Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The organization and inheritance of the mitochondrial genome

Key Points

  • Mitochondrial DNA (mtDNA) is generally packaged into nucleoids, the heritable units of mtDNA, by the Abf2/TFAM (transcription factor A, mitochondrial)-family of HMG (high mobility group)-box proteins, which are conserved from yeast to humans. However, recent studies have also revealed several metabolic enzymes that are associated with mtDNA in both yeast and vertebrates.

  • The metabolic proteins that are found in yeast mitochondrial nucleoids can substitute for Abf2 in mtDNA packaging and protection when their expression is increased in response to metabolic cues. These findings indicate that the structural organization of mitochondrial nucleoids is subject to remodelling by these metabolically regulated bifunctional proteins.

  • Mitochondrial nucleoid (mt-nucleoid) division can be directly observed by microscopy. The yeast Hsp60 (heat shock protein 60) chaperonin is a bifunctional protein that is involved in this process.

  • Proteins that are involved in mtDNA recombination affect mt-nucleoid number and mtDNA transmissibility. Genes that are involved in mtDNA concatemerization could accelerate the establishment of homoplasmy in dividing cells.

  • Extensive mitochondrial fission leads to the production of mitochondria that are devoid of mt-nucleoids, and transmission of those mitochondria to progeny cells can eventually lead to the loss of mtDNA. Yeast mitochondria are equipped with a membrane-spanning device that physically links mt-nucleoids to the actin cytoskeleton, which provides a mechanism for coupling mitochondrial movement and mtDNA segregation during cell division.

  • mtDNA mutations have causative roles in neuromuscular diseases and cellular ageing. Studies of the organization and inheritance of mt-nucleoids could help us to understand how the mitochondrial genetic system is affected under these conditions.

Abstract

Mitochondrial DNA (mtDNA) encodes essential components of the cellular energy-producing apparatus, and lesions in mtDNA and mitochondrial dysfunction contribute to numerous human diseases. Understanding mtDNA organization and inheritance is therefore an important goal. Recent studies have revealed that mitochondria use diverse metabolic enzymes to organize and protect mtDNA, drive the segregation of the organellar genome, and couple the inheritance of mtDNA with cellular metabolism. In addition, components of a membrane-associated mtDNA segregation apparatus that might link mtDNA transmission to mitochondrial movements are beginning to be identified. These findings provide new insights into the mechanisms of mtDNA maintenance and inheritance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cytological visualization of yeast mitochondrial nucleoids.
Figure 2: A model for the metabolic remodelling of mitochondrial nucleoids in yeast.
Figure 3: Understanding the mechanism of mitochondrial nucleoid segregation.
Figure 4: A model of the yeast mitochondrial nucleoid segregation apparatus.

Similar content being viewed by others

References

  1. Nass, M. M. K. & Nass, S. Intramitochondrial fibres with DNA characteristics. I. Fixation and elctron staining reactions. J. Cell Biol. 19, 593–611 (1963).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Schatz, G., Haslbrunner, E. & Tuppy, H. Deoxyribonucleic acid associated with yeast mitochondria. Biochem. Biophys. Res. Commun. 15, 127–132 (1964).

    Article  CAS  PubMed  Google Scholar 

  3. Chen, X. J., Wang, X., Kaufman, B. A. & Butow, R. A. Aconitase couples metabolic regulation to mitochondrial DNA maintenance. Science 307, 714–717 (2005). This paper shows that the mitochondrial aconitase is an mt-nucleoid component that is essential for mtDNA maintenance, and its overexpression can suppress mtDNA loss from cells that lack Abf2. It also proposes that the bifunctional metabolic enzymes in mt-nucleoids might remodel nucleoid organization in response to physiological cues.

    Article  CAS  PubMed  Google Scholar 

  4. Kaufman, B. A. et al. In organello formaldehyde crosslinking of proteins to mtDNA: identification of bifunctional proteins. Proc. Natl Acad. Sci. USA 97, 7772–7777 (2000). This work revealed the association of numerous metabolic proteins with mtDNA by in organello formaldehyde crosslinking.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bogenhagen, D. F., Wang, Y., Shen, E. L. & Kobayashi, R. Protein components of mitochondrial DNA nucleoids in higher eukaryotes. Mol. Cell. Proteomics 2, 1205–1216 (2003). The paper describes the identification of several metabolic proteins that are associated with mtDNA in X. laevis oocyte mitochondria and is the most comprehensive analysis of mt-nucleoids in a metazoan species.

    Article  CAS  PubMed  Google Scholar 

  6. Azpiroz, R. & Butow, R. A. Patterns of mitochondrial sorting in yeast zygotes. Mol. Biol. Cell 4, 21–36 (1993). Using pedigree studies of yeast zygotic cells and their first buds, these authors showed that mtDNA movement is controlled separately from the movement of bulk mitochondrial matrix constituents.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Boldogh, I. R. et al. A protein complex containing Mdm10p, Mdm12p, and Mmm1p links mitochondrial membranes and DNA to the cytoskeleton-based segregation machinery. Mol. Biol. Cell 14, 4618–4627 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nunnari, J. et al. Mitochondrial transmission during mating in Saccharomyces cerevisiae is determined by mitochondrial fusion and fission and the intramitochondrial segregation of mitochondrial DNA. Mol. Biol. Cell 8, 1233–1242 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Okamoto, K., Perlman, P. S. & Butow, R. A. The sorting of mitochondrial DNA and mitochondrial proteins in zygotes: preferential transmission of mitochondrial DNA to the medial bud. J. Cell Biol. 142, 613–623 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Williamson, D. H. & Fennell, D. J. The use of fluorescent DNA-binding agent for detecting and separating yeast mitochondrial DNA. Methods Cell Biol. 12, 335–351 (1975).

    Article  CAS  PubMed  Google Scholar 

  11. Williamson, D. H. & Fennell, D. J. Visualization of yeast mitochondrial DNA with the fluorescent stain 'DAPI'. Methods Enzymol. 56, 728–733 (1979).

    Article  CAS  PubMed  Google Scholar 

  12. Miyakawa, I., Sando, N., Kawano, K., Nakamura, S. & Kuroiwa, T. Isolation of morphologically intact mitochondrial nucleoids from the yeast, Saccharomyces cerevisiae. J. Cell Sci. 88, 431–439 (1987).

    CAS  PubMed  Google Scholar 

  13. Meeusen, S. et al. Mgm101p is a novel component of the mitochondrial nucleoid that binds DNA and is required for the repair of oxidatively damaged mitochondrial DNA. J. Cell Biol. 145, 291–304 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Spelbrink, J. N. et al. Human mitochondrial DNA deletions associated with mutations in the gene encoding Twinkle, a phage T7 gene 4-like protein localized in mitochondria. Nature Genet. 28, 223–231 (2001). The first demonstration that human mt-nucleoids can be specifically visualized by GFP tagging of the mitochondrial Twinkle helicase.

    Article  CAS  PubMed  Google Scholar 

  15. Landsman, D. & Bustin, M. A signature for the HMG-1 box DNA-binding proteins. BioEssays 15, 1–8 (1993).

    Article  Google Scholar 

  16. Antoshechkin, I. & Bogenhagen, D. F. Distinct roles for two purified factors in transcription of Xenopus mitochondrial DNA. Mol. Cell. Biol. 15, 7032–7042 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Antoshechkin, I., Bogenhagen, D. F. & Mastrangelo, I. A. The HMG-box mitochondrial transcription factor xl-mtTFA binds DNA as a tetramer to activate bidirectional transcription. EMBO J. 16, 3198–3206 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dequard-Chablat, M. & Allandt, C. Two copies of mthmg1, encoding a novel mitochondrial HMG-like protein, delay accumulation of mitochondrial DNA deletions in Podospora anserina. Eukaryot. Cell 1, 503–513 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Larsson, N. G., Garman, J. D., Oldfors, A., Barsh, G. S. & Clayton, D. A. A single mouse gene encodes the mitochondrial transcription factor A and a testis-specific nuclear HMG-box protein. Nature Genet 13, 296–302 (1996).

    Article  CAS  PubMed  Google Scholar 

  20. Parisi, M. A. & Clayton, D. A. Similarity of human mitochondrial trancription factor 1 to high mobility group proteins. Science 252, 965–969 (1991).

    Article  CAS  PubMed  Google Scholar 

  21. Pierro, P., Capaccio, L. & Gadaleta, G. The 25 kDa protein recognizing the rat curved region upstream of the origin of the L-strand replication is the rat homologue of the human mitochondrial transcription factor A. FEBS Lett. 457, 307–310 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Sasaki, N. et al. Glom is a novel mitochondrial DNA packaging protein in Physarum polycephalum and causes intense chromatin condensation without suppressing DNA functions. Mol. Biol. Cell 14, 4758–4769 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Takata, K. et al. Drosophila mitochondrial transcription factor A: characterization of its cDNA and expression pattern during development. Biochem. Biophys. Res. Commun. 287, 474–483 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Caron, F., Jacq, C. & Rouviere-Yaniv, J. Characterization of a histone-like protein extracted from yeast mitochondria. Proc. Natl Acad. Sci. USA 76, 4265–4269 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Certa, U., Colavito-Shepanski, M. & Grunstein, M. Yeast may not contain histone H1: the only known 'histone H1-like' protein in Saccharomyces cerevisiae is a mitochondrial protein. Nucleic Acids Res. 12, 7975–7985 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Diffley, J. F. & Stillman, B. A close relative of the nuclear, chromosomal high-mobility group protein HMG1 in yeast mitochondria. Proc. Natl Acad. Sci. USA. 88, 7864–7868 (1991). The study identified the yeast ABF2 gene and showed that it is required for mtDNA maintenance on media that contain glucose as the carbon source.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Diffley, J. F. X. & Stillman, B. DNA binding properties of an HMG1-related protein from yeast mitochondria. J. Biol. Chem. 267, 3368–3374 (1992).

    CAS  PubMed  Google Scholar 

  28. Friddle, R. W. et al. Mechanism of DNA compaction by yeast mitochondrial protein Abf2p. Biophys. J. 86, 1632–1639 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Brewer, L. R. et al. Packaging of single DNA molecules by the yeast mitochondrial protein Abf2p. Biophys. J. 85, 2519–2524 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. O'Rourke, T. W., Doudican, N. A., Mackereth, M. D., Doetsch, P. W. & Shadel, G. S. Mitochondrial dysfunction due to oxidative mitochondrial DNA damage is reduced through cooperative actions of diverse proteins. Mol. Cell. Biol. 22, 4086–4093 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Fisher, R. P. & Clayton, D. A. Purification and characterization of human mitochondrial transcription factor 1. Mol. Cell. Biol. 8, 3496–3509 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Parisi, M. A., Xu, B. J. & Clayton, D. A. A human mitochondrial transcriptional activator can functionally replace a yeast mitochondrial HMG-box protein both in vivo and in vitro. Mol. Cell. Biol. 13, 1951–1961 (1993). The authors showed that the human TFAM can functionally substitute for the yeast Abf2 in the maintenance of mtDNA.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ekstrand, M. I. et al. Mitochondrial transcription factor A regulates mtDNA copy number in mammals. Hum. Mol. Genet. 13, 935–944 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Takamatsu, C. et al. Regulation of mitochondrial D-loops by transcription factor A and single-stranded DNA-binding protein. EMBO Rep. 3, 451–456 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Fisher, R. P., Lisowsky, T., Breen, G. A. & Clayton, D. A. A rapid, efficient method for purifying DNA-binding proteins. Denaturation–renaturation chromatography of human and yeast mitochondrial extracts. J. Biol. Chem. 266, 9153–9160 (1991).

    CAS  PubMed  Google Scholar 

  36. Maniura-Weber, K., Goffart, S., Garstka, H. L., Montoya, J. & Wiesner, R. J. Transient overexpression of mitochondrial transcription factor A (TFAM) is sufficient to stimulate mitochondrial DNA transcription, but not sufficient to increase mtDNA copy number in cultured cells. Nucleic Acids Res. 32, 6015–6027 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. McCulloch, V. & Shadel, G. S. Human mitochondrial transcription factor B1 interacts with the C-terminal activation region of h-mtTFA and stimulates transcription independently of its RNA methyltransferase activity. Mol. Cell. Biol. 23, 5816–5824 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Fisher, R. P., Topper, J. N. & Clayton, D. A. Promoter selection in human mitochondria involves binding of a transcription factor to orientation-independent upstream regulatory elements. Cell 50, 247–258 (1987).

    Article  CAS  PubMed  Google Scholar 

  39. Ghivizzani, S. C., Madsen, C. S., Nelen, M. R., Ammini, C. V. & Hauswirth, W. W. In organello footprint analysis of human mitochondrial DNA: human mitochondrial transcription factor A interactins at the origin of replication. Mol. Cell. Biol. 14, 7717–7730 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yoshida, Y. et al. P53 physically interacts with mitochondrial transcription factor A and differentially regulates binding to damaged DNA. Cancer Res. 63, 3729–3734 (2003).

    CAS  PubMed  Google Scholar 

  41. Yoshida, Y. et al. Human mitochondrial transcription factor A binds preferentially to oxidatively damaged DNA. Biochem. Biophys. Res. Commun. 295, 945–951 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Zelenaya-Troitskaya, O., Newman, S. M., Okamoto, K., Perlman, P. S. & Butow, R. A. Functions of the HMG box protein, Abf2p, in mitochondrial DNA segregation, recombination and copy number in Saccharomyces cerevisiae. Genetics 148, 1763–1776 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Hansson, A. et al. A switch in metabolism precedes increased mitochondrial biogenesis in respiratory chain-deficient mouse hearts. Proc. Natl Acad. Sci. USA 101, 3136–3141 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Larsson, N. G. et al. Mitochondrial transcription factor A is necessary for mtDNA maintenance and embryogenesis in mice. Nature Genet. 18, 231–236 (1998). In this study, the use of a mouse model showed that the disruption of mammalian TFAM leads to mtDNA depletion and embryonic death.

    Article  CAS  PubMed  Google Scholar 

  45. Matsushima, Y. et al. Functional domains of chicken mitochondrial transcription factor A for the maintenance of mitochondrial DNA copy number in lymphoma cell line DT40. J. Biol. Chem. 278, 31149–31158 (2003).

    Article  CAS  PubMed  Google Scholar 

  46. Goto, A., Matsushima, Y., Kadowaki, T. & Kitagawa, Y. Drosophila mitochondrial transcription factor A (d-TFAM) is dispensable for the transcription of mitochondrial DNA in Kc167 cells. Biochem. J. 354, 243–248 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Matsushima, Y., Garesse, R. & Kaguni, L. S. Drosophila mitochondrial transcription factor B2 regulates mitochondrial DNA copy number and transcription in schneider cells. J. Biol. Chem. 279, 26900–26905 (2004).

    Article  CAS  PubMed  Google Scholar 

  48. Dairaghi, D., Shadel, G. & Clayton, D. Addition of a 29 residue carboxyl-terminal tail converts a simple HMG box-containing protein into a transcriptional activator. J. Mol. Biol. 249, 11–28 (1995). This study showed that a 29-residue carboxyl-terminal tail of human TFAM is important for specific DNA binding and is essential for transcriptional activation. This sequence is absent in the yeast Abf2, which is not required for mitochondrial transcription.

    Article  CAS  PubMed  Google Scholar 

  49. Newman, S. M., Zelenaya-Troitskaya, O., Perlman, P. S. & Butow, R. A. Analysis of mitochondrial DNA nucleoids in wild-type and a mutant strain of Saccharomyces cerevisiae that lacks the mitochondrial HMG-box protein, Abf2p. Nucleic Acids Res. 24, 386–393 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. McCammon, M. T., Epstein, C. B., Przybyla-Zawislak, B., McAlister-Henn, L. & Butow, R. A. Global transcription analysis of Krebs tricarboxylic acid cycle mutants reveals an alternating pattern of gene expression and effects on hypoxic and oxidative genes. Mol. Biol. Cell 14, 958–972 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zelenaya-Troitskaya, O., Perlman, P. S. & Butow, R. A. ILV5 encodes a bifunctional mitochondrial protein involved in branched chain amino acid biosynthesis and maintenance of mitochondrial DNA. EMBO J. 14, 3268–3276 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Petersen, J. G. L. & Holmberg, S. The ILV5 gene of Saccharomyces cerevisiae is highly expressed. Nucleic Acids. Res. 14, 9631–9651 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bateman, J. M., Perlman, P. S. & Butow, R. A. Mutational bisection of the mitochondrial DNA stability and amino acid biosynthetic functions of Ilv5p of budding yeast. Genetics 161, 1043–1052 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. MacAlpine, D. M., Perlman, P. S. & Butow, R. A. The number of individual mitochondrial DNA molecules and mitochondrial DNA nucleoids in yeast are co-regulated by the general amino acid control pathway. EMBO J. 19, 767–775 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hirling, H., Henderson, B. R. & Kuhn, L. C. Mutational analysis of the [4Fe–4S]-cluster converting iron regulatory factor from its RNA-binding form to cytoplasmic aconitase. EMBO J. 13, 453–461 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hentze, M. W., Muckenthaler, M. U. & Andrews, N. C. Balancing acts: molecular control of mammalian iron metabolism. Cell 117, 285–297 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. Alen, C. & Sonenshein, A. L. Bacillus subtilis aconitase is an RNA-binding protein. Proc. Natl Acad. Sci. USA 96, 10412–10417 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Nanda, S. K. & Leibowitz, J. L. Mitochondrial aconitase binds to the 3′ untranslated region of the mouse hepatitis virus genome. J. Virol. 75, 3352–3362 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Shadel, G. S. Mitochondrial DNA, aconitase 'wraps' it up. TIBS 30, 294–296 (2005).

    CAS  PubMed  Google Scholar 

  60. DeRisi, J. L., Iyer, V. R. & Brown, P. O. Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278, 680–686 (1997).

    Article  CAS  PubMed  Google Scholar 

  61. Butow, R. A. & Avadhani, N. G. Mitochondrial signaling: the retrograde response. Mol. Cell 14, 1–15 (2004).

    Article  CAS  PubMed  Google Scholar 

  62. Liu, Z. & Butow, R. A. A transcriptional switch in the expression of yeast tricarboxylic acid cycle genes in response to a reduction or loss of respiratory function. Mol. Cell. Biol. 19, 6720–6728 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kuroiwa, T., Kawano, S. & Hizume, M. Studies of mitochondrial structure and function in Physarum polycephalum. V. Behavior of mitochondrial nucleoids throughout mitochondrial division cycle. J. Cell Biol. 72, 687–694 (1977).

    Article  CAS  PubMed  Google Scholar 

  64. Garrido, N. et al. Composition and dynamics of human mitochondrial nucleoids. Mol. Biol. Cell 14, 1583–1596 (2003). The authors provide a detailed description of human mt-nucleoids and a direct observation of nucleoid division.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kaufman, B. A., Kolesar, J. E., Perlman, P. S. & Butow, R. A. A function for the mitochondrial chaperonin Hsp60 in the structure and transmission of mitochondrial DNA nucleoids in Saccharomyces cerevisiae. J. Cell Biol. 163, 457–461 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Cheng, M. Y. et al. Mitochondrial heat shock protein hsp60 is essential for assembly of proteins imported into yeast mitochondria. Nature 337, 620–625 (1989).

    Article  CAS  PubMed  Google Scholar 

  67. Boldogh, I., Fehrenbacher, K., Yang, H. C. & Pon, L. A. Mitochondrial movement and inheritance in budding yeast. Gene 18 July 2005 (10.1016/j.gene.2005.03.049).

  68. Yaffe, M. B. The machinery of mitochondrial inheritance and behavior. Science 283, 1493–1497 (1999).

    Article  CAS  PubMed  Google Scholar 

  69. Strausberg, R. L. & Perlman, P. S. The effect of zygotic bud position on the transmission of mitochondrial genes in Saccharomyces cerevisiae. Mol. Gen. Genet. 163, 131–144 (1978).

    Article  CAS  PubMed  Google Scholar 

  70. Zinn, A. R., Pohlman, J. K., Perlman, P. S. & Butow, R. A. Kinetic and segregational analysis of mitochondrial DNA recombination in yeast. Plasmid 17, 248–256 (1987).

    Article  CAS  PubMed  Google Scholar 

  71. Dujon, B. in The Molecular Biology of the Yeast Saccharomyces (eds Strathern, J. N., Jones, E. W. & Broach, J. R.) 505–635 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1981).

    Google Scholar 

  72. Bendich, A. J. Structural analysis of mitochondrial DNA molecules from fungi and plants using moving pictures and pulsed-field gel electrophoresis. J. Mol. Biol. 255, 564–588 (1996).

    Article  CAS  PubMed  Google Scholar 

  73. Lockshon, D. et al. A role for recombination junctions in the segregation of mitochondrial DNA in yeast. Cell 81, 947–955 (1995). The authors show that mutations in the recombination-junction-resolving enzyme Mgt1 result in the reduction of mt-nucleoid number and consequently impair the inheritance of mtDNA.

    Article  CAS  PubMed  Google Scholar 

  74. Ling, F. & Shibata, T. Recombination-dependent mtDNA partitioning: in vivo role of Mhr1p to promote pairing of homologous DNA. EMBO J. 21, 4730–4740 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ling, F., Makishima, F., Morishima, N. & Shibata, T. A nuclear mutation defective in mitochondrial recombination in yeast. EMBO J. 14, 4090–4101 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ling, F. & Shibata, T. Mhr1p-dependent concatemeric mitochondrial DNA formation for generating yeast mitochondrial homoplasmic cells. Mol. Biol. Cell 15, 310–322 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Maleszka, M. R., Skelly, P. J. & Clark-Walker, G. D. Rolling circle replicaton of DNA in yeast mitochondria. EMBO J. 10, 3923–3929 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. MacAlpine, D. M., Kolesar, J., Okamoto, K., Butow, R. A. & Perlman, P. S. Replication and preferential inheritance of hypersuppressive petite mitochondrial DNA. EMBO J. 20, 1807–1817 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Shaw, J. M. & Nunnari, J. Mitochondrial dynamics and division in budding yeast. Trends Cell. Biol. 12, 178–184 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Westermann, B. & Prokisch, H. Mitochondrial dynamics in filamentous fungi. Fungal Genet. Biol. 36, 91–97 (2002).

    Article  CAS  PubMed  Google Scholar 

  81. Scott, S. V., Cassidy-Stone, A., Meeusen, S. L. & Nunnari, J. Staying in aerobic shape: how the structural integrity of mitochondria and mitochondrial DNA is maintained. Curr. Opin. Cell Biol. 15, 482–488 (2003).

    Article  CAS  PubMed  Google Scholar 

  82. Sesaki, H. & Jensen, R. E. UGO1 encodes an outer membrane protein required for mitochondrial fusion. J. Cell Biol. 152, 1123–1134 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Hales, K. G. & Fuller, M. T. Developmentally regulated mitochondrial fusion mediated by a conserved, novel, predicted GTPase. Cell 90, 121–129 (1997).

    Article  CAS  PubMed  Google Scholar 

  84. Sesaki, H. & Jensen, R. E. Ugo1p links the Fzo1p and Mgm1p GTPases for mitochondrial fusion. J. Biol. Chem. 279, 28298–28303 (2004).

    Article  CAS  PubMed  Google Scholar 

  85. Sesaki, H., Southard, S. M., Yaffe, M. P. & Jensen, R. E. Mgm1p, a dynamin-related GTPase, is essential for fusion of the mitochondrial outer membrane. Mol. Biol. Cell 14, 2342–2356 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Wong, E. D. et al. The intramitochondrial dynamin-related GTPase, Mgm1p, is a component of a protein complex that mediates mitochondrial fusion. J. Cell Biol. 160, 303–311 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Arimura, S., Yamamoto, J., Aida, G. P., Nakazono, M. & Tsutsumi, N. Frequent fusion and fission of plant mitochondria with unequal nucleoid distribution. Proc. Natl Acad. Sci. USA 101, 7805–7808 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Nowikovsky, K. et al. The LETM1/YOL027 gene family encodes a factor of the mitochondrial K+ homeostasis with a potential role in the Wolf–Hirschhorn syndrome. J. Biol. Chem. 279, 30307–30315 (2004).

    Article  CAS  PubMed  Google Scholar 

  89. Kucejova, B., Kucej, M., Petrezselyova, S., Abelovska, L. & Tomaska, L. A screen for nigericin-resistant yeast mutants revealed genes controlling mitochondrial volume and mitochondrial cation homeostasis. Genetics 14 July 2005 (10.1534/genetics.105.046540).

  90. Albring, M., Griffith, J. & Attardi, G. Association of a protein structure of probable membrane derivation with HeLa cell mitochondrial DNA near its origin of replicaton. Proc. Natl Acad. Sci. USA 74, 1348–1352 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Burgess, S. M., Delannoy, M. & Jensen, R. E. MMM1 encodes a mitochondrial outer membrane protein essential for establishing and maintaining the structure of yeast mitochondria. J. Cell Biol. 126, 1375–1391 (1994).

    Article  CAS  PubMed  Google Scholar 

  92. Berger, K. H., Sogo, L. F. & Yaffe, M. P. Mdm12p, a component required for mitochondrial inheritance that is conserved between budding and fission yeast. J. Cell Biol. 136, 545–553 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Hobbs, A. E., Srinivasan, M., McCaffery, J. M. & Jensen, R. E. Mmm1p, a mitochondrial outer membrane protein, is connected to mitochondrial DNA (mtDNA) nucleoids and required for mtDNA stability. J. Cell Biol. 152, 401–410 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Sogo, L. F. & Yaffe, M. P. Regulation of mitochondrial morphology and inheritance by Mdm10p, a protein of the mitochondrial outer membrane. J. Cell Biol. 126, 1361–1373 (1994).

    Article  CAS  PubMed  Google Scholar 

  95. Boldogh, I., Vojtov, N., Karmon, S. & Pon, L. A. Interaction between mitochondria and the actin cytoskeleton in budding yeast requires two integral mitochondrial outer membrane proteins, Mmm1p and Mdm10p. J. Cell Biol. 141, 1371–1381 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Berger, K. H. & Yaffe, M. P. Mitochondrial DNA inheritance in Saccharomyces cerevisiae. Trends Microbiol. 8, 508–513 (2000).

    Article  CAS  PubMed  Google Scholar 

  97. Hanekamp, T. et al. Maintenance of mitochondrial morphology is linked to maintenance of the mitochondrial genome in Saccharomyces cerevisiae. Genetics 162, 1147–1156 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Meisinger, C. et al. The mitochondrial morphology protein Mdm10 functions in assembly of the preprotein translocase of the outer membrane. Dev. Cell 7, 61–71 (2004).

    Article  CAS  PubMed  Google Scholar 

  99. Kondo-Okamoto, N., Shaw, J. M. & Okamoto, K. Mmm1p spans both the outer and inner mitochondrial membranes and contains distinct domains for targeting and foci formation. J. Biol. Chem. 278, 48997–49005 (2003).

    Article  CAS  PubMed  Google Scholar 

  100. Dimmer, K. S., Jakobs, S., Vogel, F., Altmann, K. & Westermann, B. Mdm31 and Mdm32 are inner membrane proteins required for maintenance of mitochondrial shape and stability of mitochondrial DNA nucleoids in yeast. J. Cell Biol. 168, 103–115 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Youngman, M. J., Hobbs, A. E., Burgess, S. M., Srinivasan, M. & Jensen, R. E. Mmm2p, a mitochondrial outer membrane protein required for yeast mitochondrial shape and maintenance of mtDNA nucleoids. J. Cell Biol. 164, 677–688 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Meeusen, S. & Nunnari, J. Evidence for a two membrane-spanning autonomous mitochondrial DNA replisome. J. Cell Biol. 163, 503–510 (2003). The authors observed that mtDNA replication exclusively takes place in discrete membrane-spanning structures — mitochondrial replisomes. These structures are proposed to provide a mechanism for linking mtDNA replication and inheritance.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Taylor, R. W. & Turnbull, D. M. Mitochondrial DNA mutations in human disease. Nature Rev. Genet. 6, 389–402 (2005).

    Article  CAS  PubMed  Google Scholar 

  104. Wallace, D. C. Mitochondrial diseases in man and mouse. Science 283, 1482–1488 (1999).

    Article  CAS  PubMed  Google Scholar 

  105. Chomyn, A. & Attardi, G. mtDNA mutations in aging and apoptosis. Biochem. Biophys. Res. Commun. 304, 519–529 (2003).

    Article  CAS  PubMed  Google Scholar 

  106. Trifunovic, A. et al. Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature 429, 417–423 (2004).

    Article  CAS  PubMed  Google Scholar 

  107. Kaukonen, J. et al. Role of adenine nucleotide translocator 1 in mtDNA maintenance. Science 289, 782–785 (2000).

    Article  CAS  PubMed  Google Scholar 

  108. Van Goethem, G., Dermaut, B., Lofgren, A., Martin, J. J. & Van Broeckhoven, C. Mutation of POLG is associated with progressive external ophthalmoplegia characterized by mtDNA deletions. Nature Genet. 28, 211–212 (2001).

    Article  CAS  PubMed  Google Scholar 

  109. DiMauro, S. & Schon, E. A. Mitochondrial DNA mutations in human disease. Am. J. Med. Genet. 106, 18–26 (2001).

    Article  CAS  PubMed  Google Scholar 

  110. Shoubridge, E. A. Mitochondrial DNA segregation in the developing embryo. Hum. Reprod. 15 (Suppl. 2), 229–234 (2000).

    Article  PubMed  Google Scholar 

  111. Cho, J. H., Ha, S. J., Kao, L. R., Megraw, T. L. & Chae, C. -B. A novel DNA-binding protein bound to the mitochondrial inner membrane restores the null mutation of mitochondrial histone Abf2p in Saccharomyces cerevisiae. Mol. Cell. Biol. 18, 5712–5723 (1998).

    Article  CAS  PubMed  Google Scholar 

  112. Sato, H. & Miyakawa, I. A 22 kDa protein specific for yeast mitochondrial nucleoids is an unidentified putative ribosomal protein encoded in open reading frame YGL068W. Protoplasma 223, 175–182 (2004).

    Article  CAS  PubMed  Google Scholar 

  113. Hall, D. A. et al. Regulation of gene expression by a metabolic enzyme. Science 306, 482–484 (2004).

    Article  CAS  PubMed  Google Scholar 

  114. Cohen, G., Rapatz, W. & Ruis, H. Sequence of the Saccharomyces cerevisiae CTA1 gene and amino acid sequence of catalase A derived from it. Eur. J. Biochem. 176, 150–163 (1988).

    Google Scholar 

  115. Liu, T. et al. DNA and RNA binding by the mitochondrial lon protease is regulated by nucleotide and protein substrate. J. Biol. Chem. 279, 13902–13910 (2004).

    Article  CAS  PubMed  Google Scholar 

  116. Shiiba, D., Fumoto, S. I., Miyakawa, I. & Sando, N. Isolation of giant mitochondrial nucleoids from the yeast Saccharomyces cerevisiae. Protoplasma 198, 177–185 (1997).

    Article  CAS  Google Scholar 

  117. Kuroiwa, T. Mitochondrial nuclei. Int. Rev. Cytol. 75, 1–59 (1982).

    Article  CAS  PubMed  Google Scholar 

  118. Moriyama, Y. & Kawano, S. Rapid, selective digestion of mitochondrial DNA in accordance with the matA hierarchy of multiallelic mating types in the mitochondrial inheritance of Physarum polycephalum. Genetics 164, 963–975 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Klingbeil, M. M. & Englund, P. T. Closing the gaps in kinetoplast DNA network replication. Proc. Natl Acad. Sci. USA 101, 4333–4334 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Lukes, J. et al. Kinetoplast DNA network: evolution of an improbable structure. Eukaryot. Cell 1, 495–502 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Ashley, N., Harris, D. & Poulton, J. Detection of mitochondrial DNA depletion in living human cells using PicoGreen staining. Exp. Cell Res. 303, 432–446 (2005).

    Article  CAS  PubMed  Google Scholar 

  122. Iborra, F. J., Kimura, P. R. & Cook, P. R. The functional organization of mitochondrial genomes in human cells. BMC Biol. 2, 9 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Legros, F., Malka, F., Frachon, P., Lombes, A. & Rojo, M. Organization and dynamics of human mitochondrial DNA. J. Cell Sci. 117, 2653–2662 (2004).

    Article  CAS  PubMed  Google Scholar 

  124. Magnusson, J., Orth, M., Lestienne, P. & Taanman, J. W. Replication of mitochondrial DNA occurs throughout the mitochondria of cultured human cells. Exp. Cell Res. 289, 133–142 (2003).

    Article  CAS  PubMed  Google Scholar 

  125. Margineantu, D. H. et al. Cell cycle dependent morphology changes and associated mitochondrial DNA redistribution in mitochondria of human cell lines. Mitochondrion 1, 425–435 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

X.J.C. is supported by the US National Institutes of Health (NIH) and American Heart Association and R.A.B is supported by the NIH and The Robert A. Welch Foundation. We are grateful to our colleagues for their helpful discussions and a critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald A. Butow.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez

Entrez

Abf2

ACO1

Cce1

Fzo1

ILV5

MHR1

Mdm10

Mdm12

Mdm31

Mdm32

Mgm101

Mmm1

mttfa-A

Ugo1

MedlinePlus

MedlinePlus

cisplatin

Swiss-Prot

Swiss-Prot

TFAM

FURTHER INFORMATION

Ronald Butow's homepage

Glossary

HIGH MOBILITY GROUP (HMG) PROTEINS

A family of non-histone proteins that contain DNA-binding HMG-box domains.

ATOMIC FORCE MICROSCOPY

A method that is used to image materials at the atomic level.

PETITE MUTANTS

Respiratory-deficient mutants. These either contain a highly repeated, random fragment of the wild-type mitochondrial genome (ρ) or completely lack mtDNA (ρ°).

FOOTPRINT ANALYSIS

A technique for identifying sites where proteins bind to DNA at a single-nucleotide resolution.

REDUCTIONAL RECOMBINATION

Recombination within the highly repeated sequences of ρ-petite genomes, which produces shorter mtDNA molecules with a reduced number of repeat units.

KREBS CYCLE

Also known as the tricarboxylic acid (or TCA) cycle. A metabolic pathway in mitochondria that breaks down the products of carbohydrate, fat and protein metabolism into carbon dioxide and water to generate energy. It also provides precursors for other compounds, such as certain amino acids.

CHAPERONIN

A protein complex that is required for correct protein folding.

DECONVOLUTION MICROSCOPY

Microscopy using computer image-processing techniques to reconstruct cross-sectional images from several focal planes, which yields high-resolution images.

ROLLING-CIRCLE REPLICATION

A form of DNA replication in which a circular DNA molecule produces linear daughter molecules.

HOMOPLASMY

The state of the mitochondrial genetic system in which all copies of the mitochondrial genome within a cell are identical.

HETEROPLASMY

The state of the mitochondrial genetic system in which a cell contains mitochondrial genomes that are genetically different.

FLUORESCENCE IN SITU HYBRIDIZATION

A microscopic technique that uses fluorescently tagged DNA probes to detect the cytological localization of specific DNAs by in situ hybridization.

PRE-PROTEIN TRANSLOCASE

A complex of proteins that function in the import of nuclear-encoded mitochondrial proteins that were synthesized on cytoplasmic ribosomes.

REPLISOME

A DNA-replicating structure that is located at the replication fork, which consists of DNA-replication enzymes and associated proteins.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, X., Butow, R. The organization and inheritance of the mitochondrial genome. Nat Rev Genet 6, 815–825 (2005). https://doi.org/10.1038/nrg1708

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg1708

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing