Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mesoderm induction: from caps to chips

Key Points

  • Studies of mesoderm induction in Xenopus and zebrafish trace their origins back to Pieter Nieuwkoop's experiments nearly 40 years ago, and have been a subject of intensive investigation ever since.

  • Four major signalling pathways are involved in this process: Nodal (including Activin and Vg1), FGF (Fibroblast growth factor), canonical Wnt, and BMP (Bone morphogenetic protein), which have both distinct and overlapping roles in the process of mesoderm induction.

  • There are important controversies in the field regarding the existence and function of Nodal gradients in regulating mesoderm formation.

  • The four main signalling pathways interact in different ways to regulate the formation of the head, trunk and tail.

  • The roles of signalling factors in mesoderm induction are seen to change over time, although this is still a relatively new area and further studies will be important.

  • Evidence is emerging for the importance of combinatorial signalling in regulating mesoderm formation.

  • Mesoderm induction is generally conserved among vertebrates, albeit with interesting species-specific differences.

  • New avenues of research will involve defining key mesodermal genes using microarrays and expression screens.

Abstract

Vertebrate mesoderm induction is one of the classical problems in developmental biology. Various developmental biology approaches, particularly in Xenopus and zebrafish, have identified many of the key factors that are involved in this process and have provided major insights into how these factors interact as part of a signalling and transcription-factor network. These data are beginning to be refined by high-throughput approaches such as microarray assays. Future challenges include understanding how the prospective mesodermal cells integrate the various signals they receive and how they resolve this information to regulate their morphogenetic behaviours and cell-fate decisions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Fate maps of Xenopus and zebrafish embryos at the late blastula/early gastrula stage.
Figure 2: Models for activation of Nodal signalling in Xenopus and zebrafish.
Figure 3: Establishing the dorsal–ventral axis.
Figure 4: A model for patterning the embryonic body in Xenopus and zebrafish.
Figure 5: Mesoderm induction in the chick and mouse.
Figure 6: Production of different mesodermal cell types from animal cap explants.

Similar content being viewed by others

References

  1. Nieuwkoop, P. D. The formation of the mesoderm in urodelean amphibians I. The induction by the endoderm. W. Roux' Arch. Ent. Org. 162, 341–373 (1969). This paper provided crucial evidence that the mesoderm in amphibians is produced by an inductive event.

    Article  CAS  Google Scholar 

  2. Niehrs, C. Regionally specific induction by the Spemann–Mangold organizer. Nature Rev. Genet. 5, 425–434 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Kimelman, D. & Bjornson, C. in Gastrulation (ed. Stern, C. D.) 363–372 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 2004).

    Google Scholar 

  4. Harland, R. M. in Gastrulation (ed. Stern, C. D.) 373–388 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 2004).

    Google Scholar 

  5. Warga, R. M. & Nüsslein-Volhard, C. Origin and development of the zebrafish endoderm. Development 126, 827–838 (1999).

    CAS  PubMed  Google Scholar 

  6. Kimmel, C. B., Warga, R. M. & Schilling, T. F. Origin and organization of the zebrafish fate map. Development 108, 581–594 (1990).

    CAS  PubMed  Google Scholar 

  7. Wardle, F. C. & Smith, J. C. Refinement of gene expression patterns in the early Xenopus embryo. Development 131, 4687–4696 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Slack, J. M. W., Darlington, B. G., Heath, J. K. & Godsave, S. F. Mesoderm induction in early Xenopus embryos by heparin-binding growth factors. Nature 326, 197–200 (1987).

    Article  CAS  PubMed  Google Scholar 

  9. Kimelman, D. & Kirschner, M. Synergistic induction of mesoderm by FGF and TGF-β and the identification of an mRNA coding for FGF in the early Xenopus embryo. Cell 51, 869–877 (1987). Together with reference 8, these studies were the first to identify a specific protein as a mesoderm-inducing agent, in this case FGF.

    Article  CAS  PubMed  Google Scholar 

  10. Kelly, G. M., Greenstein, P., Erezyilmaz, D. F. & Moon, R. T. Zebrafish wnt8 and wnt8b share a common activity but are involved in distinct developmental pathways. Development 121, 1787–1799 (1995).

    CAS  PubMed  Google Scholar 

  11. Szeto, D. P. & Kimelman, D. Combinatorial gene regulation by Bmp and Wnt in zebrafish posterior mesoderm formation. Development 131, 3751–3760 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Dale, L., Howes, G., Price, B. M. J. & Smith, J. C. Bone morphogenetic protein 4: a ventralizing factor in early Xenopus development. Development 115, 573–585 (1992).

    CAS  PubMed  Google Scholar 

  13. Köster, M. et al. Bone morphogenetic protein 4 (BMP-4), a member of the TGF- β family in early embryos of Xenopus laevis: analysis of mesoderm inducing activity. Mech. Dev. 33, 191–200 (1991).

    Article  PubMed  Google Scholar 

  14. Gritsman, K., Talbot, W. S. & Schier, A. F. Nodal signaling patterns the organizer. Development 127, 921–932 (2000).

    CAS  PubMed  Google Scholar 

  15. Birsoy, B., Kofron, M., Schaible, K., Wylie, C. & Heasman, J. Vg1 is an essential signaling molecule in Xenopus development. Development 133, 15–20 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Smith, J. C. A mesoderm-inducing factor is produced by a Xenopus cell line. Development 99, 3–14 (1987). A seminal paper in modern mesoderm-induction research, which shows that a semi-purified factor produced by a specific cell line induces mesoderm in Xenopus animal cap explants.

    CAS  PubMed  Google Scholar 

  17. Sivak, J. & Amaya, E. in Gastrulation (ed. Stern, C. D.) 463–474 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 2004).

    Google Scholar 

  18. Munoz-Sanjuan, I. & Hemmati-Brivanlou, A. H. in Gastrulation (ed. Stern, C. D.) 475–490 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 2004).

    Google Scholar 

  19. Houston, D. W. & Wylie, C. in Gastrulation (ed. Stern, C. D.) 521–538 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 2004).

    Google Scholar 

  20. King, M. L., Messitt, T. J. & Mowry, K. L. Putting RNAs in the right place at the right time: RNA localization in the frog oocyte. Biol. Cell 97, 19–33 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Hyde, C. E. & Old, R. W. Regulation of the early expression of the Xenopus nodal-related 1 gene, Xnr1. Development 127, 1221–1229 (2000).

    CAS  PubMed  Google Scholar 

  22. Clements, D., Friday, R. V. & Woodland, H. R. Mode of action of VegT in mesoderm and endoderm formation. Development 126, 4903–4911 (1999).

    CAS  PubMed  Google Scholar 

  23. Kofron, M. et al. Mesoderm induction in Xenopus is a zygotic event regulated by maternal VegT via TGFβ growth factors. Development 126, 5759–5770 (1999).

    CAS  PubMed  Google Scholar 

  24. Xanthos, J. B., Kofron, M., Wylie, C. & Heasman, J. Maternal VegT is the initiator of a molecular network specifying endoderm in Xenopus laevis. Development 128, 167–180 (2001).

    CAS  PubMed  Google Scholar 

  25. Zhang, J. et al. The role of maternal VegT in establishing the primary germ layers in Xenopus embryos. Cell 94, 515–524 (1998). Demonstration that the T-box transcription factor VegT is essential for the formation of the mesoderm (and endoderm) in Xenopus embryos.

    Article  CAS  PubMed  Google Scholar 

  26. Schier, A. F. & Talbot, W. S. Molecular genetics of axis formation in zebrafish. Annu. Rev. Genet. 39, 561–613 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Griffin, K. J. P., Amacher, S. L., Kimmel, C. B. & Kimelman, D. Molecular identification of spadetail: regulation of zebrafish trunk and tail mesoderm formation by T-box genes. Development 125, 3379–3388 (1998).

    CAS  PubMed  Google Scholar 

  28. Weaver, C. & Kimelman, D. Move it or lose it: axis specification in Xenopus. Development 131, 3491–3499 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Mizuno, T., Yamaha, E., Kuroiwa, A. & Takeda, H. Removal of vegetal yolk causes dorsal deficencies and impairs dorsal-inducing ability of the yolk cell in zebrafish. Mech. Dev. 81, 51–63 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Ober, E. A. & Schulte-Merker, S. Signals from the yolk cell induce mesoderm, neuroectoderm, the trunk organizer, and the notochord in zebrafish. Dev. Biol. 215, 167–181 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. McMahon, A. P. & Moon, R. T. Ectopic expression of the proto-oncogene int-1 in Xenopus embryos leads to duplication of the embryonic axis. Cell 58, 1075–1084 (1989). This work provided the first evidence that the Wnt signalling pathway has a crucial role in the formation of the Xenopus embryonic axis.

    Article  CAS  PubMed  Google Scholar 

  32. Heasman, J. et al. Overexpression of cadherins and underexpression of β-catenin inhibit dorsal mesoderm induction in early Xenopus embryos. Cell 79, 791–803 (1994).

    Article  CAS  PubMed  Google Scholar 

  33. DeRobertis, e. M., Larrain, J., Oelgeschlager, M. & Wessely, O. The establishment of Spemann's organizer and the patterning of the vertebrate embryo. Nature Genet. 1, 171–181 (2000).

    Article  CAS  Google Scholar 

  34. Yang, J., Tan, C., Darken, R. S., Wilson, P. A. & Klein, P. S. β-Catenin/Tcf-regulated transcription prior to the midblastula transition. Development 129, 5743–5752 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Agius, E., Oelgeschlager, M., Wessely, O., Kemp, C. & De Robertis, E. M. Endodermal Nodal-related signals and mesoderm induction in Xenopus. Development 127, 1173–1183 (2000).

    CAS  PubMed  Google Scholar 

  36. Takahashi, S. et al. Two novel nodal-related genes initiate early inductive events in Xenopus Nieuwkoop center. Development 127, 5319–5329 (2000).

    CAS  PubMed  Google Scholar 

  37. Schohl, A. & Fagotto, F. β-Catenin, MAPK and Smad signaling during early Xenopus development. Development 129, 37–52 (2002).

    CAS  PubMed  Google Scholar 

  38. Faure, S., Lee, M. A., Keller, T., ten Dijke, P. & Whitman, M. Endogenous patterns of TGFβ superfamily signaling during early Xenopus development. Development 127, 2917–2931 (2000).

    CAS  PubMed  Google Scholar 

  39. Feldman, B. et al. Zebrafish organizer development and germ-layer formation require nodal-related signals. Nature 395, 181–185 (1998).

    Article  CAS  PubMed  Google Scholar 

  40. Gore, A. V. et al. The zebrafish dorsal axis is apparent at the 4-cell stage. Nature 438, 1030–1035 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Aoki, T. O. et al. Regulation of Nodal signalling and mesendoderm formation by TARAM-A, a TGFβ-related type I receptor. Dev. Biol. 241, 273–288 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Green, J. B. A., Howes, G., Symes, K., Cooke, J. & Smith, J. C. The biological effects of XTC-MIF: quantitative comparison with Xenopus bFGF. Development 108, 173–183 (1990).

    CAS  PubMed  Google Scholar 

  43. Green, J. B. A., New, H. V. & Smith, J. C. Responses of embryonic Xenopus cells to activin and FGF are separated by multiple dose thresholds and correspond to distinct axes of the mesoderm. Cell 71, 731–739 (1992).

    Article  CAS  PubMed  Google Scholar 

  44. McDowell, N. & Gurdon, J. B. Activin as a morphogen in Xenopus mesoderm induction. Semin. Cell Dev. Biol. 10, 311–317 (1999). A review of the important studies, particularly from the laboratories of John Gurdon, Jim Smith and Doug Melton, using Activin to study the mechanisms of mesoderm induction, including the role of Nodal family members as morphogens.

    Article  CAS  PubMed  Google Scholar 

  45. Dougan, S. T., Warga, R. M., Kane, D. A., Schier, A. F. & Talbot, W. S. The role of the zebrafish nodal-related genes squint and cyclops in patterning of mesendoderm. Development 130, 1837–1851 (2003).

    Article  CAS  PubMed  Google Scholar 

  46. Keegan, B. R., Meyer, D. & Yelon, D. Organization of cardiac chamber progenitors in the zebrafish blastula. Development 131, 3081–3091 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Piepenburg, O., Grimmer, D., Williams, P. H. & Smith, J. C. Activin redux: specification of mesodermal pattern in Xenopus by graded concentrations of endogenous activin B. Development 131, 4977–4986 (2004).

    Article  CAS  PubMed  Google Scholar 

  48. Osada, S. I. & Wright, C. V. Xenopus nodal-related signaling is essential for mesendodermal patterning during early embryogenesis. Development 126, 3229–3240 (1999).

    CAS  PubMed  Google Scholar 

  49. Piccolo, S. et al. The head inducer Cerberus is a multifunctional antagonist of Nodal, BMP and Wnt signals. Nature 397, 707–710 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Houston, D. W. & Wylie, C. Maternal Xenopus Zic2 negatively regulates Nodal-related gene expression during anteroposterior patterning. Development 132, 4845–4855 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Weeks, D. L. & Melton, D. A. A maternal mRNA localized to the vegetal hemisphere in Xenopus eggs codes for a growth factor related to TGF- β. Cell 51, 861–867 (1987). The first identification of an endogenous TGFB factor in mesoderm induction in Xenopus.

    Article  CAS  PubMed  Google Scholar 

  52. Kessler, D. S. in Gastrulation (ed. Stern, C. D.) 505–520 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 2004).

    Google Scholar 

  53. Shah, S. B. et al. Misexpression of chick Vg1 in the marginal zone induces primitive streak formation. Development 124, 5127–5138 (1997).

    CAS  PubMed  Google Scholar 

  54. Skromne, I. & Stern, C. D. Interactions between Wnt and Vg1 signalling pathways initiate primitive streak formation in the chick embryo. Development 128, 2915–2927 (2001).

    CAS  PubMed  Google Scholar 

  55. Chen, C. et al. The Vg1-related protein Gdf3 acts in a Nodal signaling pathway in the pre-gastrulation mouse embryo. Development 133, 319–329 (2005).

    Article  CAS  Google Scholar 

  56. Hyatt, B. A. & Yost, H. J. The left–right coordinator: the role of Vg1 in organizing left–right axis formation. Cell 93, 37–46 (1998).

    Article  CAS  PubMed  Google Scholar 

  57. Ramsdell, A. F. & Yost, H. J. Cardiac looping and the vertebrate left–right axis: antagonism of left-sided Vg1 activity by a right-sided ALK2-dependent BMP pathway. Development 126, 5195–5205 (1999).

    CAS  PubMed  Google Scholar 

  58. Kramer, K. L. & Yost, H. J. Ectodermal syndecan-2 mediates left–right axis formation in migrating mesoderm as a cell-nonautonomous Vg1 cofactor. Dev. Cell 2, 115–124 (2002).

    Article  CAS  PubMed  Google Scholar 

  59. Helde, K. A. & Grunwald, D. J. The DVR-1 (Vg1) transcript of zebrafish is maternally supplied and distributed throughout the embryo. Dev. Biol. 159, 418–426 (1993).

    Article  CAS  PubMed  Google Scholar 

  60. Amaya, E., Musci, T. J. & Kirschner, M. W. Expression of a dominant negative mutant of the FGF receptor disrupts mesoderm formation in Xenopus embryos. Cell 66, 257–270 (1991). The first use of a dominant-negative receptor to study mesoderm induction provided crucial evidence for a role of FGF signalling in forming the posterior body.

    Article  CAS  PubMed  Google Scholar 

  61. Griffin, K. J. P., Patient, R. K. & Holder, N. H. K. Analysis of FGF function in normal and no tail zebrafish embryos reveals separate mechanisms for formation of the trunk and tail. Development 121, 2983–2994 (1995).

    CAS  PubMed  Google Scholar 

  62. Goering, L. M. et al. An interacting network of T-box genes directs gene expression and fate in the zebrafish mesoderm. Proc. Natl Acad. Sci. USA 100, 9410–9415 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Amacher, S. L., Draper, B. W., Summers, B. R. & Kimmel, C. B. The zebrafish T-box genes no tail and spadetail are required for development of trunk and tail mesoderm and medial floor plate. Development 129, 3311–3323 (2002).

    CAS  PubMed  Google Scholar 

  64. Griffin, K. J. P. & Kimelman, D. Interplay between FGF, One-eyed pinhead and T-box transcription factors during zebrafish posterior development. Dev. Biol. 264, 456–466 (2003).

    Article  CAS  PubMed  Google Scholar 

  65. Draper, B. W., Stock, D. W. & Kimmel, C. B. Zebrafish fgf24 functions with fgf8 to promote posterior mesodermal development. Development 130, 4639–4654 (2003).

    Article  CAS  PubMed  Google Scholar 

  66. Isaacs, H. V., Pownal, M. E. & Slack, J. M. W. eFGF regulates Xbra expression during Xenopus gastrulation. EMBO J. 13, 4469–4481 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ramel, M. C. & Lekven, A. C. Repression of the vertebrate organizer by Wnt8 is mediated by Vent and Vox. Development 131, 3991–4000 (2004).

    Article  CAS  PubMed  Google Scholar 

  68. Vonica, A. & Gumbiner, B. M. Zygotic Wnt activity is required for Brachyury expression in the early Xenopus laevis embryo. Dev. Biol. 250, 112–127 (2002).

    Article  CAS  PubMed  Google Scholar 

  69. Thorpe, C. J., Weidinger, G. & Moon, R. T. Wnt/β-catenin regulation of the Sp1-related transcription factor sp5l promotes tail development in zebrafish. Development 132, 1763–1772 (2005).

    Article  CAS  PubMed  Google Scholar 

  70. Lekven, A. C., Thorpe, C. J., Waxman, J. S. & Moon, R. T. Zebrafish wnt8 encodes two wnt8 proteins on a bicistronic transcript and is required for mesoderm and neurectoderm patterning. Dev. Cell 1, 103–114 (2001).

    Article  CAS  PubMed  Google Scholar 

  71. Smith, W. C. & Harland, R. M. Expression cloning of noggin, a new dorsalizing factor localized in the Spemann organizer in Xenopus embryos. Cell 70, 829–840 (1992).

    Article  CAS  PubMed  Google Scholar 

  72. Sasai, Y. et al. Xenopus chordin: a novel dorsalizing factor activated by organizer-specific homeobox genes. Cell 79, 779–790 (1994). Together with reference 71, these papers report the cloning of two novel BMP inhibitors that are expressed in the organizer (Noggin and Chordin), which are essential for the function of the organizer.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. De Robertis, E. M. & Kuroda, H. Dorsal–ventral patterning and neural induction in Xenopus embryos. Annu. Rev. Cell Dev. Biol. 20, 285–308 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Reversade, B., Kuroda, H., Lee, H., Mays, A. & De Robertis, E. M. Depletion of Bmp2, Bmp4, Bmp7 and Spemann organizer signals induces massive brain formation in Xenopus embryos. Development 132, 3381–3392 (2005).

    Article  CAS  PubMed  Google Scholar 

  75. Nguyen, V. H. et al. Ventral and lateral regions of the zebrafish gastrula, including the neural crest progenitors, are established by a bmp2b/swirl pathway of genes. Dev. Biol. 199, 93–110 (1998).

    Article  CAS  PubMed  Google Scholar 

  76. Kishimoto, Y., Lee, K. H., Zon, L., Hammerschmidt, M. & Schulte-Merker, S. The molecular nature of zebrafish swirl: BMP2 function is essential during early dorsoventral patterning. Development 124, 4457–4466 (1997).

    CAS  PubMed  Google Scholar 

  77. Beck, C. W, Whitman, M., Slack J. M. The role of BMP signaling in outgrowth and patterning of the Xenopus tail bud. Dev. Biol. 238, 303–314 (2001).

    Article  CAS  PubMed  Google Scholar 

  78. Agathon, A., Thisse, C. & Thisse, B. The molecular nature of the zebrafish tail organizer. Nature 424, 448–452 (2003).

    Article  CAS  PubMed  Google Scholar 

  79. Beck, C. W., Whitman, M. & Slack, J. M. The role of BMP signaling in outgrowth and patterning of the Xenopus tail bud. Dev. Biol. 238, 303–314 (2001).

    Article  CAS  PubMed  Google Scholar 

  80. Beck, C. W. & Slack, J. M. Analysis of the developing Xenopus tail bud reveals separate phases of gene expression during determination and outgrowth. Mech. Dev. 72, 41–52 (1998).

    Article  CAS  PubMed  Google Scholar 

  81. Beck, C. W. & Slack, J. M. A developmental pathway controlling outgrowth of the Xenopus tail bud. Development 126, 1611–1620 (1999).

    CAS  PubMed  Google Scholar 

  82. Beck, C. W. & Slack, J. M. Notch is required for outgrowth of the Xenopus tail bud. Int. J. Dev. Biol. 46, 255–258 (2002).

    CAS  PubMed  Google Scholar 

  83. Gritsman, K. et al. The EGF–CFC protein one-eyed pinhead is essential for Nodal signaling. Cell 97, 121–132 (1999). This study demonstrates that the EGF–CFC protein Oep is essential for the formation of all endoderm and most mesoderm because Oep is required for Nodal signalling.

    Article  CAS  PubMed  Google Scholar 

  84. Lele, Z., Nowak, M. & Hammerschmidt, M. Zebrafish admp is required to restrict the size of the organizer and to promote posterior and ventral development. Dev. Dyn. 222, 681–687 (2001).

    Article  CAS  PubMed  Google Scholar 

  85. Willot, V. et al. Cooperative action of ADMP- and BMP-mediated pathways in regulating cell fates in the zebrafish gastrula. Dev. Biol. 241, 59–78 (2002).

    Article  CAS  PubMed  Google Scholar 

  86. Reversade, B. & De Robertis, E. M. Reciprocal regulation of Admp and Bmp2/4/7 at opposite embryonic poles generates a self-regulating morphogenetic field. Cell 123, 1147–1160 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kimelman, D. & Pyati, U. J. Bmp signaling: turning a half into a whole. Cell 123, 982–984 (2005).

    Article  CAS  PubMed  Google Scholar 

  88. Wardle, F. C. & Smith, J. C. Refinement of gene expression patterns in the early Xenopus embryo. Development 131, 4687–4696 (2004).

    Article  CAS  PubMed  Google Scholar 

  89. Grimm, O. H. & Gurdon, J. B. Nuclear exclusion of Smad2 is a mechanism leading to loss of competence. Nature Cell Biol. 4, 519–522 (2002).

    Article  CAS  PubMed  Google Scholar 

  90. Mohammadi, M. et al. Structures of the tyrosine kinase domain of fibroblast growth factor receptor in complex with inhibitors. Science 276, 955–960 (1997).

    Article  CAS  PubMed  Google Scholar 

  91. DaCosta Byfield, S., Major, C., Laping, N. J. & Roberts, A. B. SB-505124 is a selective inhibitor of transforming growth factor β type I receptors ALK4, ALK5, and ALK7. Mol Pharmacol 65, 744–752 (2004).

    Article  PubMed  Google Scholar 

  92. Delaune, E., Lemaire, P. & Kodjabachian, L. Neural induction in Xenopus requires early FGF signalling in addition to BMP inhibition. Development 132, 299–310 (2005).

    Article  CAS  PubMed  Google Scholar 

  93. Galli, A., Roure, A., Zeller, R. & Dono, R. Glypican 4 modulates FGF signalling and regulates dorsoventral forebrain patterning in Xenopus embryos. Development 130, 4919–4929 (2003).

    Article  CAS  PubMed  Google Scholar 

  94. Jackman, W. R., Draper, B. W. & Stock, D. W. Fgf signaling is required for zebrafish tooth development. Dev. Biol. 274, 139–157 (2004).

    Article  CAS  PubMed  Google Scholar 

  95. Pyati, U. J., Webb, A. E. & Kimelman, D. Transgenic zebrafish reveal stage-specific roles for Bmp signaling in ventral and posterior mesoderm development. Development 132, 2333–2343 (2005).

    Article  CAS  PubMed  Google Scholar 

  96. Lewis, J. L. et al. Reiterated Wnt signaling during zebrafish neural crest development. Development 131, 1299–1308 (2004).

    Article  CAS  PubMed  Google Scholar 

  97. Sivak, J. M., Petersen, L. F. & Amaya, E. FGF signal interpretation is directed by Sprouty and Spred proteins during mesoderm formation. Dev. Cell 8, 689–701 (2005).

    Article  CAS  PubMed  Google Scholar 

  98. Nishita, M. et al. Interaction between Wnt and TGF-β signalling pathways during formation of Spemann's organizer. Nature 403, 781–785 (2000).

    Article  CAS  PubMed  Google Scholar 

  99. Kroll, K. L. & Amaya, E. Transgenic Xenopus embryos from sperm nuclear transplantations reveal FGF signaling requirements during gastrulation. Development 122, 3173–3183 (1996).

    CAS  PubMed  Google Scholar 

  100. Messenger, N. J. et al. Functional specificity of the Xenopus T-domain protein Brachyury is conferred by its ability to interact with Smad1. Dev. Cell 8, 599–610 (2005).

    Article  CAS  PubMed  Google Scholar 

  101. Skromne, I. & Stern, C. D. A hierarchy of gene expression accompanying induction of the primitive streak by Vg1 in the chick embryo. Mech. Dev. 114, 115–118 (2002).

    Article  CAS  PubMed  Google Scholar 

  102. Bertocchini, F. & Stern, C. D. The hypoblast of the chick embryo positions the primitive streak by antagonizing nodal signaling. Dev. Cell 3, 735–744 (2002).

    Article  CAS  PubMed  Google Scholar 

  103. Bertocchini, F., Skromne, I., Wolpert, L. & Stern, C. D. Determination of embryonic polarity in a regulative system: evidence for endogenous inhibitors acting sequentially during primitive streak formation in the chick embryo. Development 131, 3381–3390 (2004).

    Article  CAS  PubMed  Google Scholar 

  104. Tam, P. P. L. & Gad, J. M. in Gastrulation (ed. Stern, C. D.) 233–262 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 2004).

    Google Scholar 

  105. Rivera-Perez, J. A. & Magnuson, T. Primitive streak formation in mice is preceded by localized activation of Brachyury and Wnt3. Dev. Biol. 288, 363–371 (2005).

    Article  CAS  PubMed  Google Scholar 

  106. Liu, P. et al. Requirement for Wnt3 in vertebrate axis formation. Nature Genet. 22, 361–365 (1999).

    Article  CAS  PubMed  Google Scholar 

  107. Yamamoto, M. et al. Nodal antagonists regulate formation of the anteroposterior axis of the mouse embryo. Nature 428, 387–392 (2004).

    Article  CAS  PubMed  Google Scholar 

  108. Perea-Gomez, A. et al. Nodal antagonists in the anterior visceral endoderm prevent the formation of multiple primitive streaks. Dev. Cell 3, 745–756 (2002).

    Article  CAS  PubMed  Google Scholar 

  109. Kemp, C., Willems, E., Abdo, S., Lambiv, L. & Leyns, L. Expression of all Wnt genes and their secreted antagonists during mouse blastocyst and postimplantation development. Dev. Dyn. 233, 1064–1075 (2005).

    Article  CAS  PubMed  Google Scholar 

  110. Mishina, Y., Suzuki, A., Ueno, N. & Behringer, R. R. Bmpr encodes a type I bone morphogenetic protein receptor that is essential for gastrulation during mouse embryogenesis. Genes Dev. 9, 3027–3037 (1995).

    Article  CAS  PubMed  Google Scholar 

  111. Winnier, G., Blessing, M., Labosky, P. A. & Hogan, B. L. Bone morphogenetic protein-4 is required for mesoderm formation and patterning in the mouse. Genes Dev. 9, 2105–2116 (1995).

    Article  CAS  PubMed  Google Scholar 

  112. Taverner, N. V. et al. Microarray-based identification of VegT targets in Xenopus. Mech. Dev. 122, 333–354 (2005).

    Article  CAS  PubMed  Google Scholar 

  113. Chung, H. A. et al. Screening of FGF target genes in Xenopus by microarray: temporal dissection of the signalling pathway using a chemical inhibitor. Genes Cells 9, 749–761 (2004).

    Article  CAS  PubMed  Google Scholar 

  114. Okabayashi, K. & Asashima, M. Tissue generation from amphibian animal caps. Curr. Opin. Genet. Dev. 13, 502–507 (2003).

    Article  CAS  PubMed  Google Scholar 

  115. Fukui, Y. et al. Long-term culture of Xenopus presumptive ectoderm in a nutrient-supplemented culture medium. Dev. Growth Differ. 45, 499–506 (2003).

    Article  CAS  PubMed  Google Scholar 

  116. Amaya, E. Xenomics. Genome Res. 15, 1683–1691 (2005).

    Article  CAS  PubMed  Google Scholar 

  117. Chen, J. A., Voigt, J., Gilchrist, M., Papalopulu, N. & Amaya, E. Identification of novel genes affecting mesoderm formation and morphogenesis through an enhanced large scale functional screen in Xenopus. Mech. Dev. 122, 307–331 (2005).

    Article  CAS  PubMed  Google Scholar 

  118. Loose, M. & Patient, R. A genetic regulatory network for Xenopus mesendoderm formation. Dev. Biol. 271, 467–478 (2004).

    Article  CAS  PubMed  Google Scholar 

  119. Feng, X. H. & Derynck, R. Specificity and versatility in TGF-β signaling through Smads. Annu. Rev. Cell Dev. Biol. 21, 659–693 (2005).

    Article  CAS  PubMed  Google Scholar 

  120. van Es, J. H., Barker, N. & Clevers, H. You Wnt some, you lose some: oncogenes in the Wnt signaling pathway. Curr. Opin. Genet. Dev. 13, 28–33 (2003).

    Article  CAS  PubMed  Google Scholar 

  121. Thisse, B. & Thisse, C. Functions and regulations of fibroblast growth factor signaling during embryonic development. Dev. Biol. 287, 390–402 (2005).

    Article  CAS  PubMed  Google Scholar 

  122. Shen, M. M. & Schier, A. F. The EGF–CFC gene family in vertebrate development. Trends Genet. 16, 303–309 (2000).

    Article  CAS  PubMed  Google Scholar 

  123. Dorey, K. & Hill, C. S. A novel Cripto-related protein reveals an essential role for EGF–CFCs in Nodal signalling in Xenopus embryos. Dev. Biol. 20 February 2006 (doi: 10.1016/j.ydbio.2006.01.006).

  124. Cheng, S. K., Olale, F., Bennett, J. T., Brivanlou, A. H. & Schier, A. F. EGF–CFC proteins are essential coreceptors for the TGF-β signals Vg1 and GDF1. Genes Dev. 17, 31–36 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Lane, M. C., Davidson, L. & Sheets, M. D. BMP antagonism by Spemann's organizer regulates rostral-caudal fate of mesoderm. Dev. Biol. 275, 356–374 (2004).

    Article  CAS  Google Scholar 

  126. Lieschke, G. J. et al. Zebrafish SPI-1 (PU.1) marks a site of myeloid development independent of primitive erythropoiesis: implications for axial patterning. Dev. Biol. 246, 274–295 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I wish to thank A. Schier, E. Amaya, U. Pyati, and D. Szeto for critical comments on this manuscript; C. Stern, H. Isaacs, G. Lieschke, R. Behringer and A. Schier for providing valuable information; and S. Dougan and J. Heasman for communicating unpublished results. D.K.'s work on mesoderm induction is supported by the US National Science Foundation and National Institutes of Health.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Axeldb

Xenopus Mesendoderm Network

ZFIN

Glossary

Blastula

A stage during which the embryo undergoes cleavage to become multicellular. The late blastula stage precedes gastrulation.

Gastrula

A stage during which the embryo undergoes major morphogenetic changes, which positions the endoderm on the inside, the mesoderm in the middle and the ectoderm on the outside.

Organizer

A signalling centre in a vertebrate embryo comprising a group of cells that secrete signalling factors or inhibitors of signalling factors, which changes the fate of the surrounding cells.

Notochord

A rod-shaped structure that runs along the dorsal axis of the embryo, separating the muscle blocks. It is one of the defining features of the phylum Chordata, to which vertebrates belong.

Fate map

A map that shows which tissues are likely to develop from different regions of the embryo.

Morpholinos

Antisense oligonucleotides that are stable and are commonly used in zebrafish and Xenopus to inhibit either the translation or splicing of mRNAs.

Spemann's organizer

A signalling centre in amphibians that is created on the dorsal side of the late blastula embryo. The equivalent centre in fish is called the shield.

Primitive streak

The site of major morphogenetic movements during gastrulation in reptiles, birds and mammals. The mesoderm, as well as the endoderm, moves through this structure as it ingresses.

Epiblast

The portion of the mouse embryo that will become the definitive embryo (as opposed to extra-embryonic tissues).

Amniotes

Include reptiles, birds and mammals, which all have a protective membrane (the amnion) surrounding the embryo that prevents it from desiccating.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kimelman, D. Mesoderm induction: from caps to chips. Nat Rev Genet 7, 360–372 (2006). https://doi.org/10.1038/nrg1837

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg1837

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing