Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Error prevention and mitigation as forces in the evolution of genes and genomes

Abstract

Why are short introns rarely a multiple of three nucleotides long? Why do essential genes cluster? Why are genes in operons often lined up in the order in which they are needed in the encoded pathway? In this Opinion article, we argue that these and many other — ostensibly disparate — observations are all pieces of an emerging picture in which multiple aspects of gene anatomy and genome architecture have evolved in response to error-prone gene expression.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Error prevention and mitigation, from transcription to protein folding.
Figure 2: Common codons encode partial termination signals.

References

  1. Fox-Walsh, K. L. & Hertel, K. J. Splice-site pairing is an intrinsically high fidelity process. Proc. Natl Acad. Sci. USA 106, 1766–1771 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Drummond, D. A. & Wilke, C. O. The evolutionary consequences of erroneous protein synthesis. Nature Rev. Genet. 10, 715–724 (2009).

    Article  PubMed  Google Scholar 

  3. Ackermann, M. & Chao, L. DNA Sequences shaped by selection for stability. PLoS Genet. 2, e22 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Wagner, L. A., Weiss, R. B., Driscoll, R., Dunn, D. S. & Gesteland, R. F. Transcriptional slippage occurs during elongation at runs of adenine or thymine in Escherichia coli. Nucleic Acids Res. 18, 3529–3535 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Weiss, R. B., Dunn, D. M., Atkins, J. F. & Gesteland, R. F. Slippery runs, shifty stops, backward steps, and forward hops: -2, -1, +1, +2, +5, and +6 ribosomal frameshifting. Cold Spring Harb. Symp. Quant. Biol. 52, 687–693 (1987).

    Article  CAS  PubMed  Google Scholar 

  6. Woese, C. R. On the evolution of the genetic code. Proc. Natl Acad. Sci. USA 54, 1546–1552 (1965).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Massey, S. E. A neutral origin for error minimization in the genetic code. J. Mol. Evol. 67, 510–516 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Freeland, S. J. & Hurst, L. D. The genetic code is one in a million. J. Mol. Evol. 47, 238–248 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Khajavi, M., Inoue, K. & Lupski, J. R. Nonsense-mediated mRNA decay modulates clinical outcome of genetic disease. Eur. J. Hum. Genet. 14, 1074–1081 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Maquat, L. E. & Carmichael, G. G. Quality control of mRNA function. Cell 104, 173–176 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Jaillon, O. et al. Translational control of intron splicing in eukaryotes. Nature 451, 359–362 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Itzkovitz, S. & Alon, U. The genetic code is nearly optimal for allowing additional information within protein-coding sequences. Genome Res. 17, 405–412 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mekouar, M. et al. Detection and analysis of alternative splicing in Yarrowia lipolytica reveal structural constraints facilitating nonsense-mediated decay of intron-retaining transcripts. Genome Biol. 11, R65 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Seligmann, H. & Pollock, D. D. The ambush hypothesis: hidden stop codons prevent off-frame gene reading. DNA Cell Biol. 23, 701–705 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Warnecke, T., Huang, Y., Przytycka, T. M. & Hurst, L. D. Unique cost dynamics elucidate the role of frameshifting errors in promoting translational robustness. Genome Biol. Evol. 2, 636–645 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Clarke, C. H. The consequences of base-pair substitution mutations in AT- and GC-rich bacteria. J. Theor. Biol. 105, 117–131 (1983).

    Article  CAS  PubMed  Google Scholar 

  17. Cusack, B. P., Arndt, P. F., Duret, L. & Crollius, H. R. Preventing dangerous nonsense: selection for robustness to transcriptional error in human genes. PLoS Genet. 7, e1002276 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Warnecke, T. & Hurst, L. D. GroEL dependency affects codon usage-support for a critical role of misfolding in gene evolution. Mol. Syst. Biol. 6, 340 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kaida, D. et al. U1 snRNP protects pre-mRNAs from premature cleavage and polyadenylation. Nature 468, 664–668 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pickrell, J. K., Pai, A. A., Gilad, Y. & Pritchard, J. K. Noisy splicing drives mRNA isoform diversity in human cells. PLoS Genet. 6, e1001236 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Frischmeyer, P. A. et al. An mRNA surveillance mechanism that eliminates transcripts lacking termination codons. Science 295, 2258–2261 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Ito-Harashima, S., Kuroha, K., Tatematsu, T. & Inada, T. Translation of the poly(A) tail plays crucial roles in nonstop mRNA surveillance via translation repression and protein destabilization by proteasome in yeast. Genes Dev. 21, 519–524 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ito, K. et al. RUNX3, a novel tumor suppressor, is frequently inactivated in gastric cancer by protein mislocalization. Cancer Res. 65, 7743–7750 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Hilleren, P., McCarthy, T., Rosbash, M., Parker, R. & Jensen, T. H. Quality control of mRNA 3′-end processing is linked to the nuclear exosome. Nature 413, 538–542 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Hurst, L. D., Pál, C. & Lercher, M. J. The evolutionary dynamics of eukaryotic gene order. Nature Rev. Genet. 5, 299–310 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Rocha, E. P. & Danchin, A. Essentiality, not expressiveness, drives gene-strand bias in bacteria. Nature Genet. 34, 377–378 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Raser, J. M. & O'Shea, E. K. Noise in gene expression: origins, consequences, and control. Science 309, 2010–2013 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Newman, J. R. et al. Single-cell proteomic analysis of, S. cerevisiae reveals the architecture of biological noise. Nature 441, 840–846 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Wang, Z. & Zhang, J. Impact of gene expression noise on organismal fitness and the efficacy of natural selection. Proc. Natl Acad. Sci. USA 108, E67–E76 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Woo, Y. H. & Li, W. H. Gene clustering pattern, promoter architecture, and gene expression stability in eukaryotic genomes. Proc. Natl Acad. Sci. USA 108, 3306–3311 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tirosh, I. & Barkai, N. Two strategies for gene regulation by promoter nucleosomes. Genome Res. 18, 1084–1091 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Becskei, A., Kaufmann, B. B. & van Oudenaarden, A. Contributions of low molecule number and chromosomal positioning to stochastic gene expression. Nature Genet. 37, 937–944 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Becskei, A. & Serrano, L. Engineering stability in gene networks by autoregulation. Nature 405, 590–593 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Kollmann, M., Løvdok, L., Bartholomé, K., Timmer, J. & Sourjik, V. Design principles of a bacterial signalling network. Nature 438, 504–507 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Batada, N. N. & Hurst, L. D. Evolution of chromosome organization driven by selection for reduced gene expression noise. Nature Genet. 39, 945–949 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Raj, A., Peskin, C. S., Tranchina, D., Vargas, D. Y. & Tyagi, S. Stochastic mRNA synthesis in mammalian cells. PLoS Biol. 4, e309 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Wang, G. Z., Lercher, M. J. & Hurst, L. D. Transcriptional coupling of neighboring genes and gene expression noise: evidence that gene orientation and noncoding transcripts are modulators of noise. Genome Biol. Evol. 3, 320–331 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Xu, Z. et al. Antisense expression increases gene expression variability and locus interdependency. Mol. Syst. Biol. 7, 468 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Lovdok, L. et al. Role of translational coupling in robustness of bacterial chemotaxis pathway. PLoS Biol. 7, e1000171 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Kovacs, K., Hurst, L. D. & Papp, B. Stochasticity in protein levels drives colinearity of gene order in metabolic operons of Escherichia coli. PLoS Biol. 7, e1000115 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Kamath, R. S. et al. Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 421, 231–237 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. de Clare, M., Pir, P. & Oliver, S. G. Haploinsufficiency and the sex chromosomes from yeasts to humans. BMC Biol. 9, 15 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cook, D. L., Gerber, A. N. & Tapscott, S. J. Modeling stochastic gene expression: implications for haploinsufficiency. Proc. Natl Acad. Sci. USA 95, 15641–15646 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yin, S. Y. et al. Dosage compensation on the active X chromosome minimizes transcriptional noise of X-linked genes in mammals. Genome Biol. 10, R74 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Hegarty, M. J. et al. Transcriptome shock after interspecific hybridization in senecio is ameliorated by genome duplication. Curr. Biol. 16, 1652–1659 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Melamud, E. & Moult, J. Stochastic noise in splicing machinery. Nucleic Acids Res. 37, 4873–4886 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Tress, M. L. et al. The implications of alternative splicing in the ENCODE protein complement. Proc. Natl Acad. Sci. USA 104, 5495–5500 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lareau, L., Brooks, A., Soergel, D., Meng, Q. & Brenner, S. in Alternative Splicing in the Postgenomic Era (eds Blencowe, B. & Graveley, B.) 191–212 (Landes Biosciences, Austin, Texas, 2007).

    Google Scholar 

  49. Wernegreen, J. J. & Moran, N. A. Evidence for genetic drift in endosymbionts (Buchnera): analyses of protein-coding genes. Mol. Biol. Evol. 16, 83–97 (1999).

    Article  CAS  PubMed  Google Scholar 

  50. Fernández, A. & Lynch, M. Non-adaptive origins of interactome complexity. Nature 474, 502–505 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Rajon, E. & Masel, J. Evolution of molecular error rates and the consequences for evolvability. Proc. Natl Acad. Sci. USA 108, 1082–1087 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lynch, M. The origins of genome architecture (Sinauer Associates, Sunderland, Massachusetts, 2007).

    Google Scholar 

  53. Thompson, R. C. & Karim, A. M. The accuracy of protein biosynthesis is limited by its speed: high fidelity selection by ribosomes of aminoacyl-tRNA ternary complexes containing GTP[γS]. Proc. Natl Acad. Sci. USA 79, 4922–4926 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wohlgemuth, I., Pohl, C. & Rodnina, M. V. Optimization of speed and accuracy of decoding in translation. EMBO J. 29, 3701–3709 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ruusala, T., Andersson, D., Ehrenberg, M. & Kurland, C. G. Hyper-accurate ribosomes inhibit growth. EMBO J. 3, 2575–2580 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Itzkovitz, S., Hodis, E. & Segal, E. Overlapping codes within protein-coding sequences. Genome Res. 20, 1582–1589 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Warnecke, T., Weber, C. C. & Hurst, L. D. Why there is more to protein evolution than protein function: splicing, nucleosomes and dual-coding sequence. Biochem. Soc. Trans. 37, 756–761 (2009).

    Article  CAS  PubMed  Google Scholar 

  58. Warnecke, T. & Hurst, L. D. Evidence for a trade-off between translational efficiency and splicing regulation in determining synonymous codon usage in Drosophila melanogaster. Mol. Biol. Evol. 24, 2755–2762 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. Boue, S., Letunic, I. & Bork, P. Alternative splicing and evolution. Bioessays 25, 1031–1034 (2003).

    Article  CAS  PubMed  Google Scholar 

  60. Doma, M. K. & Parker, R. RNA quality control in eukaryotes. Cell 131, 660–668 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

T.W. is a recipient of a European Molecular Biology Organization (EMBO) Long-term Fellowship. L.D.H. is a Royal Society Wolfson Research Merit Award Holder.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tobias Warnecke or Laurence D. Hurst.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Tobias Warnecke's homepage

Laurence D. Hurst's homepage

Kazusa Codon Usage Database

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Warnecke, T., Hurst, L. Error prevention and mitigation as forces in the evolution of genes and genomes. Nat Rev Genet 12, 875–881 (2011). https://doi.org/10.1038/nrg3092

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg3092

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing