Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Molecular genetics and genomics of heart failure

Key Points

  • Heart failure is a multifactorial condition that is initiated by a broad range of events, both genetic and environmental

  • Heart failure might progress through a number of different molecular pathways, which are still poorly understood

  • In recent years, genomics has become prominent to the study of polygenic, multifactorial conditions

  • Microarray gene expression profiling studies have yielded useful preliminary data on the pathogenesis of heart failure and its precursors

  • The use of blood RNA, as opposed to tissue biopsy RNA, might represent an important step forward for genomic studies

Abstract

Heart failure is a major disease burden worldwide, and its incidence continues to increase as premature deaths from other cardiovascular conditions decline. Although the overall molecular portrait of this multifactorial disease remains incomplete, molecular and genetic studies have implicated, in recent decades, various pathways and genes that participate in the pathophysiology of heart failure. Here, we highlight the current understanding of the molecular and genetic basis of heart failure and show how recently developed genomic tools are providing a new perspective on this complex disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Processes leading to various stages of heart failure.
Figure 2: Transmission of force and the structural network in the cardiomyocyte.

Similar content being viewed by others

References

  1. Berry, C., Murdoch, D. R. & McMurray, J. J. V. Economics of chronic heart failure. Eur. J. Heart Fail. 3, 283–291 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Braunwald, E. & Bristow, M. R. Congestive heart failure: fifty years of progress. Circulation 102 (Suppl. 4), 14–23 (2000).

    Google Scholar 

  3. DiBianco, R. Update on therapy for heart failure. Am. J. Med. 115, 480–488 (2003).

    Article  PubMed  Google Scholar 

  4. Miller, L. W. & Missov, E. D. Epidemiology of heart failure. Cardiol. Clin. 19, 547–555 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Jessup, M. & Brozena, S. Medical progress: heart failure. N. Engl. J. Med. 348, 2007–2018 (2003).

    Article  PubMed  Google Scholar 

  6. Adams, K. F. New epidemiologic perspectives concerning mild-to-moderate heart failure. Am. J. Med. 110, S6–S13 (2001).

    Article  Google Scholar 

  7. Zile, M. R., Baicu, C. F. & Gaasch, W. H. Diastolic heart failure — abnormalities in active relaxation and passive stiffness of the left ventricle. N. Engl. J. Med. 350, 1953–1959 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Karon, B. L. Diagnosis and outpatient management of congestive heart failure. Mayo Clin. Proc. 70, 1080–1085 (1995).

    Article  CAS  PubMed  Google Scholar 

  9. Roberts, R. & Brugada, R. Genetic aspects of arrhythmias. Am. J. Med. Genet. 97, 310–318 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Halm, M. A. & Penque, S. Heart failure in women. Prog. Cardiovasc. Nurs. 15, 121–133 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Hasenfuss, G. & Pieske, B. Calcium cycling in congestive heart failure. J. Mol. Cell. Cardiol. 34, 951–969 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Schmidt, U. et al. Contribution of abnormal sarcoplasmic reticulum ATPase activity to systolic and diastolic dysfunction in human heart failure. J. Mol. Cell. Cardiol. 30, 1929–1937 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Miyamoto, M. I. et al. Adenoviral gene transfer of SERCA2a improves left ventricular function in aortic-banded rats in transition to heart failure. Proc. Natl Acad. Sci. USA 97, 793–798 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ji, Y. et al. Disruption of a single copy of the SERCA2 gene results in altered Ca2+ homeostasis and cardiomyocyte function. J. Biol. Chem. 275, 38073–38080 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Schmitt, J. P. et al. Dilated cardiomyopathy and heart failure caused by a mutation in phospholamban. Science. 299, 1410–1413 (2003). A landmark study of a genetic mutation in the calcium signalling pathway that causes human heart failure.

    Article  CAS  PubMed  Google Scholar 

  16. Haghighi, K. et al. Human phospholamban null results in lethal dilated cardiomyopathy revealing a critical difference between mouse and human. J. Clin. Invest. 111, 869–876 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Braz, J. C. et al. PKC-α regulates cardiac contractility and propensity toward heart failure. Nature Med. 10, 248–254 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Lehnart, S. E. et al. Calstabin deficiency, ryanodine receptors, and sudden cardiac death. Biochem. Biophys. Res. Comm. 322, 1267–1279 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Molkentin, J. D. et al. A calcineurin dependent transcriptional pathway for cardiac hypertrophy. Cell 93, 215–228 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Frey, N., McKinsey, T. A. & Olson, E. N. Decoding calcium signals involved in cardiac growth and function. Nature Med. 6, 1221–1227 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Vega, R. B., Bassel-Duby, R. & Olson, E. N. Control of cardiac growth and function by calcineurin signaling. J. Biol. Chem. 278, 36981–36984 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Passier, R. et al. CaM kinase signaling induces cardiac hypertrophy and activates the MEF2 transcription factor in vivo. J. Clin. Invest. 105, 1395–1406 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. De Windt, L. J. et al. Targeted inhibition of calcineurin attenuates cardiac hypertrophy in vivo. Proc. Natl Acad. Sci. USA 98, 3322–3327 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nicol, R. et al. Activated MEK5 induces serial assembly of sarcomeres and eccentric cardiac hypertrophy. EMBO J. 20, 2757–2767 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jones, S. et al. Endothelial nitric oxide synthase overexpression attenuates congestive heart failure in mice. Proc. Natl Acad. Sci. USA 100, 4891–4896 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Barouch, L. A. et al. Nitric oxide regulates the heart by spatial confinement of nitric oxide synthase isoforms. Nature 416, 337–340 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Li, Y. Y., Feldman, A. M., Sun, Y. & McTiernan, C. F. Differential expression of tissue inhibitors of metalloproteinases in the failing human heart. Circulation 98, 1728–1734 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. Ducharme, A. et al. Targeted deletion of matrix metalloproteinase- 9 attenuates left ventricular enlargement and collagen accumulation after experimental myocardial infarction. J. Clin. Invest. 106, 55–62 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mann, D. L. & Spinale, F. G. Activation of matrix metalloproteinases in the failing human heart, breaking the tie that binds. Circulation 98, 1699–1702 (1998).

    Article  CAS  PubMed  Google Scholar 

  30. Bendall, J. K., Heymes, C., Ratajczak, P. & Samuel, J. L. Extracellular matrix and cardiac remodeling. Arch. Mal. Coeur Vaiss. 95, 1226–1229 (2002). A comprehensive review article regarding the role of extracellular matrix in heart disease.

    CAS  PubMed  Google Scholar 

  31. Hao, J., Wang, B., Jones, S. C., Jassal, D. S. & Dixon, I. M. Interaction between angiotensin II and Smad proteins in fibroblasts in failing heart and in vitro. Am. J. Physiol. Heart Circ. Physiol. 279, H3020–H3030 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Towbin, J. A. et al. X-linked dilated cardiomyopathy (XLCM): molecular characterization. Am. J. Hum. Genet. 49, S421 (1991). A summary of inherited human cardiomyopathies leading to heart failure.

    Google Scholar 

  33. Towbin, J. A. et al. X-linked dilated cardiomyopathy: molecular genetic evidence of linkage to the Duchenne muscular dystrophy (dystrophin) gene at the Xp21 locus. Circulation 87, 1854–1865 (1993).

    Article  CAS  PubMed  Google Scholar 

  34. Hainsey, T. A. et al. Cardiomyopathic features associated with muscular dystrophy are independent of dystrophin absence in cardiovasculature. Neuromuscul. Disord. 13, 294–302 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Finsterer, J. & Stollberger, C. The heart in human dystrophinopathies. Cardiology 99, 1–19 (2003).

    Article  PubMed  Google Scholar 

  36. Tsubata, S. et al. Mutations in the human δ-sarcoglycan gene in familial and sporadic dilated cardiomyopathy. J. Clin. Invest. 106, 655–662 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lim, L. E. et al. β-sarcoglycan: characterization and role in limb-girdle muscular dystrophy linked to 4q12. Nature Genet. 11, 257–265 (1995).

    Article  CAS  PubMed  Google Scholar 

  38. Barresi, R. et al. Disruption of heart sarcoglycan complex and severe cardiomyopathy caused by β sarcoglycan mutations. J. Med. Genet. 37, 102–107 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yoshida, H. et al. Decrease in sarcoglycans and dystrophin in failing heart following acute myocardial infarction. Cardiovasc. Res. 59, 419–427 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Blake, D. J. & Martin-Rendon, E. Intermediate filaments and the function of the dystrophin-protein complex. Trends Cardiovasc. Med. 12, 224–228 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Cartegni, L., et al. Heart specific localization of emerin: new insights into Emery–Dreifuss muscular dystrophy. Hum. Mol. Genet. 6, 2257–2264 (1997).

    Article  CAS  PubMed  Google Scholar 

  42. Epstein, N. D. & Davis, J. S. Stretch is fundamental. Cell 112, 147–150 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Knoll, R. et al. The cardiac mechanical stretch sensor machinery involves a z disc complex that is defective in a subset of human dilated cardiomyopathy. Cell 111, 943–955 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Brancaccio, M. et al. Melusin, a muscle-specific integrin β1-interacting protein, is required to prevent cardiac failure in response to chronic pressure overload. Nature Med. 9, 68–75 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Schmitt, J. P. et al. Consequences of pressure overload on sarcomere protein mutation-induced hypertrophic cardiomyopathy. Circulation 108, 1133–1138 (2003).

    Article  PubMed  Google Scholar 

  46. Seidman, J. G. & Seidman, C. The genetic basis for cardiomyopathy: from mutation identification to mechanistic paradigms. Cell 104, 557–567 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Liew, C. C. & Dzau, V. J. in Molecular Basis of Cardiovascular Disease: A Companion to Braunwald's Heart Disease 2nd edn (ed. Chien, K.) 16–38 (Saunders, 2004).

    Google Scholar 

  48. Cody, R. J. The sympathetic nervous system and the renin-angiotensin-aldosterone system in cardiovascular disease. Am. J. Cardiol. 80, 9J–14J (1997).

    Article  CAS  PubMed  Google Scholar 

  49. Tzanidis, A. et al. Direct actions of urotensin II on the heart: implications for cardiac fibrosis and hypertrophy. Circ. Res. 93, 246–253 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Douglas, S. A., Tayara, L., Ohlstein, E. H., Halawa, N. & Giaid, A. Congestive heart failure and expression of myocardial urotensin II. Lancet. 359, 1990–1997 (2002).

    Article  CAS  PubMed  Google Scholar 

  51. Foody, J. M., Farrell, M. H. & Krumholz, H. M. β-blocker therapy in heart failure. JAMA 287, 883–889 (2002).

    Article  CAS  PubMed  Google Scholar 

  52. Small, K. M., Wagoner, L. E., Levin, A. M., Kardia, S. L. & Liggett, S. B. Synergistic polymorphisms of β1- and α2C-adrenergic receptors and the risk of congestive heart failure. N. Engl. J. Med. 347, 1135–1142 (2002). A description of two disease-causing human genetic mutations in the renin-angiotensin-aldosterone system.

    Article  CAS  PubMed  Google Scholar 

  53. Mason, D. A., Moore, J. D., Green, S. A. & Liggett, S. B. A gain-of-function polymorphism in a G-protein coupling domain of the human β-1-adrenergic receptor. J. Biol. Chem. 274, 12670–12674 (1999).

    Article  CAS  PubMed  Google Scholar 

  54. Dorn, G. W. II & Molkentin, J. D. Manipulating cardiac contractility in heart failure: data from mice and men. Circulation 109, 150–158 (2004).

    Article  PubMed  Google Scholar 

  55. Liggett, S. B. et al. Early and delayed consequences of β2- adrenergic receptor overexpression in mouse hearts. Circulation 101, 1707–1714 (2000).

    Article  CAS  PubMed  Google Scholar 

  56. Engelhardt, S., Hein, L., Wiesmann, F. & Lohse, M. J. Progressive hypertrophy and heart failure in β1-adrenergic receptor transgenic mice. Proc. Natl Acad. Sci. USA 96, 7059–7064 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Mann, D. L. Recent insights into the role of tumor necrosis factor in the failing heart. Heart Fail. Rev. 6, 71–80 (2001).

    Article  CAS  PubMed  Google Scholar 

  58. Torre-Amione, G. et al. Tumor necrosis factor α and tumor necrosis factor receptors in the failing human heart. Circulation 93, 704–711 (1996).

    Article  CAS  PubMed  Google Scholar 

  59. Godecke, A. et al. Myoglobin protects the heart from inducible nitric-oxide synthase (iNOS)-mediated nitrosative stress. J. Biol. Chem. 278, 21761–21766 (2003).

    Article  PubMed  CAS  Google Scholar 

  60. Spinarova, L. et al. Big endothelin in chronic heart failure: marker of disease severity or genetic determination? Int. J. Cardiol. 93, 63–68 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Reis, M. M. et al. An in situ quantitative immunohistochemical study of cytokines and IL-2R+ in chronic human chagasic myocarditis: correlation with the presence of myocardial Trypanosoma cruzi antigens. Clin. Immunol. Immunopathol. 83, 165–172 (1997).

    Article  CAS  PubMed  Google Scholar 

  62. Sterin-Borda, L. et al. Effect of chagasic sera on the rat isolated atrial preparation: immunological, morphological and function aspects. Cardiovasc. Res. 10, 613–622 (1976).

    Article  CAS  PubMed  Google Scholar 

  63. Limas, C. J., Goldenberg, I. F. & Limas, C. Autoantibodies against β-adrenoceptors in human idiopathic dilated cardiomyopathy. Circ. Res. 64, 97–103 (1989).

    Article  CAS  PubMed  Google Scholar 

  64. Jahns, R. et al. Autoantibodies activating human β1-adrenergic receptors are associated with reduced cardiac function in chronic heart failure. Circulation 99, 649–654 (1999).

    Article  CAS  PubMed  Google Scholar 

  65. Caforio, A. L. P., Mahon, N. J., Tona, F. & McKenna, W. J. Circulating cardiac autoantibodies in dilated cardiomyopathy and myocarditis: pathogenetic and clinical significance. Eur. J. Heart Fail. 4, 411–417 (2002).

    Article  PubMed  Google Scholar 

  66. Jahns, R., et al. Direct evidence for a β1-adrenergic receptor-directed autoimmune attack as a cause of idiopathic dilated cardiomyopathy. J. Clin. Invest. 113, 1419–1429 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Okazaki, T. et al. Autoantibodies against cardiac troponin I are responsible for dilated cardiomyopathy in PD.1 deficient mice. Nature Med. 9, 1477–1483 (2003).

    Article  CAS  PubMed  Google Scholar 

  68. Eriksson, U. et al. Dendritic cell-induced autoimmune heart failure requires cooperation between adaptive and innate immunity. Nature Med. 9, 1484–1490 (2003).

    Article  CAS  PubMed  Google Scholar 

  69. Parker, T. G. & Schneider, M. D. Growth factors, proto-oncogenes and plasticity of the cardiac phenotype. Annu. Rev. Physiol. 53, 179–200 (1991).

    Article  CAS  PubMed  Google Scholar 

  70. Lowes, B. D. et al. Myocardial gene expression in dilated cardiomyopathy treated with β-blocking agents. N. Engl. J. Med. 346, 1357–1365 (2002).

    Article  CAS  PubMed  Google Scholar 

  71. Massin, M. M., Radermecker, M. A., Verloes, A., Jacquot, S. & Grenade, T. Cardiac involvement in Coffin–Lowry syndrome. Acta Paediatr. 88, 468–470 (1999).

    Article  CAS  PubMed  Google Scholar 

  72. Antos, C. et al. Dose-dependent blockade to cardiomyocyte hypertrophy by histone deacetylase inhibitors. J. Biol. Chem. 278, 28930–28937 (2003).

    Article  CAS  PubMed  Google Scholar 

  73. Olson, E. N. A decade of discoveries in cardiac biology. Nature Med. 10, 467–474 (2004).

    Article  CAS  PubMed  Google Scholar 

  74. Kang, P. M. & Izumo, S. Apoptosis in heart: basic mechanisms and implications in cardiovascular diseases. Trends Mol. Med. 9, 177–182 (2003).

    Article  CAS  PubMed  Google Scholar 

  75. Wencker, D. et al. A mechanistic role for cardiac myocyte apoptosis in heart failure. J. Clin. Invest. 111, 1497–1504 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Hein, S. et al. Progression from compensated hypertrophy to failure in the pressure-overloaded human heart. Circulation 107, 984–991 (2003).

    Article  PubMed  Google Scholar 

  77. Katz, A. M. The cardiomyopathy of overload: an unnatural growth response in the hypertrophied heart. Ann. Intern. Med. 121, 363–371 (1994).

    Article  CAS  PubMed  Google Scholar 

  78. von Harsdorf, R., Li, P. F. & Dietz, R. Signaling pathways in reactive oxygen species-induced cardiomyocyte apoptosis. Circulation 99, 2934–2941 (1999).

    Article  CAS  PubMed  Google Scholar 

  79. Crone, S. A. et al. ErbB2 is essential in the prevention of dilated cardiomyopathy. Nature Med. 8, 459–465 (2002).

    Article  CAS  PubMed  Google Scholar 

  80. Chen, J. & Chien, K. R. Complexity in simplicity: monogenic disorders and complex cardiomyopathies. J. Clin. Invest. 103, 1483–1485 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Pennisi, E. Bioinformatics. Gene counters struggle to get the right answer. Science. 301, 1040–1041 (2003).

    Article  CAS  PubMed  Google Scholar 

  82. Hwang, D. M. et al. A genome-based resource for molecular cardiovascular medicine: toward a compendium of cardiovascular genes. Circulation 96, 4146–4203 (1997). A large-scale, genomic characterization of the genes expressed in the human heart.

    Article  CAS  PubMed  Google Scholar 

  83. Barrans, J. D. et al. Chromosomal distribution of the human cardiovascular transcriptome. Genomics 81, 520–525 (2003).

    Article  CAS  Google Scholar 

  84. Le Corvoisier, P., Park, H. Y., Carlson, K. M., Marchuk, D. A. & Rockman, H. A. Multiple quantitative trait loci modify the heart failure phenotype in murine cardiomyopathy. Hum. Mol. Genet. 12, 3097–3107 (2003).

    Article  CAS  PubMed  Google Scholar 

  85. Yang, J. et al. Decreased SLIM1 expression and increased gelsolin expression in failing human hearts measured by high density oligonucleotide arrays. Circulation 102, 3046–3052 (2000).

    Article  CAS  PubMed  Google Scholar 

  86. Barrans, J. D., Stamatiou, D. & Liew, C. C. Construction of a human cardiovascular cDNA microarray: portrait of the failing heart. Biochem. Biophys. Res. Comm. 280, 964–969 (2001).

    Article  CAS  PubMed  Google Scholar 

  87. Tan, F. L. et al. The gene expression fingerprint of human heart failure. Proc. Natl Acad. Sci. USA 99, 11387–11392 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Boheler, K. R. et al. Sex- and age-dependent human transcriptome variability: implications for chronic heart failure. Proc. Natl Acad. Sci. USA 100, 2754–2759 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Steenman, M. et al. Transcriptomal analysis of failing and nonfailing human hearts. Physiol. Genomics 12, 97–112 (2003).

    Article  CAS  PubMed  Google Scholar 

  90. Xu, J. et al. Identification of differentially expressed genes in human prostate cancer using subtraction and microarray. Cancer Res. 60, 1677–1682 (2000).

    CAS  PubMed  Google Scholar 

  91. Weinberg, E. O. et al. Sex dependence and temporal dependence of the left ventricular genomic response to pressure overload. Physiol. Genomics 12, 113–127 (2003).

    Article  CAS  PubMed  Google Scholar 

  92. Tang, Z. et al. Gene expression profiling during the transition to failure in TNF-α over-expressing mice demonstrates the development of autoimmune myocarditis. J. Mol. Cell. Cardiol. 36, 515–530 (2004).

    Article  CAS  PubMed  Google Scholar 

  93. Blaxall, B. C., Spang, R., Rockman, H. A. & Koch, W. J. Differential myocardial gene expression in the development and rescue of murine heart failure. Physiol. Genomics. 15, 105–114 (2003).

    Article  CAS  PubMed  Google Scholar 

  94. Yussman, M. G. et al. Mitochondrial death protein NIX is induced in cardiac hypertrophy and triggers apoptotic cardiomyopathy. Nature Med. 8, 725–730 (2002).

    Article  CAS  PubMed  Google Scholar 

  95. Ueno, S. et al. DNA microarray analysis of in vivo progression mechanism of heart failure. Biochem. Biophys. Res. Comm. 307, 771–777 (2003).

    Article  CAS  PubMed  Google Scholar 

  96. Steenbergen, C. et al. Alterations in apoptotic signaling in human idiopathic cardiomyopathic hearts in failure. Am. J. Physiol. Heart. Circ. Physiol. 284, H268–H276 (2003).

    Article  CAS  PubMed  Google Scholar 

  97. Barrans, J. D. et al. Global gene expression of end-stage dilated cardiomyopathy using a human cardiovascular-based cDNA microarray. Am. J. Pathol. 160, 2035–2043 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Marks, A. R. Cardiac intracellular calcium release channels: role in heart failure. Circ. Res. 87, 8–11 (2000).

    Article  CAS  PubMed  Google Scholar 

  99. Hwang, J. J. et al. Microarray gene expression profiles in dilated and hypertrophic cardiomyopathic end-stage heart failure. Physiol. Genomics 10, 31–44 (2002). The first genomic comparison of human DCM and HCM using microarrays.

    Article  CAS  PubMed  Google Scholar 

  100. Grzeskowiak, R. et al. Expression profiling of human idiopathic dilated cardiomyopathy. Cardiovasc. Res. 59, 400–411 (2003).

    Article  CAS  PubMed  Google Scholar 

  101. Ding, J. H. et al. Dilated cardiomyopathy caused by tissue-specific ablation of SC35 in the heart. EMBO J. 23, 885–896 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Mukherjee, S. et al. Microarray analysis of changes in gene expression in a murine model of chronic chagas cardiomyopathy. Parasitol. Res. 91, 187–196 (2003).

    Article  PubMed  Google Scholar 

  103. Garg, N., Popov, V. L. & Papaconstantinou, J. Profiling gene transcription reveals a deficiency of mitochondrial oxidative phosphorylation in Trypanosoma cruzi-infected murine hearts: implications in chagasic myocarditis development. Biochim. Biophys. Acta 1638, 106–120 (2003).

    Article  CAS  PubMed  Google Scholar 

  104. Kapoun, A. M. et al. B-Type natriuretic peptide exerts broad functional opposition to transforming growth factor-β in primary human cardiac fibroblasts: fibrosis, myofibroblast conversion, proliferation, and inflammation. Circ. Res. 94, 453–461 (2004).

    Article  CAS  PubMed  Google Scholar 

  105. Friddle, C. J., Koga, T., Rubin, E. M. & Bristow, J. Expression profiling reveals distinct sets of genes altered during induction and regression of cardiac hypertrophy. Proc. Natl Acad. Sci. USA 97, 6745–6750 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Dobson, J. G., Fray, J., Leonard, J. L. & Pratt, R. E. Molecular mechanisms of reduced β-adrenergic signaling in the aged heart as revealed by genomic profiling. Physiol. Genomics 15, 142–147 (2003).

    Article  CAS  PubMed  Google Scholar 

  107. Stanton, L. W. et al. Altered patterns of gene expression in response to myocardial infarction. Circ. Res. 86, 939–945 (2000).

    Article  CAS  PubMed  Google Scholar 

  108. Blaxall, B. C., Tschannen-Moran, B. M., Milano, C. A. & Koch, W. J. Differential gene expression and genomic patient stratification following left ventricular assist device support. J. Am. Coll. Cardiol. 41, 1096–1106 (2003).

    Article  CAS  PubMed  Google Scholar 

  109. Chen, M. et al. Novel role for the potent endogenous inotrope apelin in human cardiac dysfunction. Circulation 108, 1432–1439 (2003).

    Article  CAS  PubMed  Google Scholar 

  110. Chen, Y. et al. Alterations of gene expression in failing myocardium following left ventricular assist device support. Physiol. Genomics 14, 251–260 (2003).

    Article  PubMed  Google Scholar 

  111. Hall, J. L. et al. Genomic profiling of the human heart before and after mechanical support with a ventricular assist device reveals alterations in vascular signaling networks. Physiol. Genomics 17, 283–291 (2004).

    Article  CAS  PubMed  Google Scholar 

  112. Ohki, R. et al. Effects of olmesartan, an angiotensin II receptor blocker, on mechanically-modulated genes in cardiac myocytes. Cardiovasc. Drugs Ther. 17, 231–236 (2003).

    Article  CAS  PubMed  Google Scholar 

  113. Bagchi, D. et al. Molecular mechanisms of cardioprotection by a novel grape seed proanthocyanidin extract. Mutat. Res. 523–524, 87–97 (2003).

    Article  PubMed  CAS  Google Scholar 

  114. Tumor Analysis Best Practices Working Group. Expression profiling — best practices for data generation and interpretation in clinical trials. Nature Rev. Genet. 5, 229–237 (2004).

  115. Whitney, A. et al. Individuality and variation in gene expression patterns in human blood. Proc. Natl Acad. Sci. USA 100, 1896–1901 (2003). A report discussing the use of human blood for microarray studies.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Ma, J. & Liew, C. C. Gene profiling identifies secreted protein transcripts from peripheral blood cells in coronary artery disease. J. Mol. Cell. Cardiol. 35, 993–998 (2003).

    Article  CAS  PubMed  Google Scholar 

  117. Zhang, H. Q. et al. Microarray analysis of gene expression in peripheral blood mononuclear cells derived from long-surviving renal recipients. Transplant. Proc. 34, 1757–1759 (2002).

    Article  CAS  PubMed  Google Scholar 

  118. Bennett, L. et al. Interferon and granulopoiesis signatures in systemic lupus erythematosus blood. J. Exp. Med. 197, 711–723 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Todaka, K., et al. Functional consequences of acute collagen degradation studied in crystalloid perfused rat hearts. Basic Res. Cardiol. 92, 147–158 (1997).

    Article  CAS  PubMed  Google Scholar 

  120. Li, P. et al. Gene expression profile of cardiomyocytes in hypertrophic heart induced by continuous norepinephrine infusion in the rats. Cell. Mol. Life Sci. 60, 2200–2209 (2003).

    Article  CAS  PubMed  Google Scholar 

  121. Barth, W. et al. Differential remodeling of the left and right heart after norepinephrine treatment in rats: studies on cytokines and collagen. J. Mol. Cell. Cardiol. 32, 273–284 (2000).

    Article  CAS  PubMed  Google Scholar 

  122. Weisleder, N., Soumaka, E., Abbasi, S., Taegtmeyer, H. & Capetanaki, Y. Cardiomyocyte-specific desmin rescue of desmin null cardiomyopathy excludes vascular involvement. J. Mol. Cell. Cardiol. 36, 121–128 (2004).

    Article  CAS  PubMed  Google Scholar 

  123. Maki, J. M. et al. Inactivation of the lysyl oxidase gene Lox leads to aortic aneurysms, cardiovascular dysfunction, and perinatal death in mice. Circulation 106, 2503–2509 (2002).

    Article  PubMed  CAS  Google Scholar 

  124. Zhang, J. N. et al. Alteration of endothelin system and calcium handling protein in left ventricles following drug treatment in dilated cardiomyopathy rats. Acta Pharmacol. Sin. 24, 1099–1102 (2003).

    PubMed  Google Scholar 

  125. Knoll, R. et al. The cardiac mechanical stretch sensor machinery involves a Z disc complex that is defective in a subset of human dilated cardiomyopathy. Cell 111, 943–955 (2002).

    Article  CAS  PubMed  Google Scholar 

  126. Xu, W., Baribault, H. & Adamson, E. D. Vinculin knockout results in heart and brain defects during embryonic development. Development 125, 327–337 (1998).

    Article  CAS  PubMed  Google Scholar 

  127. Wang, X. et al. αB-crystallin modulates protein aggregation of abnormal desmin. Circ. Res. 93, 998–1005 (2003).

    Article  CAS  PubMed  Google Scholar 

  128. Adachi, S. et al. Skeletal and smooth muscle α-actin mRNA in endomyocardial biopsy samples of dilated cardiomyopathy patients. Life Sci. 63, 1779–1791 (1998).

    Article  CAS  PubMed  Google Scholar 

  129. Goldspink, P. H. et al. Protein kinase Cε overexpression alters myofilament properties and composition during the progression of heart failure. Circ. Res. 20, 424–432 (2004).

    Article  CAS  Google Scholar 

  130. Ihara, Y., Suzuki, Y. J., Kitta, K., Jones, L. R. & Ikeda, T. Modulation of gene expression in transgenic mouse hearts overexpressing calsequestrin. Cell Calcium 32, 21–29 (2002).

    Article  CAS  PubMed  Google Scholar 

  131. Heling, A. et al. Increased expression of cytoskeletal, linkage, and extracellular proteins in failing human myocardium. Circ. Res. 86, 846–853 (2000).

    Article  CAS  PubMed  Google Scholar 

  132. Nishizawa, J. et al. Reperfusion causes significant activation of heat shock transcription factor 1 in ischemic rat heart. Circulation 94, 2185–2192 (1996).

    Article  CAS  PubMed  Google Scholar 

  133. O'Brien, P. J., Ianuzzo, C. D., Moe, G. W., Stopps, T. P. & Armstrong, P. W. Rapid ventricular pacing of dogs to heart failure: biochemical and physiological studies. Can. J. Physiol. Pharmacol. 68, 34–39 (1990).

    Article  CAS  PubMed  Google Scholar 

  134. Fujita, A. et al. Enzyme-linked immunosorbent assay for anti-tropomyosin antibodies and its clinical application to various heart diseases. Clin. Chim. Acta 299, 179–192 (2000).

    Article  CAS  PubMed  Google Scholar 

  135. Belperio, J. A. et al. Critical role for the chemokine MCP-1/CCR2 in the pathogenesis of bronchiolitis obliterans syndrome. J. Clin. Invest. 108, 547–556 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Talvani, A. et al. Kinetics of cytokine gene expression in experimental chagasic cardiomyopathy: tissue parasitism and endogenous IFN-γ as important determinants of chemokine mRNA expression during infection with Trypanosoma cruzi. Microbes Infect. 2, 851–866 (2000).

    Article  CAS  PubMed  Google Scholar 

  137. Horuk, R. et al. A non-peptide functional antagonist of the CCR1 chemokine receptor is effective in rat heart transplant rejection. J. Biol. Chem. 276, 4199–4204 (2001).

    Article  CAS  PubMed  Google Scholar 

  138. Yun, J. J. et al. Combined blockade of the chemokine receptors CCR1 and CCR5 attenuates chronic rejection. Circulation 109, 932–937 (2004).

    Article  CAS  PubMed  Google Scholar 

  139. Mitsuhashi, N. et al. Identification, functional analysis and expression in a heterotopic heart transplant model of CXCL9 in the rat. Immunol. 112, 87–93 (2004).

    Article  CAS  Google Scholar 

  140. Pillarisetti, K. & Gupta, S. K. Cloning and relative expression analysis of rat stromal cell derived factor-1 (SDF-1)1: SDF-1 α mRNA is selectively induced in rat model of myocardial infarction. Inflammation 25, 293–300 (2001).

    Article  CAS  PubMed  Google Scholar 

  141. Fisman, E. Z., Motro, M. & Tenenbaum, A. Cardiovascular diabetology in the core of a novel interleukins classification: the bad, the good and the aloof. Cardiovasc. Diabetol. 2, 11 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Wehrens, X. H. T. & Marks, A. R. Novel therapeutic approaches for heart failure by normalizing calcium cycling. Nature Rev. Drug Disc. 3, 1–9 (2004).

    Article  CAS  Google Scholar 

  143. Li, Y. Y., McTiernan, C. F. & Feldman, A. M. Interplay of matrix metalloproteinases, tissue inhibitors of metalloproteinases and their regulators in cardiac matrix remodelling. Cardiovasc. Res. 46, 214–224 (2000).

    Article  CAS  PubMed  Google Scholar 

  144. Pritchett, A. M. & Redfield, M. M. β-blockers: new standard therapy for heart failure. Mayo Clin. Proc. 77, 839–846 (2002).

    Article  CAS  PubMed  Google Scholar 

  145. Manohar, P. & Pina, I. L. Therapeutic role of angiotensin II receptor blockers in the treatment of heart failure. Mayo Clin. Proc. 78, 334–338 (2003).

    Article  CAS  PubMed  Google Scholar 

  146. Mann, D. L., Deswal, A., Bozkurt, B. & Torre-Amione, G. New therapeutics for chronic heart failure. Annu. Rev. Med. 53, 59–74 (2002).

    Article  CAS  PubMed  Google Scholar 

  147. Vlahos, C. J., McDowell, S. A. & Clerk, A. Kinases as therapeutic targets for heart failure. Nature Rev. Drug Disc. 2, 99–113 (2003).

    Article  CAS  Google Scholar 

  148. Frey, N., Katus, H. A., Olson, E. N. & Hill, J. A. Hypertrophy of the heart, a new therapeutic target? Circulation 109, 1580–1589 (2004).

    Article  PubMed  Google Scholar 

  149. Reffelmann, T., Leor, J., Muller-Ehmsen, J., Kedes, L. & Kloner, R. A. Cardiomyocyte transplantation into the failing heart — new therapeutic approache for heart failure? Heart Fail. Rev. 8, 201–211 (2003).

    Article  PubMed  Google Scholar 

  150. Freedman, N. J. & Lefkowitz, R. J. Anti-β(1)-adrenergic receptor antibodies and heart failure: causation, not just correlation. Clin. Invest. 113, 1379–1382 (2004).

    Article  CAS  Google Scholar 

  151. MacLellan, W. R. & Lusis, A. J. Dilated cardiomyopathy: learning to live with yourself. Nature Med. 9, 1455–1456 (2003).

    Article  CAS  PubMed  Google Scholar 

  152. MacLennan, D. H. & Kranias, E. G. Phospholamban: A crucial regulator of cardiac contractility. Nature Rev. Mol. Cell Biol. 4, 566–577 (2003).

    Article  CAS  Google Scholar 

  153. Kang, P. M. & Izumo, S. Apoptosis in heart: basic mechanisms and implications in cardiovascular diseases. Trends Mol. Med. 9, 177–182 (2003).

    Article  CAS  PubMed  Google Scholar 

  154. van Empel, V. P. & De Windt, L. J. Myocyte hypertrophy and apoptosis: a balancing act. Cardiovasc. Res. 63, 487–499 (2004).

    Article  CAS  PubMed  Google Scholar 

  155. Towbin, J. A. & Bowles, N. E. The failing heart. Nature 415, 227–233 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Daniel Fefer, Isolde Prince, Jun Ma and Adam Dempsey for their help in researching and editing this manuscript. Genomic profiling work has been supported by grants from the National Institutes of Health

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Choong-Chin Liew or Victor J. Dzau.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez Protein

SERCA2

Entrez Gene

Tnf-α

OMIM

Brugada syndrome

long QT syndrome

FURTHER INFORMATION

Human Genome Project

Glossary

VENTRICULAR DYSFUNCTION

Condition in which the heart ventricles — the lower heart chambers — have lost function.

ACUTE MYOCARDIAL INFARCTION

Heart attack; the death of heart muscle caused by loss of blood supply to the muscle, normally a result of blocked coronary arteries.

DIASTOLIC

The phase of the cardiac cycle when ventricles are relaxed.

SYSTOLIC

The phase of the cardiac cycle when ventricles are contracted.

HYPERTROPHY

Enlargement of the cardiomyocyte characterized by an increased protein content.

CARDIOMYOCYTES

Muscle cells of the heart.

SARCOPLASMIC RETICULUM

Intracellular membranes of muscle cells that store and release calcium ions, triggering muscle contraction.

HAEMODYNAMIC STABILITY

Occurs when blood pressure is adequate to maintain organ function.

VASOCONSTRICTION

Blood vessel constriction.

AFTERLOAD

The tension necessary for muscle contraction.

VASODILATION

Blood vessel dilation.

NATRIURESIS

The presence of large amounts of sodium in the urine.

CACHECTIC

Wasting, malnutrition and loss of muscle mass caused by chronic disease.

CYTOKINES

Low mass, biologically active proteins that are secreted by cells of the immune system. They are signalling chemicals involved in various pathways that contribute to the inflammatory response.

MITRAL INSUFFICIENCY

Backflow of blood caused by improper closure of mitral valve — the valve that controls blood flow between the left atrium and left ventricle in the heart.

ISCHAEMIC CARDIOMYOPATHY

Heart muscle cell disease caused by lack of oxygen owing to blocked coronary arteries.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liew, CC., Dzau, V. Molecular genetics and genomics of heart failure. Nat Rev Genet 5, 811–825 (2004). https://doi.org/10.1038/nrg1470

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg1470

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing