Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Comparative genetics of longevity and cancer: insights from long-lived rodents

Key Points

  • Comparative biology provides a powerful tool for understanding mechanisms of longevity and cancer resistance. The rodent clade is particularly suitable for the comparative study of ageing, as it contains species that differ nearly 10-fold in longevity and >1,000-fold in body mass.

  • Replicative senescence and repression of telomerase activity evolve in species with body mass greater than ~10 kg to counteract increased cancer risk that is conferred by larger numbers of cells. Small species with lifespans greater than ~10 years evolve additional telomere-independent tumour suppressor mechanisms.

  • There is evidence that long-lived species have more efficient genome maintenance mechanisms.

  • Different cancer-resistant species evolve distinct anticancer mechanisms. Cancer resistance is mediated by high-molecular-mass hyaluronan in the naked mole rat and depends on the interferon-mediated elimination of precancerous cells in the blind mole rat.

  • Recent advances in whole-genome sequencing open new avenues for identifying genes and pathways that are responsible for longevity and cancer resistance in exceptionally long-lived animals.

Abstract

Mammals have evolved a remarkable diversity of ageing rates. Within the single order of Rodentia, maximum lifespans range from 4 years in mice to 32 years in naked mole rats. Cancer rates also differ substantially between cancer-prone mice and almost cancer-proof naked mole rats and blind mole rats. Recent progress in rodent comparative biology, together with the emergence of whole-genome sequence information, has opened opportunities for the discovery of genetic factors that control longevity and cancer susceptibility.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Evolution of tumour suppressor mechanisms.
Figure 2: Two mole rat species independently evolved longevity and resistance to cancer.
Figure 3: Comparative genomics of ageing.
Figure 4: Lineage-specific mechanisms of longevity and cancer resistance that evolved in species with diverse ecology could be adapted to benefit human health.

Similar content being viewed by others

References

  1. Tacutu, R. et al. Human Ageing Genomic Resources: integrated databases and tools for the biology and genetics of ageing. Nucleic Acids Res. 41, D1027–D1033 (2013). This is an excellent and well-curated database that integrates information on longevity and life histories of species.

    CAS  PubMed  Google Scholar 

  2. Austad, S. N. Diverse aging rates in metazoans: targets for functional genomics. Mech. Ageing Dev. 126, 43–49 (2005).

    CAS  PubMed  Google Scholar 

  3. Miller, R. A. Biomedicine. The anti-aging sweepstakes: catalase runs for the ROSes. Science 308, 1875–1876 (2005).

    CAS  PubMed  Google Scholar 

  4. Andziak, B. & Buffenstein, R. Disparate patterns of age-related changes in lipid peroxidation in long-lived naked mole-rats and shorter-lived mice. Aging Cell 5, 525–532 (2006).

    CAS  PubMed  Google Scholar 

  5. Swindell, W. R. Dietary restriction in rats and mice: a meta-analysis and review of the evidence for genotype-dependent effects on lifespan. Ageing Res. Rev. 11, 254–270 (2012).

    PubMed  Google Scholar 

  6. Lorenzini, A., Tresini, M., Austad, S. N. & Cristofalo, V. J. Cellular replicative capacity correlates primarily with species body mass not longevity. Mech. Ageing Dev. 126, 1130–1133 (2005).

    PubMed  Google Scholar 

  7. Seluanov, A. et al. Telomerase activity coevolves with body mass not lifespan. Aging Cell 6, 45–52 (2007). This is the first analysis of telomerase activity across species in relation to lifespan and body mass.

    CAS  PubMed  Google Scholar 

  8. Austad, S. N. & Fischer, K. E. Mammalian aging, metabolism, and ecology: evidence from the bats and marsupials. J. Gerontol. 46, B47–B53 (1991).

    CAS  PubMed  Google Scholar 

  9. Lipman, R., Galecki, A., Burke, D. T. & Miller, R. A. Genetic loci that influence cause of death in a heterogeneous mouse stock. J. Gerontol. A Biol. Sci. Med. Sci. 59, 977–983 (2004).

    PubMed  Google Scholar 

  10. Burek, J. D. & Hollander, C. F. Incidence patterns of spontaneous tumors in BN/Bi rats. J. Natl Cancer Inst. 58, 99–105 (1977).

    CAS  PubMed  Google Scholar 

  11. Buffenstein, R. Negligible senescence in the longest living rodent, the naked mole-rat: insights from a successfully aging species. J. Comp. Physiol. B 178, 439–445 (2008).

    PubMed  Google Scholar 

  12. Delaney, M. A., Nagy, L., Kinsel, M. J. & Treuting, P. M. Spontaneous histologic lesions of the adult naked mole rat (Heterocephalus glaber): a retrospective survey of lesions in a zoo population. Vet. Pathol. 50, 607–621 (2013).

    CAS  PubMed  Google Scholar 

  13. Gorbunova, V. et al. Cancer resistance in the blind mole rat is mediated by concerted necrotic cell death mechanism. Proc. Natl Acad. Sci. USA 109, 19392–19396 (2012).

    CAS  PubMed  Google Scholar 

  14. Campisi, J. Cellular senescence as a tumor-suppressor mechanism. Trends Cell Biol. 11, S27–S31 (2001).

    CAS  PubMed  Google Scholar 

  15. Seluanov, A. et al. Distinct tumor suppressor mechanisms evolve in rodent species that differ in size and lifespan. Aging Cell 7, 813–823 (2008). This paper identifies rules that control evolution of tumour suppressors depending on lifespan and body mass.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Gomes, N. M. et al. Comparative biology of mammalian telomeres: hypotheses on ancestral states and the roles of telomeres in longevity determination. Aging Cell 10, 761–768 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Peto, R., Roe, F. J., Lee, P. N., Levy, L. & Clack, J. Cancer and ageing in mice and men. Br. J. Cancer 32, 411–426 (1975).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Campisi, J. Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell 120, 513–522 (2005).

    CAS  PubMed  Google Scholar 

  19. Healy, K. et al. Ecology and mode-of-life explain lifespan variation in birds and mammals. Proc. Biol. Sci. 281, 20140298 (2014).

    PubMed  PubMed Central  Google Scholar 

  20. Kraus, C., Pavard, S. & Promislow, D. E. The size–life span trade-off decomposed: why large dogs die young. Am. Nat. 181, 492–505 (2013).

    PubMed  Google Scholar 

  21. Selman, C., Nussey, D. H. & Monaghan, P. Ageing: it's a dog's life. Curr. Biol. 23, R451–R453 (2013).

    CAS  PubMed  Google Scholar 

  22. Fleming, J. M., Creevy, K. E. & Promislow, D. E. Mortality in north american dogs from 1984 to 2004: an investigation into age-, size-, and breed-related causes of death. J. Vet. Intern. Med. 25, 187–198 (2011).

    CAS  PubMed  Google Scholar 

  23. Bartke, A., Sun, L. Y. & Longo, V. Somatotropic signaling: trade-offs between growth, reproductive development, and longevity. Physiol. Rev. 93, 571–598 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Guevara-Aguirre, J. et al. Growth hormone receptor deficiency is associated with a major reduction in pro-aging signaling, cancer, and diabetes in humans. Sci. Transl Med. 3, 70ra13 (2011).

    PubMed  PubMed Central  Google Scholar 

  25. Hart, R. W., Sacher, G. A. & Hoskins, T. L. DNA repair in a short- and a long-lived rodent species. J. Gerontol. 34, 808–817 (1979).

    CAS  PubMed  Google Scholar 

  26. Hanawalt, P. C. Revisiting the rodent repairadox. Environ. Mol. Mutagen. 38, 89–96 (2001).

    CAS  PubMed  Google Scholar 

  27. Lorenzini, A. et al. Significant correlation of species longevity with DNA double strand break recognition but not with telomere length. Mech. Ageing Dev. 130, 784–792 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Lees-Miller, S. P., Sakaguchi, K., Ullrich, S. J., Appella, E. & Anderson, C. W. Human DNA-activated protein kinase phosphorylates serines 15 and 37 in the amino-terminal transactivation domain of human p53. Mol. Cell. Biol. 12, 5041–5049 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Smith, G. C. & Jackson, S. P. The DNA-dependent protein kinase. Genes Dev. 13, 916–934 (1999).

    CAS  PubMed  Google Scholar 

  30. Ganesan, A. K., Spivak, G. & Hanawalt, P. C. in Manipulation and Expression of Genes in Eukaryotes (eds Nagley, P., Linnane, A. W., Peacock, W. J. & Pateman, J. A.) 45–54 (Academic Press, 1983).

    Google Scholar 

  31. Vijg, J. Aging of the Genome (Oxford Univ. Press, 2007).

    Google Scholar 

  32. Woo, R. A. & Poon, R. Y. Activated oncogenes promote and cooperate with chromosomal instability for neoplastic transformation. Genes Dev. 18, 1317–1330 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Hayflick, L. & Moorhead, P. S. The serial cultivation of human diploid cell strains. Exp. Cell Res. 25, 585–621 (1961).

    CAS  PubMed  Google Scholar 

  34. Lewis, K. N., Andziak, B., Yang, T. & Buffenstein, R. The naked mole-rat response to oxidative stress: just deal with it. Antioxid. Redox Signal 19, 1388–1399 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Buffenstein, R. The naked mole-rat: a new long-living model for human aging research. J. Gerontol. A Biol. Sci. Med. Sci. 60, 1369–1377 (2005).

    PubMed  Google Scholar 

  36. Azpurua, J. & Seluanov, A. Long-lived cancer-resistant rodents as new model species for cancer research. Front. Genet. 3, 319 (2012).

    PubMed  Google Scholar 

  37. Jarvis, J. U. Eusociality in a mammal: cooperative breeding in naked mole-rat colonies. Science 212, 571–573 (1981).

    CAS  PubMed  Google Scholar 

  38. Nevo, E., Ivanitskaya, I. & Beiles, A. Adaptive Radiation of Blind Subterranean Mole Rats (Backhuys, 2001).

    Google Scholar 

  39. Manov, I. et al. Pronounced cancer resistance in a subterranean rodent, the blind mole-rat, Spalax: in vivo and in vitro evidence. BMC Biol. 11, 91 (2013).

    PubMed  PubMed Central  Google Scholar 

  40. Azpurua, J. et al. Naked mole-rat has increased translational fidelity compared with the mouse, as well as a unique 28S ribosomal RNA cleavage. Proc. Natl Acad. Sci. USA 110, 17350–17355 (2013).

    CAS  PubMed  Google Scholar 

  41. Seluanov, A. et al. Hypersensitivity to contact inhibition provides a clue to cancer resistance of naked mole-rat. Proc. Natl Acad. Sci. USA 106, 19352–19357 (2009).

    CAS  PubMed  Google Scholar 

  42. Tian, X. et al. High-molecular-mass hyaluronan mediates the cancer resistance of the naked mole rat. Nature 499, 346–349 (2013). This study deciphers a molecular mechanism of cancer resistance in the naked mole rat.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Laurent, T. C. & Fraser, J. R. Hyaluronan. FASEB J. 6, 2397–2404 (1992).

    CAS  PubMed  Google Scholar 

  44. Toole, B. P. Hyaluronan: from extracellular glue to pericellular cue. Nature Rev. Cancer 4, 528–539 (2004).

    CAS  Google Scholar 

  45. Jiang, D., Liang, J. & Noble, P. W. Hyaluronan in tissue injury and repair. Annu. Rev. Cell Dev. Biol. 23, 435–461 (2007).

    CAS  PubMed  Google Scholar 

  46. Pure, E. & Assoian, R. K. Rheostatic signaling by CD44 and hyaluronan. Cell Signal 21, 651–655 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Kothapalli, D. et al. Hyaluronan and CD44 antagonize mitogen-dependent cyclin D1 expression in mesenchymal cells. J. Cell Biol. 176, 535–544 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Kothapalli, D., Flowers, J., Xu, T., Pure, E. & Assoian, R. K. Differential activation of ERK and Rac mediates the proliferative and anti-proliferative effects of hyaluronan and CD44. J. Biol. Chem. 283, 31823–31829 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Liang, S., Mele, J., Wu, Y., Buffenstein, R. & Hornsby, P. J. Resistance to experimental tumorigenesis in cells of a long-lived mammal, the naked mole-rat (Heterocephalus glaber). Aging Cell 9, 626–635.

  50. Melen, G. J., Pesce, C. G., Rossi, M. S. & Kornblihtt, A. R. Novel processing in a mammalian nuclear 28S pre-rRNA: tissue-specific elimination of an 'intron' bearing a hidden break site. EMBO J. 18, 3107–3118 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Ashur-Fabian, O. et al. Evolution of p53 in hypoxia-stressed Spalax mimics human tumor mutation. Proc. Natl Acad. Sci. USA 101, 12236–12241 (2004).

    CAS  PubMed  Google Scholar 

  52. Avivi, A. et al. p53 in blind subterranean mole rats — loss-of-function versus gain-of-function activities on newly cloned Spalax target genes. Oncogene 26, 2507–2512 (2007).

    CAS  PubMed  Google Scholar 

  53. Leonova, K. I. et al. p53 cooperates with DNA methylation and a suicidal interferon response to maintain epigenetic silencing of repeats and noncoding RNAs. Proc. Natl Acad. Sci. USA 110, E89–E98 (2013).

    CAS  PubMed  Google Scholar 

  54. Nasser, N. J. et al. Alternatively spliced Spalax heparanase inhibits extracellular matrix degradation, tumor growth, and metastasis. Proc. Natl Acad. Sci. USA 106, 2253–2258 (2009).

    CAS  PubMed  Google Scholar 

  55. Kim, E. B. et al. Genome sequencing reveals insights into physiology and longevity of the naked mole rat. Nature 479, 223–227 (2011). This paper reports the naked mole rat genome, and a plethora of findings on its biology and longevity.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Gladyshev, V. N., Zhang, G. & Wang, J. The naked mole rat genome: understanding aging through genome analysis. Aging (Albany NY) 3, 1124 (2011).

    Google Scholar 

  57. Li, Y. & de Magalhaes, J. P. Accelerated protein evolution analysis reveals genes and pathways associated with the evolution of mammalian longevity. Age (Dordr) 35, 301–314 (2013).

    CAS  Google Scholar 

  58. Yu, C. et al. RNA sequencing reveals differential expression of mitochondrial and oxidation reduction genes in the long-lived naked mole-rat when compared to mice. PLoS ONE 6, e26729 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Kasaikina, M. V. et al. Reduced utilization of selenium by naked mole rats due to a specific defect in GPx1 expression. J. Biol. Chem. 286, 17005–17014 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Fang, X. et al. Genome-wide adaptive complexes to underground stresses in blind mole rats Spalax. Nature Commun. 5, 3966 (2014).

    CAS  Google Scholar 

  61. Park, T. J. et al. Selective inflammatory pain insensitivity in the African naked mole-rat (Heterocephalus glaber). PLoS Biol. 6, e13 (2008).

    PubMed  PubMed Central  Google Scholar 

  62. Smith, E. S. et al. The molecular basis of acid insensitivity in the African naked mole-rat. Science 334, 1557–1560 (2011).

    CAS  PubMed  Google Scholar 

  63. Lindblad-Toh, K. et al. A high-resolution map of human evolutionary constraint using 29 mammals. Nature 478, 476–482 (2011). This is the first comparative genomic study of mammals based on 29 high- and low-resolution genome sequences.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Seim, I. et al. Genome analysis reveals insights into physiology and longevity of the Brandt's bat Myotis brandtii. Nature Commun. 4, 2212 (2013).

    Google Scholar 

  65. Parker, J. et al. Genome-wide signatures of convergent evolution in echolocating mammals. Nature 502, 228–231 (2013).

    CAS  PubMed  Google Scholar 

  66. Yim, H. S. et al. Minke whale genome and aquatic adaptation in cetaceans. Nature Genet. 46, 88–92 (2014).

    CAS  PubMed  Google Scholar 

  67. Orlando, L. et al. Recalibrating Equus evolution using the genome sequence of an early Middle Pleistocene horse. Nature 499, 74–78 (2013).

    CAS  PubMed  Google Scholar 

  68. Zhang, G. et al. Comparative analysis of bat genomes provides insight into the evolution of flight and immunity. Science 339, 456–460 (2013).

    CAS  PubMed  Google Scholar 

  69. Kong, A. et al. Rate of de novo mutations and the importance of father's age to disease risk. Nature 488, 471–475 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Gundry, M., Li, W., Maqbool, S. B. & Vijg, J. Direct, genome-wide assessment of DNA mutations in single cells. Nucleic Acids Res. 40, 2032–2040 (2012).

    CAS  PubMed  Google Scholar 

  71. Brawand, D. et al. The evolution of gene expression levels in mammalian organs. Nature 478, 343–348 (2011). This is the first analysis of gene expression across mammals.

    CAS  PubMed  Google Scholar 

  72. Ingolia, N. T., Lareau, L. F. & Weissman, J. S. Ribosome profiling of mouse embryonic stem cells reveals the complexity and dynamics of mammalian proteomes. Cell 147, 789–802 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. de Magalhaes, J. P. & Kean, M. Endless paces of degeneration—applying comparative genomics to study evolution's moulding of longevity. EMBO Rep. 14, 661–662 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Haldane, J. B. S. New Paths in Genetics (Allen and Unwin, 1941).

    Google Scholar 

  75. Williams, G. G. Pleiotropy, natural selection, and the evolution of senescence. Evolution 11, 398–411 (1957).

    Google Scholar 

  76. Medawar, P. B. An Unsolved Problem of Biology (H. K. Lewis, 1952). Medawar was the first to formally work out a complete model of ageing as a process that naturally emerges from the decline in efficacy of natural selection during the life course.

    Google Scholar 

  77. Luckinbill, L. S. & Clare, M. J. Selection for life span in Drosophila melanogaster. Hered. (Edinb.) 55, 9–18 (1985).

    Google Scholar 

  78. Rose, M. R. Genetics of increased lifespan in Drosophila. BioEssays 11, 132–135 (1989).

    CAS  PubMed  Google Scholar 

  79. Rose, M. R. Evolutionary Biology of Aging (Oxford Univ. Press, 1991).

    Google Scholar 

  80. Austad, S. Retarded senescence in an insular population of Virginia opossums (Didelphis virginiana). J. Zool. 229, 695–708 (1993).

    Google Scholar 

  81. de Magalhaes, J. P. et al. The Human Ageing Genomic Resources: online databases and tools for biogerontologists. Aging Cell 8, 65–72 (2009).

    PubMed  Google Scholar 

  82. Gorbunova, V., Bozzella, M. J. & Seluanov, A. Rodents for comparative aging studies: from mice to beavers. Age (Dordr) 30, 111–119 (2008).

    Google Scholar 

Download references

Acknowledgements

The authors thank D. Promislow and M. van Meter for comments on the manuscript, and I. Seim for help with the figures. The work in the authors' laboratories is supported by the US National Institutes of Health (all authors); the Life Extension Foundation (V.G. and A.S.); and the Glenn Foundation for Medical Research (J.V.). The authors thank past and present members of their laboratories for their insights.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vera Gorbunova.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Maximum lifespans

The maximum documented lifespans achieved by representatives of various species. They are typically documented in a captive environment protected from predators.

Telomerase

A ribonucleoprotein enzyme that elongates telomeres by synthesizing the telomeric repeat sequence using an RNA templete.

Pseudogenized genes

Genes that have lost their functional gene products, for example, through accumulation of frameshifts or stop codons. They also arise when a gene is processed by a retrotransposon such that a portion of the mRNA transcript of a gene is reverse transcribed back to DNA and inserted into chromosomal DNA.

Synteny

Shared genomic organization between related species. It is usually seen as a shared relative order of genes or other functional elements on a portion of a chromosome.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorbunova, V., Seluanov, A., Zhang, Z. et al. Comparative genetics of longevity and cancer: insights from long-lived rodents. Nat Rev Genet 15, 531–540 (2014). https://doi.org/10.1038/nrg3728

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg3728

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer