.G. and J.S.E. are funded by grants from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Jonah Grunwald.

Related links

Related links

DATABASES

LocusLink

Brachyury

ZFIN

no tail

spadetail

FURTHER INFORMATION

ZFIN

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Grunwald, D., Eisen, J. Headwaters of the zebrafish — emergence of a new model vertebrate. Nat Rev Genet 3, 717–724 (2002). https://doi.org/10.1038/nrg892

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg892

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing