Advances in autism genetics: on the threshold of a new neurobiology

A Corrigendum to this article was published on 01 June 2008

Key Points

  • Autism is a he terogeneous syndrome that is defined by impairments in three core domains — social interaction, language and restricted and/or repetitive behaviour.

  • Defined mutations, genetic syndromes and de novo copy number variation probably account for about 10–20% of autism spectrum disorder (ASD) cases, with none of these known causes accounting for more than 1–2%.

  • None of the molecules or syndromes currently linked to the ASDs has been proven to selectively cause autism. Instead, each seems to result in an array of abnormal neurobehavioural phenotypes, including ASDs and non-syndromic mental retardation.

  • Understanding why these mutations lead to ASDs in only a subset of cases — through identification of genetic and/or environmental modifiers — will help to clarify how the specific aspects of cognition and behaviour are ultimately shaped.

  • The identification of molecular links between distinct ASD-related syndromes will lead towards the identification of key signalling pathways that are dysregulated in the ASDs.

Abstract

Autism is a heterogeneous syndrome defined by impairments in three core domains: social interaction, language and range of interests. Recent work has led to the identification of several autism susceptibility genes and an increased appreciation of the contribution of de novo and inherited copy number variation. Promising strategies are also being applied to identify common genetic risk variants. Systems biology approaches, including array-based expression profiling, are poised to provide additional insights into this group of disorders, in which heterogeneity, both genetic and phenotypic, is emerging as a dominant theme.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Loci implicated in ASD etiology.

References

  1. 1

    Fombonne, E. Epidemiology of autistic disorder and other pervasive developmental disorders. J. Clin. Psychiatry 66 (Suppl. 10), 3–8 (2005).

    PubMed  Google Scholar 

  2. 2

    Blomquist, H. K. et al. Frequency of the fragile X syndrome in infantile autism. A Swedish multicenter study. Clin. Genet. 27, 113–117 (1985).

    Article  CAS  PubMed  Google Scholar 

  3. 3

    Jacquemont, M. L. et al. Array-based comparative genomic hybridisation identifies high frequency of cryptic chromosomal rearrangements in patients with syndromic autism spectrum disorders. J. Med. Genet. 43, 843–849 (2006). The numerous de novo deletions that are reported in this work have received relatively little attention but are probably important in the ASDs. These data also show that rare de novo mutations are likely to appear at particularly high frequencies in syndromic populations.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. 4

    Sebat, J. et al. Strong association of de novo copy number mutations with autism. Science 316, 445–449 (2007). Beyond identifying important CNV likely to prove important to our understanding of the ASDs, this study highlights a significant difference in the frequency of de novo variants between simplex and multiplex families, raising the possibility that distinct mechanisms are involved in each.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. 5

    Szatmari, P. et al. Mapping autism risk loci using genetic linkage and chromosomal rearrangements. Nature Genet. 39, 319–328 (2007). This work — the largest ASD linkage study published to date — identifies a number of new loci that merit additional attention. Lack of overlap with previously published studies underscores the importance of genetic and phenotypic heterogeneity in ASDs.

    Article  CAS  PubMed  Google Scholar 

  6. 6

    Zoghbi, H. Y. Postnatal neurodevelopmental disorders: meeting at the synapse? Science 302, 826–830 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. 7

    Geschwind, D. H. & Levitt, P. Autism spectrum disorders: developmental disconnection syndromes. Curr. Opin. Neurobiol. 17, 103–111 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. 8

    Jorde, L. B. et al. Complex segregation analysis of autism. Am. J. Hum. Genet. 49, 932–938 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9

    Bolton, P. et al. A case–control family history study of autism. J. Child Psychol. Psychiatry 35, 877–900 (1994).

    Article  CAS  PubMed  Google Scholar 

  10. 10

    Bishop, D. V. et al. Using self-report to identify the broad phenotype in parents of children with autistic spectrum disorders: a study using the Autism-Spectrum Quotient. J. Child Psychol. Psychiatry 45, 1431–1436 (2004).

    Article  PubMed  Google Scholar 

  11. 11

    Bailey, A. et al. Autism as a strongly genetic disorder: evidence from a British twin study. Psychol. Med. 25, 63–77 (1995).

    Article  CAS  Google Scholar 

  12. 12

    Steffenburg, S. et al. A twin study of autism in Denmark, Finland, Iceland, Norway and Sweden. J. Child Psychol. Psychiatry 30, 405–416 (1989).

    Article  CAS  Google Scholar 

  13. 13

    Ronald, A. et al. Genetic heterogeneity between the three components of the autism spectrum: a twin study. J. Am. Acad. Child Adolesc. Psychiatry 45, 691–699 (2006).

    Article  PubMed  Google Scholar 

  14. 14

    Alarcon, M., Cantor, R. M., Liu, J., Gilliam, T. C. & Geschwind, D. H. Evidence for a language quantitative trait locus on chromosome 7q in multiplex autism families. Am. J. Hum. Genet. 70, 60–71 (2002). This first QTL study in autism is important because of its identification of a language QTL on chromosome 7q. Subsequent work from this group shows that this effect is attributable, at least in part, to variation in CNTNAP2.

    Article  CAS  PubMed  Google Scholar 

  15. 15

    Schellenberg, G. D. et al. Evidence for multiple loci from a genome scan of autism kindreds. Mol. Psychiatry 11, 1049–1060 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. 16

    Chen, G. K., Kono, N., Geschwind, D. H. & Cantor, R. M. Quantitative trait locus analysis of nonverbal communication in autism spectrum disorder. Mol. Psychiatry 11, 214–220 (2006). Variation in multiple quantitative phenotypes is likely to underlie ASD risk. These data suggest that key loci contribute to non-verbal aspects of communication in patients and highlight a heritable phenotypic measure that might prove important to characterizing the ASDs.

    Article  CAS  PubMed  Google Scholar 

  17. 17

    Constantino, J. N. et al. The factor structure of autistic traits. J. Child Psychol. Psychiatry 45, 719–726 (2004).

    Article  PubMed  Google Scholar 

  18. 18

    Zhao, X. et al. A unified genetic theory for sporadic and inherited autism. Proc. Natl Acad. Sci. USA 104, 12831–12836 (2007). This work challenges the notion that the ASDs are the result of interactions between multiple risk alleles. Modelling data produces a compelling argument for the notion that a significant proportion of ASD cases are the result of dominantly acting de novo mutations.

    Article  CAS  PubMed  Google Scholar 

  19. 19

    Vorstman, J. A. et al. Identification of novel autism candidate regions through analysis of reported cytogenetic abnormalities associated with autism. Mol. Psychiatry 11, 18–28 (2006).

    Article  CAS  Google Scholar 

  20. 20

    Marshall, C. R. et al. Structural variation of chromosomes in autism spectrum disorder. Am. J. Hum. Genet. 82, 477–488 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. 21

    Durand, C. M. et al. Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders. Nature Genet. 39, 25–27 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. 22

    Moessner, R. et al. Contribution of SHANK3 mutations to autism spectrum disorder. Am. J. Hum. Genet. 81, 1289–1297 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. 23

    Wassink, T. H. et al. Evaluation of the chromosome 2q37.3 gene CENTG2 as an autism susceptibility gene. Am. J. Med. Genet. B Neuropsychiatr. Genet. 136, 36–44 (2005).

    Article  Google Scholar 

  24. 24

    Splawski, I. et al. Ca(V)1.2 calcium channel dysfunction causes a multisystem disorder including arrhythmia and autism. Cell 119, 19–31 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. 25

    Samaco, R. C., Hogart, A. & LaSalle, J. M. Epigenetic overlap in autism-spectrum neurodevelopmental disorders: MECP2 deficiency causes reduced expression of UBE3A and GABRB3. Hum. Mol. Genet. 14, 483–492 (2005).

    Article  CAS  Google Scholar 

  26. 26

    Watson, P. et al. Angelman syndrome phenotype associated with mutations in MECP2, a gene encoding a methyl CpG binding protein. J. Med. Genet. 38, 224–228 (2001). This paper highlights the fact that the molecular classification of patients, as is the case in other disorders, will be important in our understanding of the relationships between ASD subtypes and in identifying common links between them.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. 27

    Nishimura, Y. et al. Genome-wide expression profiling of lymphoblastoid cell lines distinguishes different forms of autism and reveals shared pathways. Hum. Mol. Genet. 16, 1682–1698 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. 28

    Jamain, S. et al. Mutations of the X-linked genes encoding neuroligins NLGN3 and NLGN4 are associated with autism. Nature Genet. 34, 27–29 (2003). This work provides the first evidence for an important causative role for the neuroligin genes in the ASDs.

    Article  CAS  Google Scholar 

  29. 29

    Yan, J. et al. Analysis of the neuroligin 3 and 4 genes in autism and other neuropsychiatric patients. Mol. Psychiatry 10, 329–332 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. 30

    Comoletti, D. et al. The Arg451Cys-neuroligin-3 mutation associated with autism reveals a defect in protein processing. J. Neurosci. 24, 4889–4893 (2004).

    Article  CAS  Google Scholar 

  31. 31

    Tabuchi, K. et al. A neuroligin-3 mutation implicated in autism increases inhibitory synaptic transmission in mice. Science 318, 71–76 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. 32

    Meyer, G., Varoqueaux, F., Neeb, A., Oschlies, M. & Brose, N. The complexity of PDZ domain-mediated interactions at glutamatergic synapses: a case study on neuroligin. Neuropharmacology 47, 724–733 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. 33

    Boucard, A. A., Chubykin, A. A., Comoletti, D., Taylor, P. & Sudhof, T. C. A splice code for trans-synaptic cell adhesion mediated by binding of neuroligin 1 to alpha- and beta-neurexins. Neuron 48, 229–236 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. 34

    Feng, J. et al. High frequency of neurexin 1 beta signal peptide structural variants in patients with autism. Neurosci. Lett. 409, 10–13 (2006).

    Article  CAS  Google Scholar 

  35. 35

    Weiss, L. A. et al. Association between microdeletion and microduplication at 16p11.2 and autism. N. Engl. J. Med. 358, 667–675 (2008).

    Article  CAS  Google Scholar 

  36. 36

    Poliak, S. et al. Caspr2, a new member of the neurexin superfamily, is localized at the juxtaparanodes of myelinated axons and associates with K+ channels. Neuron 24, 1037–1047 (1999).

    Article  CAS  PubMed  Google Scholar 

  37. 37

    Strauss, K. A. et al. Recessive symptomatic focal epilepsy and mutant contactin-associated protein-like 2. N. Engl. J. Med. 354, 1370–1377 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. 38

    Bakkaloglu, B. et al. Molecular cytogenetic analysis and resequencing of contactin associated protein-like 2 in autism spectrum disorders. Am. J. Hum. Genet. 82, 165–173 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. 39

    Arking, D. E. et al. A common genetic variant in the neurexin superfamily member CNTNAP2 increases familial risk of autism. Am. J. Hum. Genet. 82, 160–164 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. 40

    Alarcon, M. et al. Linkage, association, and gene-expression analyses identify CNTNAP2 as an autism-susceptibility gene. Am. J. Hum. Genet. 82, 150–159 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. 41

    Abrahams, B. S. et al. Genome-wide analyses of human perisylvian cerebral cortical patterning. Proc. Natl Acad. Sci. USA 104, 17849–17854 (2007).

    Article  PubMed  Google Scholar 

  42. 42

    Sebat, J. et al. Large-scale copy number polymorphism in the human genome. Science 305, 525–528 (2004).

    Article  CAS  Google Scholar 

  43. 43

    Losh, M., Childress, D., Lam, K. & Piven, J. Defining key features of the broad autism phenotype: A comparison across parents of multiple- and single-incidence autism families. Am. J. Med. Genet. B Neuropsychiatr. Genet. 25 July 2007 (doi: 10.1002/ajmg.b.30612).

  44. 44

    Kumar, R. A. et al. Recurrent 16p11.2 microdeletions in autism. Hum. Mol. Genet. 17, 628–638 (2007). Together with references 20 and 35, this paper highlights an important role for genes at the 16p11 locus in a substantial proportion of ASD cases.

  45. 45

    Sadakata, T. et al. Autistic-like phenotypes in Cadps2-knockout mice and aberrant CADPS2 splicing in autistic patients. J. Clin. Invest. 117, 931–943 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. 46

    Belloso, J. M. et al. Disruption of the CNTNAP2 gene in a t(7;15) translocation family without symptoms of Gilles de la Tourette syndrome. Eur. J. Hum. Genet. 15, 711–713 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. 47

    Martin, C. L. et al. Cytogenetic and molecular characterization of A2BP1/FOX1 as a candidate gene for autism. Am. J. Med. Genet. B Neuropsychiatr. Genet. 144, 869–876 (2007).

    Article  CAS  Google Scholar 

  48. 48

    Laumonnier, F. et al. X-linked mental retardation and autism are associated with a mutation in the NLGN4 gene, a member of the neuroligin family. Am. J. Hum. Genet. 74, 552–557 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. 49

    Freitag, C. M. The genetics of autistic disorders and its clinical relevance: a review of the literature. Mol. Psychiatry 12, 2–22 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. 50

    Badner, J. A. & Gershon, E. S. Regional meta-analysis of published data supports linkage of autism with markers on chromosome 7. Mol. Psychiatry 7, 56–66 (2002).

    Article  CAS  PubMed  Google Scholar 

  51. 51

    Cantor, R. M. et al. Replication of autism linkage: fine-mapping peak at 17q21. Am. J. Hum. Genet. 76, 1050–1056 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. 52

    Trikalinos, T. A. et al. A heterogeneity-based genome search meta-analysis for autism-spectrum disorders. Mol. Psychiatry 11, 29–36 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. 53

    Geschwind, D. H. et al. The autism genetic resource exchange: a resource for the study of autism and related neuropsychiatric conditions. Am. J. Hum. Genet. 69, 463–466 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. 54

    Stone, J. L. et al. Evidence for sex-specific risk alleles in autism spectrum disorder. Am. J. Hum. Genet. 75, 1117–1123 (2004). Beyond the clear identification of the 17q risk locus, this work highlights the usefulness of considering families with only affected males separately from families with both affected males and females.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. 55

    Molloy, C. A., Keddache, M. & Martin, L. J. Evidence for linkage on 21q and 7q in a subset of autism characterized by developmental regression. Mol. Psychiatry 10, 741–746 (2005).

    Article  CAS  PubMed  Google Scholar 

  56. 56

    Lamb, J. A. et al. Analysis of IMGSAC autism susceptibility loci: evidence for sex limited and parent of origin specific effects. J. Med. Genet. 42, 132–137 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. 57

    Buxbaum, J. D. et al. Evidence for a susceptibility gene for autism on chromosome 2 and for genetic heterogeneity. Am. J. Hum. Genet. 68, 1514–1520 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. 58

    Shao, Y. et al. Phenotypic homogeneity provides increased support for linkage on chromosome 2 in autistic disorder. Am. J. Hum. Genet. 70, 1058–1061 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. 59

    Buxbaum, J. D. et al. Linkage analysis for autism in a subset families with obsessive-compulsive behaviors: evidence for an autism susceptibility gene on chromosome 1 and further support for susceptibility genes on chromosome 6 and 19. Mol. Psychiatry 9, 144–150 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. 60

    Abrahams, B. S. & Geschwind, D. H. in Encyclopedia of Genetics, Genomics, Proteomics and Bioinformatics (eds Dunn, M. J., Jorde, L. B., Little, P. F. R. & Subramaniam, S.) section 1.5, p1–12 (John Wiley & Sons, 2005).

    Google Scholar 

  61. 61

    Constantino, J. N. & Todd, R. D. Autistic traits in the general population: a twin study. Arch. Gen. Psychiatry 60, 524–530 (2003).

    Article  PubMed  Google Scholar 

  62. 62

    Hoekstra, R. A., Bartels, M., Verweij, C. J. & Boomsma, D. I. Heritability of autistic traits in the general population. Arch. Pediatr. Adolesc. Med. 161, 372–377 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  63. 63

    Kissebah, A. H. et al. Quantitative trait loci on chromosomes 3 and 17 influence phenotypes of the metabolic syndrome. Proc. Natl Acad. Sci. USA 97, 14478–14483 (2000).

    Article  CAS  PubMed  Google Scholar 

  64. 64

    Francks, C. et al. LRRTM1 on chromosome 2p12 is a maternally suppressed gene that is associated paternally with handedness and schizophrenia. Mol. Psychiatry (2007).

  65. 65

    Fisher, S. E. et al. Independent genome-wide scans identify a chromosome 18 quantitative-trait locus influencing dyslexia. Nature Genet. 30, 86–91 (2002).

    Article  CAS  PubMed  Google Scholar 

  66. 66

    Arya, R. et al. Linkage of high-density lipoprotein-cholesterol concentrations to a locus on chromosome 9p in Mexican Americans. Nature Genet. 30, 102–105 (2002).

    Article  CAS  PubMed  Google Scholar 

  67. 67

    Menzel, S. et al. A QTL influencing F cell production maps to a gene encoding a zinc-finger protein on chromosome 2p15. Nature Genet. 39, 1197–1199 (2007).

    Article  CAS  PubMed  Google Scholar 

  68. 68

    Alarcon, M., Yonan, A. L., Gilliam, T. C., Cantor, R. M. & Geschwind, D. H. Quantitative genome scan and ordered-subsets analysis of autism endophenotypes support language QTLs. Mol. Psychiatry 10, 747–757 (2005).

    Article  CAS  PubMed  Google Scholar 

  69. 69

    Duvall, J. A. et al. A quantitative trait locus analysis of social responsiveness in multiplex autism families. Am. J. Psychiatry 164, 656–662 (2007).

    Article  PubMed  Google Scholar 

  70. 70

    Campbell, D. B. et al. A genetic variant that disrupts MET transcription is associated with autism. Proc. Natl Acad. Sci. USA 103, 16834–16839 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. 71

    Ferland, R. J. et al. Abnormal cerebellar development and axonal decussation due to mutations in AHI1 in Joubert syndrome. Nature Genet. 36, 1008–1013 (2004).

    Article  CAS  Google Scholar 

  72. 72

    Stone, J. L., Merriman, B., Cantor, R. M., Geschwind, D. H. & Nelson, S. F. High density SNP association study of a major autism linkage region on chromosome 17. Hum. Mol. Genet. 16, 704–715 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. 73

    Salinger, W. L., Ladrow, P. & Wheeler, C. Behavioral phenotype of the reeler mutant mouse: effects of RELN gene dosage and social isolation. Behav. Neurosci. 117, 1257–1275 (2003).

    Article  PubMed  Google Scholar 

  74. 74

    DeLorey, T. M., Sahbaie, P., Hashemi, E., Homanics, G. E. & Clark, J. D. Gabrb3 gene deficient mice exhibit impaired social and exploratory behaviors, deficits in non-selective attention and hypoplasia of cerebellar vermal lobules: a potential model of autism spectrum disorder. Behav. Brain Res. 187, 207–220 (2008).

    Article  CAS  PubMed  Google Scholar 

  75. 75

    Purcell, A. E., Jeon, O. H., Zimmerman, A. W., Blue, M. E. & Pevsner, J. Postmortem brain abnormalities of the glutamate neurotransmitter system in autism. Neurology 57, 1618–1628 (2001).

    Article  CAS  PubMed  Google Scholar 

  76. 76

    Brown, V. et al. Microarray identification of FMRP-associated brain mRNAs and altered mRNA translational profiles in fragile X syndrome. Cell 107, 477–487 (2001).

    Article  CAS  Google Scholar 

  77. 77

    Baron, C. A. et al. Genomic and functional profiling of duplicated chromosome 15 cell lines reveal regulatory alterations in UBE3A-associated ubiquitin-proteasome pathway processes. Hum. Mol. Genet. 15, 853–869 (2006).

    Article  CAS  PubMed  Google Scholar 

  78. 78

    Hu, V. W., Frank, B. C., Heine, S., Lee, N. H. & Quackenbush, J. Gene expression profiling of lymphoblastoid cell lines from monozygotic twins discordant in severity of autism reveals differential regulation of neurologically relevant genes. BMC Genomics 7, 118 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. 79

    Gregg, J. P. et al. Gene expression changes in children with autism. Genomics 91, 22–29 (2007).

    Article  CAS  PubMed  Google Scholar 

  80. 80

    Bittel, D. C., Kibiryeva, N. & Butler, M. G. Whole genome microarray analysis of gene expression in subjects with fragile X syndrome. Genet. Med. 9, 464–472 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. 81

    Bittel, D. C., Kibiryeva, N. & Butler, M. G. Expression of 4 genes between chromosome 15 breakpoints 1 and 2 and behavioral outcomes in Prader–Willi syndrome. Pediatrics 118, e1276–e1283 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  82. 82

    Myers, A. J. et al. A survey of genetic human cortical gene expression. Nature Genet. 39, 1494–1499 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. 83

    Krauthammer, M., Kaufmann, C. A., Gilliam, T. C. & Rzhetsky, A. Molecular triangulation: bridging linkage and molecular-network information for identifying candidate genes in Alzheimer's disease. Proc. Natl Acad. Sci. USA 101, 15148–15153 (2004).

    Article  CAS  PubMed  Google Scholar 

  84. 84

    Aerts, S. et al. Gene prioritization through genomic data fusion. Nature Biotechnol. 24, 537–544 (2006).

    Article  CAS  Google Scholar 

  85. 85

    Glasson, E. J. et al. Perinatal factors and the development of autism: a population study. Arch. Gen. Psychiatry 61, 618–627 (2004).

    Article  PubMed  Google Scholar 

  86. 86

    Reichenberg, A. et al. Advancing paternal age and autism. Arch. Gen. Psychiatry 63, 1026–1032 (2006).

    Article  PubMed  Google Scholar 

  87. 87

    Jiang, Y. H. et al. A mixed epigenetic/genetic model for oligogenic inheritance of autism with a limited role for UBE3A. Am. J. Med. Genet. A 131, 1–10 (2004).

    Article  PubMed  Google Scholar 

  88. 88

    Hogart, A., Nagarajan, R. P., Patzel, K. A., Yasui, D. H. & Lasalle, J. M. 15q11–13 GABAA receptor genes are normally biallelically expressed in brain yet are subject to epigenetic dysregulation in autism-spectrum disorders. Hum. Mol. Genet. 16, 691–703 (2007). These results underscore the idea that the mechanisms underlying the ASDs could be much more complex than typically appreciated; in addition to alterations in absolute levels of gene expression, the authors show that the relative expression of parental GABAA alleles is altered in the ASDs, demonstrating a role for imprinting.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. 89

    Bear, M. F., Huber, K. M. & Warren, S. T. The mGluR theory of fragile X mental retardation. Trends Neurosci. 27, 370–377 (2004).

    Article  CAS  PubMed  Google Scholar 

  90. 90

    Dolen, G. et al. Correction of fragile X syndrome in mice. Neuron 56, 955–962 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. 91

    Chugani, D. C. Serotonin in autism and pediatric epilepsies. Ment. Retard. Dev. Disabil. Res. Rev. 10, 112–116 (2004).

    Article  PubMed  Google Scholar 

  92. 92

    Krey, J. F. & Dolmetsch, R. E. Molecular mechanisms of autism: a possible role for Ca2+ signaling. Curr. Opin. Neurobiol. 17, 112–119 (2007).

    Article  CAS  PubMed  Google Scholar 

  93. 93

    Herbert, M. R. et al. Brain asymmetries in autism and developmental language disorder: a nested whole-brain analysis. Brain 128, 213–226 (2005).

    Article  CAS  PubMed  Google Scholar 

  94. 94

    Dapretto, M. et al. Understanding emotions in others: mirror neuron dysfunction in children with autism spectrum disorders. Nature Neurosci. 9, 28–30 (2006).

    Article  CAS  Google Scholar 

  95. 95

    Bailey, A. et al. A clinicopathological study of autism. Brain 121, 889–905 (1998).

    Article  PubMed  PubMed Central  Google Scholar 

  96. 96

    Courchesne, E., Carper, R. & Akshoomoff, N. Evidence of brain overgrowth in the first year of life in autism. JAMA 290, 337–344 (2003).

    Article  PubMed  Google Scholar 

  97. 97

    Mundy, P. Annotation: the neural basis of social impairments in autism: the role of the dorsal medial-frontal cortex and anterior cingulate system. J. Child Psychol. Psychiatry 44, 793–809 (2003).

    Article  Google Scholar 

  98. 98

    Tierney, E. et al. Abnormalities of cholesterol metabolism in autism spectrum disorders. Am. J. Med. Genet. B Neuropsychiatr Genet. 141, 666–668 (2006).

    Article  Google Scholar 

  99. 99

    Knickmeyer, R. C. & Baron-Cohen, S. Fetal testosterone and sex differences in typical social development and in autism. J. Child Neurol. 21, 825–845 (2006).

    Article  PubMed  Google Scholar 

  100. 100

    Vargas, D. L., Nascimbene, C., Krishnan, C., Zimmerman, A. W. & Pardo, C. A. Neuroglial activation and neuroinflammation in the brain of patients with autism. Ann. Neurol. 57, 67–81 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. 101

    Cook, E. H. Jr, et al. Autism or atypical autism in maternally but not paternally derived proximal 15q duplication. Am. J. Hum. Genet. 60, 928–934 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. 102

    Matsuura, T. et al. De novo truncating mutations in E6-AP ubiquitin-protein ligase gene (UBE3A) in Angelman syndrome. Nature Genet. 15, 74–77 (1997).

    Article  CAS  PubMed  Google Scholar 

  103. 103

    Peters, S. U., Beaudet, A. L., Madduri, N. & Bacino, C. A. Autism in Angelman syndrome: implications for autism research. Clin. Genet. 66, 530–536 (2004).

    Article  CAS  PubMed  Google Scholar 

  104. 104

    Manning, M. A. et al. Terminal 22q deletion syndrome: a newly recognized cause of speech and language disability in the autism spectrum. Pediatrics 114, 451–457 (2004).

    Article  PubMed  Google Scholar 

  105. 105

    Hatton, D. D. et al. Autistic behavior in children with fragile X syndrome: prevalence, stability, and the impact of FMRP. Am. J. Med. Genet. A. 140, 1804–1813 (2006).

    Article  Google Scholar 

  106. 106

    Ozonoff, S., Williams, B. J., Gale, S. & Miller, J. N. Autism and autistic behavior in Joubert syndrome. J. Child Neurol. 14, 636–641 (1999).

    Article  CAS  PubMed  Google Scholar 

  107. 107

    Potocki, L. et al. Characterization of Potocki–Lupski syndrome (dup(17)(p11.2p11.2)) and delineation of a dosage-sensitive critical interval that can convey an autism phenotype. Am. J. Hum. Genet. 80, 633–649 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. 108

    Tierney, E. et al. Behavior phenotype in the RSH/Smith–Lemli–Opitz syndrome. Am. J. Med. Genet. 98, 191–200 (2001).

    Article  CAS  PubMed  Google Scholar 

  109. 109

    Amir, R. E. et al. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nature Genet. 23, 185–188 (1999).

    Article  CAS  Google Scholar 

  110. 110

    Baker, P., Piven, J. & Sato, Y. Autism and tuberous sclerosis complex: prevalence and clinical features. J. Autism Dev. Disord. 28, 279–285 (1998).

    Article  CAS  PubMed  Google Scholar 

  111. 111

    International Molecular Genetic Study of Autism Consortium. A full genome screen for autism with evidence for linkage to a region on chromosome 7q. Hum. Mol. Genet. 7, 571–578 (1998).

  112. 112

    International Molecular Genetic Study of Autism Consortium. A genomewide screen for autism: strong evidence for linkage to chromosomes 2q, 7q, and 16p. Am. J. Hum. Genet. 69, 570–581 (2001).

  113. 113

    International Molecular Genetic Study of Autism Consortium. Further characterization of the autism susceptibility locus AUTS1 on chromosome 7q. Hum. Mol. Genet. 10, 973–982 (2001).

  114. 114

    Cook, E. H. Jr., et al. Linkage-disequilibrium mapping of autistic disorder, with 15q11–13 markers. Am. J. Hum. Genet. 62, 1077–1083 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. 115

    Buxbaum, J. D. et al. Association between a GABRB3 polymorphism and autism. Mol. Psychiatry 7, 311–316 (2002).

    Article  CAS  PubMed  Google Scholar 

  116. 116

    Ylisaukko-Oja, T. et al. Search for autism loci by combined analysis of Autism Genetic Resource Exchange and Finnish families. Ann. Neurol. 59, 145–155 (2006).

    Article  PubMed  Google Scholar 

  117. 117

    Persico, A. M. et al. Reelin gene alleles and haplotypes as a factor predisposing to autistic disorder. Mol. Psychiatry 6, 150–159 (2001).

    Article  CAS  PubMed  Google Scholar 

  118. 118

    Bonora, E. et al. Analysis of reelin as a candidate gene for autism. Mol. Psychiatry 8, 885–892 (2003).

    Article  CAS  PubMed  Google Scholar 

  119. 119

    Skaar, D. A. et al. Analysis of the RELN gene as a genetic risk factor for autism. Mol. Psychiatry 10, 563–571 (2005).

    Article  CAS  PubMed  Google Scholar 

  120. 120

    Serajee, F. J., Zhong, H. & Mahbubul Huq, A. H. Association of reelin gene polymorphisms with autism. Genomics 87, 75–83 (2006).

    Article  CAS  PubMed  Google Scholar 

  121. 121

    Li, H. et al. The association analysis of RELN and GRM8 genes with autistic spectrum disorder in Chinese Han population. Am. J. Med. Genet. B Neuropsychiatr. Genet. 147, 194–200 (2007).

    Google Scholar 

  122. 122

    Kilpinen, H. et al. Association of DISC1 with autism and Asperger syndrome. Mol. Psychiatry 13, 187–196 (2007).

    Article  CAS  PubMed  Google Scholar 

  123. 123

    Campbell, D. B. et al. Disruption of cerebral cortex MET signaling in autism spectrum disorder. Ann. Neurol. 62, 243–250 (2007).

    Article  Google Scholar 

  124. 124

    Ramoz, N. et al. Linkage and association of the mitochondrial aspartate/glutamate carrier SLC25A12 gene with autism. Am. J. Psychiatry 161, 662–669 (2004).

    Article  PubMed  Google Scholar 

  125. 125

    Silverman, J. M. et al. Autism-related routines and rituals associated with a mitochondrial aspartate/glutamate carrier SLC25A12 polymorphism. Am. J. Med. Genet. B Neuropsychiatr. Genet. 147, 408–410 (2007).

    Google Scholar 

  126. 126

    Segurado, R. et al. Confirmation of association between autism and the mitochondrial aspartate/glutamate carrier SLC25A12 gene on chromosome 2q31. Am. J. Psychiatry 162, 2182–2184 (2005).

    Article  PubMed  Google Scholar 

  127. 127

    Wu, S. et al. Positive association of the oxytocin receptor gene (OXTR) with autism in the Chinese Han population. Biol. Psychiatry 58, 74–77 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. 128

    Lerer, E. et al. Association between the oxytocin receptor (OXTR) gene and autism: relationship to Vineland Adaptive Behavior Scales and cognition. Mol. Psychiatry 25 Sept 2007 (doi: 10.1038/sj.mp.4002087).

  129. 129

    Gharani, N., Benayed, R., Mancuso, V., Brzustowicz, L. M. & Millonig, J. H. Association of the homeobox transcription factor, ENGRAILED 2, 3, with autism spectrum disorder. Mol. Psychiatry 9, 474–484 (2004).

    Article  CAS  PubMed  Google Scholar 

  130. 130

    Benayed, R. et al. Support for the homeobox transcription factor gene ENGRAILED 2 as an autism spectrum disorder susceptibility locus. Am. J. Hum. Genet. 77, 851–868 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. 131

    Kim, S. J. et al. Transmission disequilibrium mapping at the serotonin transporter gene (SLC6A4) region in autistic disorder. Mol. Psychiatry 7, 278–288 (2002).

    Article  CAS  PubMed  Google Scholar 

  132. 132

    Devlin, B. et al. Autism and the serotonin transporter: the long and short of it. Mol. Psychiatry 10, 1110–1116 (2005).

    Article  CAS  PubMed  Google Scholar 

  133. 133

    Wassink, T. H. et al. Cerebral cortical gray matter overgrowth and functional variation of the serotonin transporter gene in autism. Arch. Gen. Psychiatry 64, 709–717 (2007).

    Article  CAS  PubMed  Google Scholar 

  134. 134

    Sutcliffe, J. S. et al. Allelic heterogeneity at the serotonin transporter locus (SLC6A4) confers susceptibility to autism and rigid-compulsive behaviors. Am. J. Hum. Genet. 77, 265–279 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. 135

    Yonan, A. L. et al. A genomewide screen of 345 families for autism-susceptibility loci. Am. J. Hum. Genet. 73, 886–897 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. 136

    Weiss, L. A. et al. Variation in ITGB3 is associated with whole-blood serotonin level and autism susceptibility. Eur. J. Hum. Genet. 14, 923–931 (2006).

    Article  CAS  PubMed  Google Scholar 

  137. 137

    Coutinho, A. M. et al. Evidence for epistasis between SLC6A4 and ITGB3 in autism etiology and in the determination of platelet serotonin levels. Hum. Genet. 121, 243–256 (2007).

    Article  CAS  PubMed  Google Scholar 

  138. 138

    Auranen, M. et al. A genomewide screen for autism-spectrum disorders: evidence for a major susceptibility locus on chromosome 3q25–27 Am. J. Hum. Genet. 71, 777–790 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  139. 139

    Coon, H. et al. Evidence for linkage on chromosome 3q25–27 in a large autism extended pedigree. Hum. Hered. 60, 220–226 (2005).

    Article  CAS  PubMed  Google Scholar 

  140. 140

    Liu, J. et al. A genomewide screen for autism susceptibility loci. Am. J. Hum. Genet. 69, 327–340 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. 141

    Butler, M. G. et al. Subset of individuals with autism spectrum disorders and extreme macrocephaly associated with germline PTEN tumour suppressor gene mutations. J. Med. Genet. 42, 318–321 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. 142

    Bonaglia, M. C. et al. Disruption of the ProSAP2 gene in a t(12;22)(q24.1;q13.3) is associated with the 22q13.3 deletion syndrome. Am. J. Hum. Genet. 69, 261–268 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. 143

    Wilson, H. L. et al. Molecular characterisation of the 22q13 deletion syndrome supports the role of haploinsufficiency of SHANK3/PROSAP2 in the major neurological symptoms. J. Med. Genet. 40, 575–584 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. 144

    Jamain, S. et al. Linkage and association of the glutamate receptor 6 gene with autism. Mol. Psychiatry 7, 302–310 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. 145

    Shuang, M. et al. Family-based association study between autism and glutamate receptor 6 gene in Chinese Han trios. Am. J. Med. Genet. B Neuropsychiatr. Genet. 131, 48–50 (2004).

    Article  Google Scholar 

  146. 146

    Kim, S. A., Kim, J. H., Park, M., Cho, I. H. & Yoo, H. J. Family-based association study between GRIK2 polymorphisms and autism spectrum disorders in the Korean trios. Neurosci. Res. 58, 332–335 (2007).

    Article  CAS  PubMed  Google Scholar 

  147. 147

    Yirmiya, N. et al. Association between the arginine vasopressin 1a receptor (AVPR1a) gene and autism in a family-based study: mediation by socialization skills. Mol. Psychiatry 11, 488–494 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. 148

    Bailey, D. B. Jr, et al. Autistic behavior in young boys with fragile X syndrome. J. Autism Dev. Disord. 28, 499–508 (1998).

    Article  Google Scholar 

  149. 149

    Ma, D. Q. et al. Dissecting the locus heterogeneity of autism: significant linkage to chromosome 12q14. Mol. Psychiatry 12, 376–384 (2007).

    Article  CAS  PubMed  Google Scholar 

  150. 150

    Ylisaukko-oja, T. et al. Genome-wide scan for loci of Asperger syndrome. Mol. Psychiatry 9, 161–168 (2004).

    Article  CAS  PubMed  Google Scholar 

  151. 151

    Wang, L. et al. Association of the ENGRAILED 2 (EN2) gene with autism in Chinese Han population. Am. J. Med. Genet. B Neuropsychiatr. Genet. 19 Oct 2007 (doi: 10.1002/ajmg.b.30623).

  152. 152

    Brune, C. W. et al. Heterogeneous association between engrailed-2 and autism in the CPEA network. Am. J. Med. Genet. B Neuropsychiatr. Genet. 19 Oct 2007 (doi: 10.1002/ajmg.b.30585).

Download references

Acknowledgements

We gratefully acknowledge the families who have made these studies possible — along with the vision and leadership of AGRE and Autism Speaks. We are similarly indebted to the investigators whose work drives this field forward, many of whom we were unable to cite owing to space limitations. Thanks also to E. Herman, R. Mar-Heyming, B. Fogel and other members of the Geschwind laboratory for discussions. We also thank the anonymous reviewers. Work in the Geschwind laboratory is supported by funding from Autism Speaks, the Cure Autism Now Foundation, the National Institue of Mental Health (STAART - U54 MH68172; ACE - P50 HD055784; AGRE R01 MH64547; Asymmetry R37 MH60233) and the Tourette Syndrome Association.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Brett S. Abrahams or Daniel H. Geschwind.

Supplementary information

Related links

Related links

DATABASES

OMIM

Angelman syndrome

autistic disorder

cortical dysplasia-focal epilepsy syndrome

fragile X syndrome

Joubert syndrome

Rett syndrome

Timothy syndrome

tuberous sclerosis

FURTHER INFORMATION

Geschwind laboratory homepage

Autism chromosome rearrangement database

Autism Genetic Resource Exchange (AGRE)

Autism tissue program

Database of Genomic Variants

Diagnostic and Statistical Manual of Mental Disorders

Glossary

Gene association studies

A set of methods that is used to determine the correlation (positive or negative) between a defined genetic variant and a phenotype of interest.

Whole-genome linkage study

A statistical evaluation of genetic variation throughout the genome that is used to identify polymorphic loci that segregate with a phenotype of interest.

Copy number variation

(CNV). The insertion or deletion of a relatively large DNA fragment (>50 kb).

Relative risk

The ratio of disease incidence in two groups of individuals that differ with regards to any associated factor (such as genetic polymorphism, environmental exposure or perinatal insult).

Community-based cohort

A group of individuals that have been selected randomly from a population (as opposed to those showing a specific phenotype of interest).

Heritability

The proportion of phenotypic variation that is attributable to inherited genetic factors (in contrast to environmental ones).

Endophenotype

A measurable trait that is both heritable and related to a specific aspect of a condition under investigation.

Hierarchical clustering

A statistical method in which a collection of objects (observations, individuals or risk loci) are grouped into subsets, such that those within each cluster are more closely related to one another than objects that are assigned to different clusters.

Principal components analysis

A statistical method used to simplify data sets by transforming a series of correlated variables into a smaller number of uncorrelated factors.

Penetrance

The frequency with which individuals that carry an allele of a given gene will show the manifestations associated with the variant. If the penetrance of a disease allele is 100% then all individuals carrying that allele will express the associated disorder.

Dysmorphic

Showing a structural abnormality of a body part or facial feature.

Interstitial

A chromosomal segment that is located between the centromere and telomere.

Isodicentric

A genetic abnormality characterized by the presence of two additional and identical DNA segment copies that are joined end to end to form a forty-seventh chromosome.

Syndromic ASD

An ASD case that is observed in the context of a recognized syndrome (for example, fragile X syndrome).

Mirror neuron

A neuron that is active when a subject is observing or imagining a motor movement; mirror neurons are thought to underlie imitation.

Joint attention

Sharing interest or experience with another person by pointing or following gaze.

Pragmatic language

Practical, social use of language.

Neuroligin

A member of a family of postsynaptic cell-adhesion molecules that is important in regulating the balance of inhibitory and excitatory neurotransmission.

Multiplex

Multiplex families are those in which multiple individuals have a clinically diagnosed ASD.

Simplex

Simplex families are those in which only a single individual has a clinically diagnosed ASD.

Autistic regression

Normal development until the age of two with a subsequent loss of skills within core ASD domains.

Macrocephaly

Head circumference greater than two standard deviations above the mean (the ninety fifth percentile).

Multiple comparisons

Refers to the problem that arises when many null hypotheses are tested and 'significant' differences are observed when in reality there are no differences.

Frontal executive

Frontal executive function describes broad aspects of higher cognition (for example, attention, working memory and relational reasoning) that are mediated by the frontal lobe and interconnected subcortical circuitry.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Abrahams, B., Geschwind, D. Advances in autism genetics: on the threshold of a new neurobiology. Nat Rev Genet 9, 341–355 (2008). https://doi.org/10.1038/nrg2346

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing