Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Mechanisms underlying mutational signatures in human cancers

Key Points

  • Cancers bear many thousands of mutations that are the product of the biological perturbations or mutational processes that have occurred throughout the development of the disease.

  • Each mutational process leaves its own characteristic mark of mutations, which is referred to as the mutational signature, on the cancer genome.

  • Mutational signatures are identifiable and quantifiable using mathematical models.

  • Detailed analyses of mutational signatures can determine the DNA damaging components as well as the DNA repair and replicative pathways that have been operative in cancer or that have gone awry.

  • Historical mutational processes give insights into the aetiology of a cancer, whereas ongoing mutational processes might act as biomarkers or targets for treatment.

Abstract

The collective somatic mutations observed in a cancer are the outcome of multiple mutagenic processes that have been operative over the lifetime of a patient. Each process leaves a characteristic imprint — a mutational signature — on the cancer genome, which is defined by the type of DNA damage and DNA repair processes that result in base substitutions, insertions and deletions or structural variations. With the advent of whole-genome sequencing, researchers are identifying an increasing array of these signatures. Mutational signatures can be used as a physiological readout of the biological history of a cancer and also have potential use for discerning ongoing mutational processes from historical ones, thus possibly revealing new targets for anticancer therapies.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Active mutational processes over the course of cancer development.
Figure 2: Summary of known mutational signatures, and the components of DNA damage and repair that constitute the mutational processes.
Figure 3: DNA repair pathways and mutational consequences.
Figure 4: Bypass of replication forks blocked by lesions.
Figure 5: Gene rearrangements in cancer.

Similar content being viewed by others

References

  1. Stratton, M. R., Campbell, P. J. & Futreal, P. A. The cancer genome. Nature 458, 719–724 (2009). This is an overview of cancer genomes with a description of various types of somatic mutations acquired during the multistep process of cancer development.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Nik-Zainal, S. et al. Mutational processes molding the genomes of 21 breast cancers. Cell 149, 979–993 (2012). This study presents catalogues of somatic mutations from 21 breast cancers, the respective mutational signatures of which were extracted by mathematical methods.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Nik-Zainal, S. et al. The life history of 21 breast cancers. Cell 149, 994–1007 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bentley, D. R. et al. Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456, 53–59 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Greenman, C. et al. Patterns of somatic mutation in human cancer genomes. Nature 446, 153–158 (2007). This study shows the prevalence of somatic mutations in human cancer genomes, which indicates that most of the mutations do not drive oncogenesis. Nevertheless, it provides evidence for driver mutations that are actively involved in tumour development.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wood, L. D. et al. The genomic landscapes of human breast and colorectal cancers. Science 318, 1108–1113 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Pleasance, E. D. et al. A comprehensive catalogue of somatic mutations from a human cancer genome. Nature 463, 191–196 (2010).

    Article  CAS  PubMed  Google Scholar 

  8. Pleasance, E. D. et al. A small-cell lung cancer genome with complex signatures of tobacco exposure. Nature 463, 184–190 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. Alexandrov, L. B. et al. Signatures of mutational processes in human cancer. Nature 500, 415–421 (2013). In this study, >20 distinct mutational signatures have been extracted from several cancer types, which shows the presence of the APOBEC-mediated signature in various cancers.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Alexandrov, L. B., Nik-Zainal, S., Wedge, D. C., Campbell, P. J. & Stratton, M. R. Deciphering signatures of mutational processes operative in human cancer. Cell Rep. 3, 246–259 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pfeifer, G. P. et al. Tobacco smoke carcinogens, DNA damage and p53 mutations in smoking-associated cancers. Oncogene 21, 7435–7451 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Ellegren, H., Smith, N. G. & Webster, M. T. Mutation rate variation in the mammalian genome. Curr. Opin. Genet. Dev. 13, 562–568 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Pfeifer, G. P., You, Y. H. & Besaratinia, A. Mutations induced by ultraviolet light. Mutat. Res. 571, 19–31 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Lutsenko, E. & Bhagwat, A. S. Principal causes of hot spots for cytosine to thymine mutations at sites of cytosine methylation in growing cells. A model, its experimental support and implications. Mutat. Res. 437, 11–20 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Nikolaev, S. I. et al. A single-nucleotide substitution mutator phenotype revealed by exome sequencing of human colon adenomas. Cancer Res. 72, 6279–6289 (2012).

    Article  CAS  PubMed  Google Scholar 

  16. Pham, P., Bransteitter, R., Petruska, J. & Goodman, M. F. Processive AID-catalysed cytosine deamination on single-stranded DNA simulates somatic hypermutation. Nature 424, 103–107 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Landry, S., Narvaiza, I., Linfesty, D. C. & Weitzman, M. D. APOBEC3A can activate the DNA damage response and cause cell-cycle arrest. EMBO Rep. 12, 444–450 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Suspene, R. et al. Somatic hypermutation of human mitochondrial and nuclear DNA by APOBEC3 cytidine deaminases, a pathway for DNA catabolism. Proc. Natl Acad. Sci. USA 108, 4858–4863 (2011).

    Article  PubMed  Google Scholar 

  19. Taylor, B. J. et al. DNA deaminases induce break-associated mutation showers with implication of APOBEC3B and 3A in breast cancer kataegis. Elife 2, e00534 (2013). This paper shows that kataegis observed in the breast cancer genome can stem from AID- or APOBEC-mediated cytidine deamination in the proximity of DNA breaks.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Stephens, P. et al. A screen of the complete protein kinase gene family identifies diverse patterns of somatic mutations in human breast cancer. Nature Genet. 37, 590–592 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Burns, M. B. et al. APOBEC3B is an enzymatic source of mutation in breast cancer. Nature 494, 366–370 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Roberts, S. A. et al. An APOBEC cytidine deaminase mutagenesis pattern is widespread in human cancers. Nature Genet. 45, 970–976 (2013).

    Article  CAS  PubMed  Google Scholar 

  23. Nik-Zainal, S. et al. Association of a germline copy number polymorphism of APOBEC3A and APOBEC3B with burden of putative APOBEC-dependent mutations in breast cancer. Nature Genet. 46, 487–491 (2014).

    Article  CAS  PubMed  Google Scholar 

  24. Byeon, I. J. et al. NMR structure of human restriction factor APOBEC3A reveals substrate binding and enzyme specificity. Nature Commun. 4, 1890 (2013).

    Article  CAS  Google Scholar 

  25. Holtz, C. M., Sadler, H. A. & Mansky, L. M. APOBEC3G cytosine deamination hotspots are defined by both sequence context and single-stranded DNA secondary structure. Nucleic Acids Res. 41, 6139–6148 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Karran, P. & Lindahl, T. Hypoxanthine in deoxyribonucleic acid: generation by heat-induced hydrolysis of adenine residues and release in free form by a deoxyribonucleic acid glycosylase from calf thymus. Biochemistry 19, 6005–6011 (1980).

    Article  CAS  PubMed  Google Scholar 

  27. Lindahl, T. Instability and decay of the primary structure of DNA. Nature 362, 709–715 (1993).

    Article  CAS  PubMed  Google Scholar 

  28. Hussain, S. P., Hofseth, L. J. & Harris, C. C. Radical causes of cancer. Nature Rev. Cancer 3, 276–285 (2003).

    Article  CAS  Google Scholar 

  29. Evans, M. D., Dizdaroglu, M. & Cooke, M. S. Oxidative DNA damage and disease: induction, repair and significance. Mutat. Res. 567, 1–61 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Oikawa, S. & Kawanishi, S. Site-specific DNA damage at GGG sequence by oxidative stress may accelerate telomere shortening. FEBS Lett. 453, 365–368 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Oikawa, S., Tada-Oikawa, S. & Kawanishi, S. Site-specific DNA damage at the GGG sequence by UVA involves acceleration of telomere shortening. Biochemistry 40, 4763–4768 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Cadet, J., Sage, E. & Douki, T. Ultraviolet radiation-mediated damage to cellular DNA. Mutat. Res. 571, 3–17 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Hendriks, G. et al. Transcription-dependent cytosine deamination is a novel mechanism in ultraviolet light-induced mutagenesis. Curr. Biol. 20, 170–175 (2010).

    Article  CAS  PubMed  Google Scholar 

  34. Schiltz, M. et al. Characterization of the mutational profile of (+)-7R,8S-dihydroxy-9S,10R-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene at the hypoxanthine (guanine) phosphoribosyltransferase gene in repair-deficient Chinese hamster V-H1 cells. Carcinogenesis 20, 2279–2285 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. Wiseman, R. W., Miller, E. C., Miller, J. A. & Liem, A. Structure–activity studies of the hepatocarcinogenicities of alkenylbenzene derivatives related to estragole and safrole on administration to preweanling male C57BL/6J x C3H/HeJ F1 mice. Cancer Res. 47, 2275–2283 (1987).

    CAS  PubMed  Google Scholar 

  36. Papadopoulo, D., Laquerbe, A., Guillouf, C. & Moustacchi, E. Molecular spectrum of mutations induced at the HPRT locus by a cross-linking agent in human cell lines with different repair capacities. Mutat. Res. 294, 167–177 (1993).

    Article  CAS  PubMed  Google Scholar 

  37. Yang, S. C., Lin, J. G., Chiou, C. C., Chen, L. Y. & Yang, J. L. Mutation specificity of 8-methoxypsoralen plus two doses of UVA irradiation in the hprt gene in diploid human fibroblasts. Carcinogenesis 15, 201–207 (1994).

    Article  CAS  PubMed  Google Scholar 

  38. Feldmeyer, N. et al. Further studies with a cell immortalization assay to investigate the mutation signature of aristolochic acid in human p53 sequences. Mutat. Res. 608, 163–168 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Krokan, H. E., Standal, R. & Slupphaug, G. DNA glycosylases in the base excision repair of DNA. Biochem. J. 325, 1–16 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Caldecott, K. W. Single-strand break repair and genetic disease. Nature Rev. Genet. 9, 619–631 (2008).

    Article  PubMed  Google Scholar 

  41. Robertson, A. B., Klungland, A., Rognes, T. & Leiros, I. DNA repair in mammalian cells: base excision repair: the long and short of it. Cell. Mol. Life Sci. 66, 981–993 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. An, Q., Robins, P., Lindahl, T. & Barnes, D. E. C→T mutagenesis and γ-radiation sensitivity due to deficiency in the Smug1 and Ung DNA glycosylases. EMBO J. 24, 2205–2213 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Smart, D. J., Chipman, J. K. & Hodges, N. J. Activity of OGG1 variants in the repair of pro-oxidant-induced 8-oxo-2′-deoxyguanosine. DNA Repair (Amst.) 5, 1337–1345 (2006).

    Article  CAS  Google Scholar 

  44. Nouspikel, T. DNA repair in mammalian cells: nucleotide excision repair: variations on versatility. Cell. Mol. Life Sci. 66, 994–1009 (2009).

    Article  CAS  PubMed  Google Scholar 

  45. Bohr, V. A., Smith, C. A., Okumoto, D. S. & Hanawalt, P. C. DNA repair in an active gene: removal of pyrimidine dimers from the DHFR gene of CHO cells is much more efficient than in the genome overall. Cell 40, 359–369 (1985).

    Article  CAS  PubMed  Google Scholar 

  46. Poon, S. L. et al. Genome-wide mutational signatures of aristolochic acid and its application as a screening tool. Sci. Transl Med. 5, 197ra101 (2013).

    Article  CAS  PubMed  Google Scholar 

  47. Guo, J., Hanawalt, P. C. & Spivak, G. Comet-FISH with strand-specific probes reveals transcription-coupled repair of 8-oxoguanine in human cells. Nucleic Acids Res. 41, 7700–7712 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Pena-Diaz, J. & Jiricny, J. Mammalian mismatch repair: error-free or error-prone? Trends Biochem. Sci. 37, 206–214 (2012).

    Article  CAS  PubMed  Google Scholar 

  49. Jiricny, J. The multifaceted mismatch-repair system. Nature Rev. Mol. Cell Biol. 7, 335–346 (2006).

    Article  CAS  Google Scholar 

  50. Tiraby, G., Fox, M. S. & Bernheimer, H. Marker discrimination in deoxyribonucleic acid-mediated transformation of various Pneumococcus strains. J. Bacteriol. 121, 608–618 (1975).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Shibata, D., Peinado, M. A., Ionov, Y., Malkhosyan, S. & Perucho, M. Genomic instability in repeated sequences is an early somatic event in colorectal tumorigenesis that persists after transformation. Nature Genet. 6, 273–281 (1994).

    Article  CAS  PubMed  Google Scholar 

  52. McCulloch, S. D. & Kunkel, T. A. The fidelity of DNA synthesis by eukaryotic replicative and translesion synthesis polymerases. Cell Res. 18, 148–161 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Shevelev, I. V. & Hübscher, U. The 3′–5′ exonucleases. Nature Rev. Mol. Cell Biol. 3, 364–376 (2002).

    Article  CAS  Google Scholar 

  54. Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature 487, 330–337 (2012).

  55. Cancer Genome Atlas Research Network et al. Integrated genomic characterization of endometrial carcinoma. Nature 497, 67–73 (2013).

  56. Kane, D. P. & Shcherbakova, P. V. A common cancer-associated DNA polymerase ε mutation causes an exceptionally strong mutator phenotype, indicating fidelity defects distinct from loss of proofreading. Cancer Res. 74, 1895–1901 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Roberts, J. D. & Kunkel, T. A. Fidelity of a human cell DNA replication complex. Proc. Natl Acad. Sci. USA 85, 7064–7068 (1988).

    Article  CAS  PubMed  Google Scholar 

  58. Bester, A. C. et al. Nucleotide deficiency promotes genomic instability in early stages of cancer development. Cell 145, 435–446 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Jones, R. M. et al. Increased replication initiation and conflicts with transcription underlie cyclin E-induced replication stress. Oncogene 32, 3744–3753 (2013).

    Article  CAS  PubMed  Google Scholar 

  60. Petermann, E., Woodcock, M. & Helleday, T. Chk1 promotes replication fork progression by controlling replication initiation. Proc. Natl Acad. Sci. USA 107, 16090–16095 (2010).

    Article  PubMed  Google Scholar 

  61. Sale, J. E., Lehmann, A. R. & Woodgate, R. Y-family DNA polymerases and their role in tolerance of cellular DNA damage. Nature Rev. Mol. Cell Biol. 13, 141–152 (2012). This is a review on our current understanding of translesion synthesis and the associated Y-family DNA polymerases.

    Article  CAS  Google Scholar 

  62. Knobel, P. A. & Marti, T. M. Translesion DNA synthesis in the context of cancer research. Cancer Cell. Int. 11, 39 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Klarer, A. C. & McGregor, W. Replication of damaged genomes. Crit. Rev. Eukaryot. Gene Expr. 21, 323–336 (2011).

    Article  CAS  PubMed  Google Scholar 

  64. Strauss, B. S. The “A” rule revisited: polymerases as determinants of mutational specificity. DNA Repair (Amst.) 1, 125–135 (2002).

    Article  CAS  Google Scholar 

  65. Puente, X. S. Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia. Nature 475, 101–105 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kunz, B. A., Straffon, A. F. & Vonarx, E. J. DNA damage-induced mutation: tolerance via translesion synthesis. Mutat. Res. 451, 169–185 (2000).

    Article  CAS  PubMed  Google Scholar 

  67. Thibodeau, S. N., Bren, G. & Schaid, D. Microsatellite instability in cancer of the proximal colon. Science 260, 816–819 (1993).

    Article  CAS  PubMed  Google Scholar 

  68. Ionov, Y., Peinado, M. A., Malkhosyan, S., Shibata, D. & Perucho, M. Ubiquitous somatic mutations in simple repeated sequences reveal a new mechanism for colonic carcinogenesis. Nature 363, 558–561 (1993).

    Article  CAS  PubMed  Google Scholar 

  69. Bhattacharyya, N. P., Skandalis, A., Ganesh, A., Groden, J. & Meuth, M. Mutator phenotypes in human colorectal carcinoma cell lines. Proc. Natl Acad. Sci. USA 91, 6319–6323 (1994).

    Article  CAS  PubMed  Google Scholar 

  70. Karran, P. Microsatellite instability and DNA mismatch repair in human cancer. Semin. Cancer Biol. 7, 15–24 (1996).

    Article  CAS  PubMed  Google Scholar 

  71. Kuraguchi, M. et al. Tumor-associated Apc mutations in Mlh1−/− Apc1638N mice reveal a mutational signature of Mlh1 deficiency. Oncogene 19, 5755–5763 (2000).

    Article  CAS  PubMed  Google Scholar 

  72. Weinstock, D. M., Brunet, E. & Jasin, M. Formation of NHEJ-derived reciprocal chromosomal translocations does not require Ku70. Nature Cell Biol. 9, 978–981 (2007).

    Article  CAS  PubMed  Google Scholar 

  73. Yun, M. H. & Hiom, K. CtIP–BRCA1 modulates the choice of DNA double-strand-break repair pathway throughout the cell cycle. Nature 459, 460–463 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Moynahan, M. E., Chiu, J. W., Koller, B. H. & Jasin, M. Brca1 controls homology-directed DNA repair. Mol. Cell 4, 511–518 (1999).

    Article  CAS  PubMed  Google Scholar 

  75. Moynahan, M. E., Pierce, A. J. & Jasin, M. BRCA2 is required for homology-directed repair of chromosomal breaks. Mol. Cell 7, 263–272 (2001).

    Article  CAS  PubMed  Google Scholar 

  76. Bunting, S. F. et al. 53BP1 inhibits homologous recombination in Brca1-deficient cells by blocking resection of DNA breaks. Cell 141, 243–254 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Davies, A. A. et al. Role of BRCA2 in control of the RAD51 recombination and DNA repair protein. Mol. Cell 7, 273–282 (2001).

    Article  CAS  PubMed  Google Scholar 

  78. Stephens, P. J. et al. Complex landscapes of somatic rearrangement in human breast cancer genomes. Nature 462, 1005–1010 (2009). This study analyses somatic rearrangements in the breast cancer genome using paired-end sequencing strategy, which reveals that these rearrangements are mostly intrachromosomal.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Nussenzweig, A. & Nussenzweig, M. C. Origin of chromosomal translocations in lymphoid cancer. Cell 141, 27–38 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Groth, P. et al. Homologous recombination repairs secondary replication induced DNA double-strand breaks after ionizing radiation. Nucleic Acids Res. 40, 6585–6594 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Arnaudeau, C., Lundin, C. & Helleday, T. DNA double-strand breaks associated with replication forks are predominantly repaired by homologous recombination involving an exchange mechanism in mammalian cells. J. Mol. Biol. 307, 1235–1245 (2001).

    Article  CAS  PubMed  Google Scholar 

  82. Riballo, E. et al. A pathway of double-strand break rejoining dependent upon ATM, Artemis, and proteins locating to γ-H2AX foci. Mol. Cell 16, 715–724 (2004).

    Article  CAS  PubMed  Google Scholar 

  83. Rothkamm, K., Kruger, I., Thompson, L. H. & Lobrich, M. Pathways of DNA double-strand break repair during the mammalian cell cycle. Mol. Cell. Biol. 23, 5706–5715 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Saleh-Gohari, N. & Helleday, T. Conservative homologous recombination preferentially repairs DNA double-strand breaks in the S phase of the cell cycle in human cells. Nucleic Acids Res. 32, 3683–3688 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Stephens, P. J. et al. Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 144, 27–40 (2011). This is the first study to characterize chromothripsis in a human cancer genome.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Klein, I. A. et al. Translocation-capture sequencing reveals the extent and nature of chromosomal rearrangements in B lymphocytes. Cell 147, 95–106 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Chiarle, R. et al. Genome-wide translocation sequencing reveals mechanisms of chromosome breaks and rearrangements in B cells. Cell 147, 107–119 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Hakim, O. et al. DNA damage defines sites of recurrent chromosomal translocations in B lymphocytes. Nature 484, 69–74 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Ng, C. K. et al. The role of tandem duplicator phenotype in tumour evolution in high-grade serous ovarian cancer. J. Pathol. 226, 703–712 (2012).

    Article  CAS  PubMed  Google Scholar 

  90. Costantino, L. et al. Break-induced replication repair of damaged forks induces genomic duplications in human cells. Science 343, 88–91 (2014). This paper reports a role of DNA Pol δ in BIR repair.

    Article  CAS  PubMed  Google Scholar 

  91. Haber, J. E. Lucky breaks: analysis of recombination in Saccharomyces. Mutat. Res. 451, 53–69 (2000).

    Article  CAS  PubMed  Google Scholar 

  92. Helleday, T. Pathways for mitotic homologous recombination in mammalian cells. Mutat. Res. 532, 103–115 (2003).

    Article  CAS  PubMed  Google Scholar 

  93. West, S. C. Molecular views of recombination proteins and their control. Nature Rev. Mol. Cell Biol. 4, 435–445 (2003).

    Article  CAS  Google Scholar 

  94. Szostak, J. W., Orr-Weaver, T. L., Rothstein, R. J. & Stahl, F. W. The double-strand-break repair model for recombination. Cell 33, 25–35 (1983).

    Article  CAS  PubMed  Google Scholar 

  95. Baehner, F. L. et al. Human epidermal growth factor receptor 2 assessment in a case-control study: comparison of fluorescence in situ hybridization and quantitative reverse transcription polymerase chain reaction performed by central laboratories. J. Clin. Oncol. 28, 4300–4306 (2010).

    Article  PubMed  Google Scholar 

  96. McClintock, B. The production of homozygous deficient tissues with mutant characteristics by means of the aberrant mitotic behavior of ring-shaped chromosomes. Genetics 23, 315–376 (1938).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Ma, C., Martin, S., Trask, B. & Hamlin, J. L. Sister chromatid fusion initiates amplification of the dihydrofolate reductase gene in Chinese hamster cells. Genes Dev. 7, 605–620 (1993).

    Article  CAS  PubMed  Google Scholar 

  98. Baca, S. C. et al. Punctuated evolution of prostate cancer genomes. Cell 153, 666–677 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Roberts, S. A. et al. Clustered mutations in yeast and in human cancers can arise from damaged long single-strand DNA regions. Mol. Cell 46, 424–435 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Burrell, R. A. et al. Replication stress links structural and numerical cancer chromosomal instability. Nature 494, 492–496 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Di Micco, R. et al. Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication. Nature 444, 638–642 (2006).

    Article  CAS  PubMed  Google Scholar 

  102. Bartkova, J. et al. Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature 444, 633–637 (2006).

    Article  CAS  PubMed  Google Scholar 

  103. Spruck, C. H., Won, K. A. & Reed, S. I. Deregulated cyclin E induces chromosome instability. Nature 401, 297–300 (1999).

    Article  CAS  PubMed  Google Scholar 

  104. Zimmerman, K. M., Jones, R. M., Petermann, E. & Jeggo, P. A. Diminished origin-licensing capacity specifically sensitizes tumor cells to replication stress. Mol. Cancer Res. 11, 370–380 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Takeda, D. Y. & Dutta, A. DNA replication and progression through S phase. Oncogene 24, 2827–2843 (2005).

    Article  CAS  PubMed  Google Scholar 

  106. Tsantoulis, P. K. et al. Oncogene-induced replication stress preferentially targets common fragile sites in preneoplastic lesions. A genome-wide study. Oncogene 27, 3256–3264 (2008).

    Article  CAS  PubMed  Google Scholar 

  107. Barlow, J. et al. A novel class of early replicating fragile sites that contribute to genome instability in B cell lymphomas. Cell 152, 620–632 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Gellert, M. et al. V(D)J recombination: links to transposition and double-strand break repair. Cold Spring Harb. Symp. Quant. Biol. 64, 161–167 (1999).

    Article  CAS  PubMed  Google Scholar 

  109. Neuberger, M. S., Harris, R. S., Di Noia, J. & Petersen-Mahrt, S. K. Immunity through DNA deamination. Trends Biochem. Sci. 28, 305–312 (2003).

    Article  CAS  PubMed  Google Scholar 

  110. Vaandrager, J. W., Schuuring, E., Philippo, K. & Kluin, P. M. V(D)J recombinase-mediated transposition of the BCL2 gene to the IGH locus in follicular lymphoma. Blood 96, 1947–1952 (2000).

    CAS  PubMed  Google Scholar 

  111. Robbiani, D. F. et al. AID is required for the chromosomal breaks in c-myc that lead to c-myc/IgH translocations. Cell 135, 1028–1038 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Ramiro, A. R. et al. AID is required for c-myc/IgH chromosome translocations in vivo. Cell 118, 431–438 (2004).

    Article  CAS  PubMed  Google Scholar 

  113. Berry, M. W., Browne, M., Langville, A. N., Pauca, V. P. & Plemmons, R. J. Algorithms and applications for approximate nonnegative matrix factorization. Comput. Statist. Data Analysis 52, 155–173 (2007).

    Article  Google Scholar 

  114. Lange, S. S., Takata, K. & Wood, R. D. DNA polymerases and cancer. Nature Rev. Cancer 11, 96–110 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Knut and Alice Wallenberg Foundation, the Swedish Research Council, Swedish Cancer Society, the Swedish Pain Relief Foundation and the Torsten and Ragnar Söderberg Foundation (all to T.H.). S.N-Z. is personally funded through a Wellcome Trust Intermediate Fellowship (WT100183MA) and is a Wellcome-Beit Prize Fellow.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Thomas Helleday or Serena Nik-Zainal.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

PowerPoint slides

Glossary

Driver mutations

Genetic changes that give selective advantages to clones during cancer development.

Somatic mutations

Mutations that are acquired as opposed to inherited.

Passenger mutations

Genetic changes that do not confer any selective advantage in cancer development.

Mutational processes

Biological activities that generate mutations; each of these processes comprises both a DNA damage component and a DNA repair component. These processes can be ongoing or historical depending on whether the biological processes that cause the acquisition of mutations in a cancer are active or inactive, respectively.

Mutational signature

The pattern of mutations produced by a mutational process.

Mutational portrait

The total genetic changes observed in a cancer genome; that is, the sum of all mutational signatures occurring in a lifetime.

Base substitutions

A type of mutation in which one base is replaced by another in DNA.

Insertions and deletions

(Indels). A type of mutation that arises from the insertion or deletion of one or more nucleotides within a DNA sequence.

Structural variations

Large-scale genomic changes (typically >1 kb) such as deletions, tandem duplications, amplifications, inversions and translocations.

Transversions

Mutations that involve different classes of nucleotides; that is, purine-to-pyrimidine or pyrimidine-to-purine mutations.

Transitions

Mutations that involve the same class of nucleotides; that is, purine-to-purine or pyrimidine-to-pyrimidine mutations.

Deamination

A biochemical reaction that removes an amine group from a molecule.

Transcriptional strand bias

Bias in mutation load between the transcribed strand and the non-transcribed strand.

Microsatellite instability

Variability in the length of base pair repeated sequences (<5 bp) that is caused by replication slippage and that is normally kept stable by mismatch repair.

Replication fork collapse

A condition at a replication fork in which the integrity of a DNA molecule is impaired and can result in a DNA double-strand break.

Somatic hypermutation

Regional hypermutation at the immunoglobulin locus that generates antibody diversity.

Synthesis-dependent end-joining

(SDEJ). A process in which a DNA end at a double-strand break is extended using the intact sister chromatid as template. The DNA end is released from the sister chromatid and rejoined by end-joining.

Chromothripsis

An event with tens or hundreds of locally clustered rearrangements that result in distinct oscillations of copy-number states.

Chromoplexy

A rearrangement event that involves multiple chromosomes.

Kataegis

A base substitution hypermutation that comprises C·G→T·A transitions and C·G→G·C transversions with a predilection for a thymine preceding the mutated cytosine (that is, a TpC context); it usually macroscopically colocalizes with structural variation.

Chromosomal instability

A process that results in failure to maintain euploidy after mitosis and that is caused by either numerical or structural chromosomal aberrations.

Replication stress

A condition in which progression of a replication fork is hindered.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Helleday, T., Eshtad, S. & Nik-Zainal, S. Mechanisms underlying mutational signatures in human cancers. Nat Rev Genet 15, 585–598 (2014). https://doi.org/10.1038/nrg3729

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg3729

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer