Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Where the crossovers are: recombination distributions in mammals

Key Points

  • Meiotic recombination events are distributed nonrandomly across the genome.

  • Single-molecule methods for the recovery of recombinant DNA molecules directly from sperm DNA have allowed recombination analysis to be carried out at high resolution in mammals.

  • Recent studies indicate that most meiotic recombination events (in both yeast and mammals) occur at highly localized hot spots (1–2 kb in width), whereas the bulk of the DNA is 'cold'.

  • Recombination hot spots in mice and humans are sites of initiation and resolution of both crossovers and non-crossover gene conversions.

  • Studies in model organisms, primarily budding yeast, provide direct insight into the molecular mechanisms behind hot-spot activity in mammals.

  • The primary determinant of the recombination distribution in yeast is the distribution of the double-strand breaks (DSBs) that initiate recombination. Recombination hot spots are DSB hot spots.

  • The frequency of DSBs in yeast is determined by the large-scale structural features of a chromosome as well as by local chromatin structure.

  • In principle, regional variation in crossover frequencies might also reflect differences in the likelihood that a given DSB will give rise to a crossover as opposed to a non-crossover product.

  • The fact that recombination hot spots are highly localized and separated by recombinationally 'cold' DNA is important in structuring the genome into linkage disequilibrium (LD)/haplotype blocks.

Abstract

Until recently, recombination studies in humans and mice had identified only a few anecdotal examples of crossover hot spots. Recently, the pace of discovery has accelerated. In every genomic segment that has been examined at sufficiently high resolution, recombination events have a punctate recombination distribution: they are clustered within small (1–2-kb) regions that are surrounded by large stretches of recombinationally suppressed DNA. Here, we review progress in understanding the distribution of mammalian recombination events, tie mammalian results together with informative studies in budding yeast and discuss the consequences of these findings for genome diversity and evolution.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The PCR approach for recovering crossover molecules directly from sperm DNA.
Figure 2: Graphical presentation of linkage-disequilibrium data.
Figure 3: Highly localized recombination activity in the human major histocompatibility complex class II region.
Figure 4: The meiotic recombination pathway in budding yeast.
Figure 5: Nonrandom distribution of double-strand breaks in budding yeast, revealed by different resolutions of gel analysis.
Figure 6: Comparison of crossover hot-spot locations in the human and mouse major histocompatibility complex class II region.

Similar content being viewed by others

References

  1. Petronczki, M., Siomos, M. F. & Nasmyth, K. Un menage a quatre: the molecular biology of chromosome segregation in meiosis. Cell 112, 423–440 (2003).

    CAS  PubMed  Google Scholar 

  2. Moore, D. P. & Orr-Weaver, T. L. Chromosome segregation during meiosis: building an unambivalent bivalent. Curr. Top. Dev. Biol. 37, 263–299 (1998).

    CAS  PubMed  Google Scholar 

  3. Lichten, M. & Goldman, A. S. Meiotic recombination hotspots. Annu. Rev. Genet. 29, 423–444 (1995). A lucid and detailed review of fungal and other recombination hot spots in meiosis.

    CAS  PubMed  Google Scholar 

  4. Sherry, S. T. et al. dbSNP: the NCBI database of genetic variation. Nucleic Acids Res. 29, 308–311 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Hubert, R., MacDonald, M., Gusella, J. & Arnheim, N. High resolution localization of recombination hot spots using sperm typing. Nature Genet. 7, 420–424 (1994).

    CAS  PubMed  Google Scholar 

  6. Arnheim, N., Calabrese, P. & Nordborg, M. Hot and cold spots of recombination in the human genome: the reason we should find them and how this can be achieved. Am. J. Hum. Genet. 73, 5–16 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Jeffreys, A. J., Murray, J. & Neumann, R. High-resolution mapping of crossovers in human sperm defines a minisatellite-associated recombination hotspot. Mol. Cell 2, 267–273 (1998).

    CAS  PubMed  Google Scholar 

  8. Schneider, J. A., Peto, T. E., Boone, R. A., Boyce, A. J. & Clegg, J. B. Direct measurement of the male recombination fraction in the human β-globin hot spot. Hum. Mol. Genet. 11, 207–215 (2002).

    CAS  PubMed  Google Scholar 

  9. Cullen, M., Perfetto, S. P., Klitz, W., Nelson, G. & Carrington, M. High-resolution patterns of meiotic recombination across the human major histocompatibility complex. Am. J. Hum. Genet. 71, 759–776 (2002).

    PubMed  PubMed Central  Google Scholar 

  10. Jeffreys, A. J., Ritchie, A. & Neumann, R. High resolution analysis of haplotype diversity and meiotic crossover in the human TAP2 recombination hotspot. Hum. Mol. Genet. 9, 725–733 (2000).

    CAS  PubMed  Google Scholar 

  11. Jeffreys, A. J., Kauppi, L. & Neumann, R. Intensely punctate meiotic recombination in the class II region of the major histocompatibility complex. Nature Genet. 29, 217–222 (2001). Demonstrates the coincidence of linkage-disequilibrium breaks and sperm-crossover hot spots in the human major histocompatibility complex, and shows that most recombination events are highly localized.

    CAS  PubMed  Google Scholar 

  12. May, C. A., Shone, A. C., Kalaydjieva, L., Sajantila, A. & Jeffreys, A. J. Crossover clustering and rapid decay of linkage disequilibrium in the Xp/Yp pseudoautosomal gene SHOX. Nature Genet. 31, 272–275 (2002).

    CAS  PubMed  Google Scholar 

  13. Lien, S., Szyda, J., Schechinger, B., Rappold, G. & Arnheim, N. Evidence for heterogeneity in recombination in the human pseudoautosomal region: high resolution analysis by sperm typing and radiation-hybrid mapping. Am. J. Hum. Genet. 66, 557–566 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Guillon, H. & de Massy, B. An initiation site for meiotic crossing-over and gene conversion in the mouse. Nature Genet. 32, 296–299 (2002).

    CAS  PubMed  Google Scholar 

  15. Yauk, C. L., Bois, P. R. & Jeffreys, A. J. High-resolution sperm typing of meiotic recombination in the mouse MHC E β gene. EMBO J. 22, 1389–1397 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Thuriaux, P. Is recombination confined to structural genes on the eukaryotic genome? Nature 268, 460–462 (1977).

    CAS  PubMed  Google Scholar 

  17. Baudat, F. & Nicolas, A. Clustering of meiotic double-strand breaks on yeast chromosome III. Proc. Natl Acad. Sci. USA 94, 5213–5218 (1997). With reference 28, this paper demonstrates the nonrandom distribution of double-strand breaks across large regions of the yeast genome.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Jeffreys, A. J. & May, C. A. Intense and highly localized gene conversion activity in human meiotic crossover hot spots. Nature Genet. 36, 151–156 (2004). This paper and reference 14 demonstrate that mammalian sperm-crossover hot spots are also hot spots for non-crossover gene conversion.

    CAS  PubMed  Google Scholar 

  19. Jeffreys, A. J. & May, C. A. DNA enrichment by allele-specific hybridization (DEASH): a novel method for haplotyping and for detecting low-frequency base substitutional variants and recombinant DNA molecules. Genome Res. 13, 2316–2324 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Qin, J., Richardson, L. L., Jasin, M., Handel, M. A. & Arnheim, N. Mouse strains with an active H2-Ea meiotic recombination hot spot exhibit increased levels of H2-Ea-specific DNA breaks in testicular germ cells. Mol. Cell. Biol. 24, 1655–1666 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Keeney, S. Mechanism and control of meiotic recombination initiation. Curr. Top. Dev. Biol. 52, 1–53 (2001).

    CAS  PubMed  Google Scholar 

  22. Paques, F. & Haber, J. E. Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 63, 349–404 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Smith, K. N. & Nicolas, A. Recombination at work for meiosis. Curr. Opin. Genet. Dev. 8, 200–211 (1998).

    CAS  PubMed  Google Scholar 

  24. Baudat, F., Manova, K., Yuen, J. P., Jasin, M. & Keeney, S. Chromosome synapsis defects and sexually dimorphic meiotic progression in mice lacking Spo11. Mol. Cell 6, 989–998 (2000).

    CAS  PubMed  Google Scholar 

  25. Romanienko, P. J. & Camerini-Otero, R. D. The mouse Spo11 gene is required for meiotic chromosome synapsis. Mol. Cell 6, 975–987 (2000).

    CAS  PubMed  Google Scholar 

  26. Wu, T. -C. & Lichten, M. Meiosis-induced double-strand break sites determined by yeast chromatin structure. Science 263, 515–518 (1994). This work provides one of the first and clearest descriptions of the link between double-strand break formation and local chromatin structure in yeast.

    CAS  PubMed  Google Scholar 

  27. Zenvirth, D. et al. Multiple sites for double-strand breaks in whole meiotic chromosomes of Saccharomyces cerevisiae. EMBO J. 11, 3441–3447 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Gerton, J. L. et al. Inaugural article: global mapping of meiotic recombination hotspots and coldspots in the yeast Saccharomyces cerevisiae. Proc. Natl Acad. Sci. USA 97, 11383–11390 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Fan, Q. Q. & Petes, T. D. Relationship between nuclease-hypersensitive sites and meiotic recombination hot spot activity at the HIS4 locus of Saccharomyces cerevisiae. Mol. Cell. Biol. 16, 2037–2043 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Ohta, K., Shibata, T. & Nicolas, A. Changes in chromatin structure at recombination initiation sites during yeast meiosis. EMBO J. 13, 5754–5763 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Xu, L. & Kleckner, N. Sequence nonspecific double-strand breaks and interhomolog interactions prior to double-strand break formation at a meiotic recombination hot spot in yeast. EMBO J. 14, 5115–5128 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Xu, F. & Petes, T. D. Fine-structure mapping of meiosis-specific double-strand DNA breaks at a recombination hotspot associated with an insertion of telomeric sequences upstream of the HIS4 locus in yeast. Genetics 143, 1115–1125 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Liu, J., Wu, T. -C. & Lichten, M. The location and structure of double-strand DNA breaks induced during yeast meiosis: evidence for a covalently linked DNA-protein intermediate. EMBO J. 14, 4599–4608 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. de Massy, B., Rocco, V. & Nicolas, A. The nucleotide mapping of DNA double-strand breaks at the CYS3 initiation site of meiotic recombination in Saccharomyces cerevisiae. EMBO J. 14, 4589–4598 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Diaz, R. L., Alcid, A. D., Berger, J. M. & Keeney, S. Identification of residues in yeast Spo11p critical for meiotic DNA double-strand break formation. Mol. Cell. Biol. 22, 1106–1115 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Nicolas, A. Relationship between transcription and initiation of meiotic recombination: toward chromatin accessibility. Proc. Natl Acad. Sci. USA 95, 87–89 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Wahls, W. P. Meiotic recombination hotspots: shaping the genome and insights into hypervariable minisatellite DNA change. Curr. Top. Dev. Biol. 37, 37–75 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Petes, T. D. Meiotic recombination hot spots and cold spots. Nature Rev. Genet. 2, 360–369 (2001).

    CAS  PubMed  Google Scholar 

  39. de Massy, B. Distribution of meiotic recombination sites. Trends Genet. 19, 514–522 (2003).

    CAS  PubMed  Google Scholar 

  40. Kong, A. et al. A high-resolution recombination map of the human genome. Nature Genet. 31, 241–247 (2002).

    CAS  PubMed  Google Scholar 

  41. Wu, T. -C. & Lichten, M. Factors that affect the location and frequency of meiosis-induced double-strand breaks in Saccharomyces cerevisiae. Genetics 140, 55–66 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Borde, V., Wu, T. -C. & Lichten, M. Use of a recombination reporter insert to define meiotic recombination domains on chromosome III of Saccharomyces cerevisiae. Mol. Cell. Biol. 19, 4832–4842 (1999). Demonstrates that recombination activity is partially a function of position on the chromosome.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Blat, Y., Protacio, R. U., Hunter, N. & Kleckner, N. Physical and functional interactions among basic chromosome organizational features govern early steps of meiotic chiasma formation. Cell 111, 791–802 (2002).

    CAS  PubMed  Google Scholar 

  44. Ashley, T. G-band position effects on meiotic synapsis and crossing over. Genetics 118, 307–317 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Holmquist, G. P. Chromosome bands, their chromatin flavors, and their functional features. Am. J. Hum. Genet. 51, 17–37 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Kirkpatrick, D. T., Wang, Y. H., Dominska, M., Griffith, J. D. & Petes, T. D. Control of meiotic recombination and gene expression in yeast by a simple repetitive DNA sequence that excludes nucleosomes. Mol. Cell. Biol. 19, 7661–7671 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Keeney, S. & Kleckner, N. Communication between homologous chromosomes: genetic alterations at a nuclease-hypersensitive site can alter mitotic chromatin structure at that site both in cis and in trans. Genes Cells 1, 475–489 (1996).

    CAS  PubMed  Google Scholar 

  48. White, M. A., Detloff, P., Strand, M. & Petes, T. D. A promoter deletion reduces the rate of mitotic, but not meiotic, recombination at the HIS4 locus in yeast. Curr. Genet. 21, 109–116 (1992).

    CAS  PubMed  Google Scholar 

  49. Cao, L., Alani, E. & Kleckner, N. A pathway for generation and processing of double-strand breaks during meiotic recombination in S. cerevisiae. Cell 61, 1089–1101 (1990).

    CAS  PubMed  Google Scholar 

  50. Nasar, F., Jankowski, C. & Nag, D. K. Long palindromic sequences induce double-strand breaks during meiosis in yeast. Mol. Cell. Biol. 20, 3449–3458 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Jankowski, C., Nasar, F. & Nag, D. K. Meiotic instability of CAG repeat tracts occurs by double-strand break repair in yeast. Proc. Natl Acad. Sci. USA 97, 2134–2139 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Nag, D. K. & Kurst, A. A 140-bp-long palindromic sequence induces double-strand breaks during meiosis in the yeast Saccharomyces cerevisiae. Genetics 146, 835–847 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. White, M. A., Dominska, M. & Petes, T. D. Transcription factors are required for the meiotic recombination hotspot at the HIS4 locus in Saccharomyces cerevisiae. Proc. Natl Acad. Sci. USA 90, 6621–6625 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Fan, Q., Xu, F. & Petes, T. D. Meiosis-specific double-strand DNA breaks at the HIS4 recombination hot spot in the yeast Saccharomyces cerevisiae: control in cis and trans. Mol. Cell. Biol. 15, 1679–1688 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Kirkpatrick, D. T., Fan, Q. & Petes, T. D. Maximal stimulation of meiotic recombination by a yeast transcription factor requires the transcription activation domain and a DNA-binding domain. Genetics 152, 101–115 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Moens, P. B. et al. Rad51 immunocytology in rat and mouse spermatocytes and oocytes. Chromosoma 106, 207–215 (1997).

    CAS  PubMed  Google Scholar 

  57. Terasawa, M., Shinohara, A., Hotta, Y., Ogawa, H. & Ogawa, T. Localization of RecA-like recombination proteins on chromosomes of the lily at various meiotic stages. Genes Dev. 9, 925–934 (1995).

    CAS  PubMed  Google Scholar 

  58. Moens, P. B. et al. The time course and chromosomal localization of recombination-related proteins at meiosis in the mouse are compatible with models that can resolve the early DNA–DNA interactions without reciprocal recombination. J. Cell Sci. 115, 1611–1622 (2002).

    CAS  PubMed  Google Scholar 

  59. Fogel, S., Mortimer, R. K. & Lusnak, K. in The Molecular Biology of the Yeast Saccharomyces (eds. Strathern, J. N., Jones, E. W. & Broach, J. R.) 289–339 (Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 1981).

    Google Scholar 

  60. Mohrenweiser, H. W., Tsujimoto, S., Gordon, L. & Olsen, A. S. Regions of sex-specific hypo- and hyper-recombination identified through integration of 180 genetic markers into the metric physical map of human chromosome 19. Genomics 47, 153–162 (1998).

    CAS  PubMed  Google Scholar 

  61. Yu, A. et al. Comparison of human genetic and sequence-based physical maps. Nature 409, 951–953 (2001).

    CAS  PubMed  Google Scholar 

  62. Roberts, P. A. Differences in synaptic affinity of chromosome arms of Drosophila melanogaster revealed by differential sensitivity to translocation heterozygosity. Genetics 71, 401–415 (1972).

    CAS  PubMed  Google Scholar 

  63. Parker, J. S., Palmer, R. W., Whitehorn, M. A. F. & Edgar, L. A. Chiasma frequency effects of structural chromosome change. Chromosoma 85, 673–686 (1982).

    Google Scholar 

  64. Hunter, N., Chambers, S. R., Louis, E. J. & Borts, R. H. The mismatch repair system contributes to meiotic sterility in an interspecific yeast hybrid. EMBO J. 15, 1726–1733 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Rayssiguier, C., Thaler, D. S. & Radman, M. The barrier to recombination between Escherichia coli and Salmonella typhimurium is disrupted in mismatch-repair mutants. Nature 342, 396–401 (1989).

    CAS  PubMed  Google Scholar 

  66. Wall, J. D., Frisse, L. A., Hudson, R. R. & Di Rienzo, A. Comparative linkage-disequilibrium analysis of the β-globin hotspot in primates. Am. J. Hum. Genet. 73, 1330–1340 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Lamb, N. E. et al. Characterization of susceptible chiasma configurations that increase the risk for maternal nondisjunction of chromosome 21. Hum. Mol. Genet. 6, 1391–1399 (1997).

    CAS  PubMed  Google Scholar 

  68. Lamb, N. E. et al. Susceptible chiasmate configurations of chromosome 21 predispose to non-disjunction in both maternal meiosis I and meiosis II. Nature Genet. 14, 400–405 (1996).

    CAS  PubMed  Google Scholar 

  69. Daly, M. J., Rioux, J. D., Schaffner, S. F., Hudson, T. J. & Lander, E. S. High-resolution haplotype structure in the human genome. Nature Genet. 29, 229–232 (2001).

    CAS  PubMed  Google Scholar 

  70. Patil, N. et al. Blocks of limited haplotype diversity revealed by high-resolution scanning of human chromosome 21. Science 294, 1719–1723 (2001).

    CAS  PubMed  Google Scholar 

  71. Gabriel, S. B. et al. The structure of haplotype blocks in the human genome. Science 296, 2225–2229 (2002). With reference 70, this paper demonstrates that a large portion of the human genome is contained within haplotype blocks and that these blocks show limited diversity.

    CAS  PubMed  Google Scholar 

  72. Phillips, M. S. et al. Chromosome-wide distribution of haplotype blocks and the role of recombination hot spots. Nature Genet. 33, 382–387 (2003).

    CAS  PubMed  Google Scholar 

  73. Wall, J. D. & Pritchard, J. K. Haplotype blocks and linkage disequilibrium in the human genome. Nature Rev. Genet. 4, 587–597 (2003).

    CAS  PubMed  Google Scholar 

  74. Wang, N., Akey, J. M., Zhang, K., Chakraborty, R. & Jin, L. Distribution of recombination crossovers and the origin of haplotype blocks: the interplay of population history, recombination, and mutation. Am. J. Hum. Genet. 71, 1227–1234 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Zhang, K. et al. Randomly distributed crossovers may generate block-like patterns of linkage disequilibrium: an act of genetic drift. Hum. Genet. 113, 51–59 (2003).

    PubMed  Google Scholar 

  76. Anderson, E. C. & Slatkin, M. Population-genetic basis of haplotype blocks in the 5q31 region. Am. J. Hum. Genet. 74, 40–49 (2004).

    CAS  PubMed  Google Scholar 

  77. Li, N. & Stephens, M. Modeling linkage disequilibrium and identifying recombination hotspots using single-nucleotide polymorphism data. Genetics 165, 2213–2233 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Stumpf, M. P. & McVean, G. A. Estimating recombination rates from population-genetic data. Nature Rev. Genet. 4, 959–968 (2003).

    CAS  PubMed  Google Scholar 

  79. Kauppi, L., Sajantila, A. & Jeffreys, A. J. Recombination hotspots rather than population history dominate linkage disequilibrium in the MHC class II region. Hum. Mol. Genet. 12, 33–40 (2003).

    CAS  PubMed  Google Scholar 

  80. Szostak, J. W., Orr-Weaver, T. L., Rothstein, R. J. & Stahl, F. W. The double-strand-break repair model for recombination. Cell 33, 25–35 (1983).

    CAS  PubMed  Google Scholar 

  81. Nicolas, A., Treco, D., Schultes, N. P. & Szostak, J. W. An initiation site for meiotic gene conversion in the yeast Saccharomyces cerevisiae. Nature 338, 35–39 (1989). This is a reader-friendly description of a meiotic conversion hot spot in yeast that is accessible to the non-specialist.

    CAS  PubMed  Google Scholar 

  82. Jeffreys, A. J. & Neumann, R. Reciprocal crossover asymmetry and meiotic drive in a human recombination hot spot. Nature Genet. 31, 267–271 (2002).

    CAS  PubMed  Google Scholar 

  83. Boulton, A., Myers, R. S. & Redfield, R. J. The hotspot conversion paradox and the evolution of meiotic recombination. Proc. Natl Acad. Sci. USA 94, 8058–8063 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Ardlie, K. G., Kruglyak, L. & Seielstad, M. Patterns of linkage disequilibrium in the human genome. Nature Rev. Genet. 3, 299–309 (2002).

    CAS  PubMed  Google Scholar 

  85. Nachman, M. W. Single nucleotide polymorphisms and recombination rate in humans. Trends Genet. 17, 481–485 (2001).

    CAS  PubMed  Google Scholar 

  86. Strathern, J. N., Shafer, B. K. & McGill, C. B. DNA synthesis errors associated with double-strand-break repair. Genetics 140, 965–972 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Cullen, M. et al. Characterization of recombination in the HLA class II region. Am. J. Hum. Genet. 60, 397–407 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Tease, C., Hartshorne, G. M. & Hulten, M. A. Patterns of meiotic recombination in human fetal oocytes. Am. J. Hum. Genet. 70, 1469–1479 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Lynn, A. et al. Covariation of synaptonemal complex length and mammalian meiotic exchange rates. Science 296, 2222–2225 (2002).

    CAS  PubMed  Google Scholar 

  90. Mitra, R. D. et al. Digital genotyping and haplotyping with polymerase colonies. Proc. Natl Acad. Sci. USA 100, 5926–5931 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Hattori, M. et al. The DNA sequence of human chromosome 21. Nature 405, 311–319 (2000).

    CAS  PubMed  Google Scholar 

  92. Broman, K. W., Murray, J. C., Sheffield, V. C., White, R. L. & Weber, J. L. Comprehensive human genetic maps: individual and sex-specific variation in recombination. Am. J. Hum. Genet. 63, 861–869 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Lynn, A. et al. Patterns of meiotic recombination on the long arm of human chromosome 21. Genome Res. 10, 1319–1332 (2000).

    CAS  PubMed  Google Scholar 

  94. Anderson, L. K., Reeves, A., Webb, L. M. & Ashley, T. Distribution of crossing over on mouse synaptonemal complexes using immunofluorescent localization of MLH1 protein. Genetics 151, 1569–1579 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Barlow, A. L. & Hulten, M. A. Crossing over analysis at pachytene in man. Eur. J. Hum. Genet. 6, 350–358 (1998).

    CAS  PubMed  Google Scholar 

  96. Froenicke, L., Anderson, L. K., Wienberg, J. & Ashley, T. Male mouse recombination maps for each autosome identified by chromosome painting. Am. J. Hum. Genet. 71, 1353–1368 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Sun, F. et al. Human male recombination maps for individual chromosomes. Am. J. Hum. Genet. 74, 521–531 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Laurie, D. A. & Hulten, M. A. Further studies on chiasma distribution and interference in the human male. Ann. Hum. Genet. 49, 203–214 (1985).

    CAS  PubMed  Google Scholar 

  99. Laurie, D. A. & Hulten, M. A. Further studies on bivalent chiasma frequency in human males with normal karyotypes. Ann. Hum. Genet. 49, 189–201 (1985).

    CAS  PubMed  Google Scholar 

  100. Lawrie, N. M., Tease, C. & Hulten, M. A. Chiasma frequency, distribution and interference maps of mouse autosomes. Chromosoma 104, 308–314 (1995).

    CAS  PubMed  Google Scholar 

  101. Shiroishi, T., Koide, T., Yoshino, M., Sagai, T. & Moriwaki, K. Hotspots of homologous recombination in mouse meiosis. Adv. Biophys. 31, 119–132 (1995).

    CAS  PubMed  Google Scholar 

  102. Hedrick, P. W. Inference of recombinational hotspots using gametic disequilibrium values. Heredity 60, 435–438 (1988).

    PubMed  Google Scholar 

  103. Chakravarti, A. et al. Nonuniform recombination within the human β-globin gene cluster. Am. J. Hum. Genet. 36, 1239–1258 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Smith, R. A., Ho, P. J., Clegg, J. B., Kidd, J. R. & Thein, S. L. Recombination breakpoints in the human β-globin gene cluster. Blood 92, 4415–4421 (1998).

    CAS  PubMed  Google Scholar 

  105. Yip, S. P., Lovegrove, J. U., Rana, N. A., Hopkinson, D. A. & Whitehouse, D. B. Mapping recombination hotspots in human phosphoglucomutase (PGM1). Hum. Mol. Genet. 8, 1699–1706 (1999).

    CAS  PubMed  Google Scholar 

  106. Cruciani, F. et al. Linkage disequilibrium analysis of the human adenosine deaminase (ada) gene provides evidence for a lack of correlation between hot spots of equal and unequal homologous recombination. Genomics 82, 20–33 (2003).

    CAS  PubMed  Google Scholar 

  107. Twells, R. C. et al. Haplotype structure, LD blocks, and uneven recombination within the LRP5 gene. Genome Res. 13, 845–855 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Cullen, M., Erlich, H., Klitz, W. & Carrington, M. Molecular mapping of a recombination hotspot located in the second intron of the human TAP2 locus. Am. J. Hum. Genet. 56, 1350–1358 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Bryda, E. C., DePari, J. A., Sant'Angelo, D. B., Murphy, D. B. & Passmore, H. C. Multiple sites of crossing over within the Eb recombinational hotspot in the mouse. Mamm. Genome 2, 123–129 (1992).

    CAS  PubMed  Google Scholar 

  110. Lafuse, W. P. & David, C. S. Recombination hot spots within the I region of the mouse H-2 complex map to the E β and E α genes. Immunogenetics 24, 352–360 (1986).

    CAS  PubMed  Google Scholar 

  111. Zimmerer, E. J. & Passmore, H. C. Structural and genetic properties of the Eb recombinational hotspot in the mouse. Immunogenetics 33, 132–140 (1991).

    CAS  PubMed  Google Scholar 

  112. Uematsu, Y., Kiefer, H., Schulze, R., Fischer-Lindahl, K. & Steinmetz, M. Molecular characterization of a meiotic recombinational hotspot enhancing homologous equal crossing-over. EMBO J. 5, 2123–2129 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Steinmetz, M., Stephan, D. & Fischer Lindahl, K. Gene organization and recombinational hotspots in the murine major histocompatibility complex. Cell 44, 895–904 (1986). Provides the first account of localized crossover clustering in mammalian pedigrees.

    CAS  PubMed  Google Scholar 

  114. Shiroishi, T. et al. Recombinational hotspot specific to female meiosis in the mouse major histocompatibility complex. Immunogenetics 31, 79–88 (1990).

    CAS  PubMed  Google Scholar 

  115. Snoek, M., Teuscher, C. & van Vugt, H. Molecular analysis of the major MHC recombinational hot spot located within the G7c gene of the murine class III region that is involved in disease susceptibility. J. Immunol. 160, 266–272 (1998).

    CAS  PubMed  Google Scholar 

  116. Mizuno, K., Koide, T., Sagai, T., Moriwaki, K. & Shiroishi, T. Molecular analysis of a recombinational hotspot adjacent to Lmp2 gene in the mouse MHC: fine location and chromatin structure. Mamm. Genome 7, 490–496 (1996).

    CAS  PubMed  Google Scholar 

  117. Shiroishi, T., Sagai, T., Hanzawa, N., Gotoh, H. & Moriwaki, K. Genetic control of sex-dependent meiotic recombination in the major histocompatibility complex of the mouse. EMBO J. 10, 681–686 (1991). Demonstrates the effect of modifying factors on crossing-over at a localized hot spot.

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Laan, M. & Paabo, S. Demographic history and linkage disequilibrium in human populations. Nature Genet. 17, 435–438 (1997).

    CAS  PubMed  Google Scholar 

  119. Zavattari, P. et al. Major factors influencing linkage disequilibrium by analysis of different chromosome regions in distinct populations: demography, chromosome recombination frequency and selection. Hum. Mol. Genet. 9, 2947–2957 (2000).

    CAS  PubMed  Google Scholar 

  120. Hedrick, P. W. Gametic disequilibrium measures: proceed with caution. Genetics 117, 331–341 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Lewontin, R. C. The interaction of selection and linkage. II. Optimum models. Genetics 50, 757–782 (1964).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Weiss, K. M. & Clark, A. G. Linkage disequilibrium and the mapping of complex human traits. Trends Genet. 18, 19–24 (2002).

    CAS  PubMed  Google Scholar 

  123. Gray, I. C., Campbell, D. A. & Spurr, N. K. Single nucleotide polymorphisms as tools in human genetics. Hum. Mol. Genet. 9, 2403–2408 (2000).

    CAS  PubMed  Google Scholar 

  124. Johnson, G. C. et al. Haplotype tagging for the identification of common disease genes. Nature Genet. 29, 233–237 (2001).

    CAS  PubMed  Google Scholar 

  125. National Human Genome Research Institute. International consortium launches genetic variation mapping project. NIH News Advisory [online], <http://genome.gov/10005336> (2002).

  126. Yao, H. et al. Molecular characterization of meiotic recombination across the 140-kb multigenic a1-sh2 interval of maize. Proc. Natl Acad. Sci. USA 99, 6157–6162 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Game, J. C., Sitney, K. C., Cook, V. E. & Mortimer, R. K. Use of a ring chromosome and pulsed-field gels to study interhomolog recombination, double-strand breaks, and sister-chromatid exchange in yeast. Genetics 123, 695–713 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Sun, H., Treco, D., Schultes, N. P. & Szostak, J. W. Double-strand breaks at an initiation site for meiotic gene conversion. Nature 338, 87–90 (1989).

    CAS  PubMed  Google Scholar 

  129. Keeney, S., Giroux, C. N. & Kleckner, N. Meiosis-specific DNA double-strand breaks are catalyzed by Spo11, a member of a widely conserved protein family. Cell 88, 375–384 (1997). With reference 130, this paper identifies Spo11 as the catalytic subunit of the meiotic double-strand break machinery, and provides evidence that it cuts DNA through a topoisomerase-like transesterase reaction.

    CAS  PubMed  Google Scholar 

  130. Bergerat, A. et al. An atypical topoisomerase II from Archaea with implications for meiotic recombination. Nature 386, 414–417 (1997).

    CAS  PubMed  Google Scholar 

  131. Sun, H., Treco, D. & Szostak, J. W. Extensive 3′-overhanging, single-stranded DNA associated with the meiosis-specific double-strand breaks at the ARG4 recombination initiation site. Cell 64, 1155–1161 (1991).

    CAS  PubMed  Google Scholar 

  132. Bishop, D. K., Park, D., Xu, L. & Kleckner, N. DMC1: a meiosis-specific yeast homolog of E. coli recA required for recombination, synaptonemal complex formation, and cell cycle progression. Cell 69, 439–456 (1992).

    CAS  PubMed  Google Scholar 

  133. Shinohara, A., Ogawa, H. & Ogawa, T. Rad51 protein involved in repair and recombination in S. cerevisiae is a RecA-like protein. Cell 69, 457–470 (1992).

    CAS  PubMed  Google Scholar 

  134. Yuhki, N. et al. Comparative genome organization of human, murine, and feline MHC class II region. Genome Res. 13, 1169–1179 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Isobe, T. et al. Molecular characterization of the Pb recombination hotspot in the mouse major histocompatibility complex class II region. Genomics 80, 229–235 (2002).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

L.K. was supported in part by the Instrumentarium Science Foundation, the Finnish Cultural Foundation and the Osk. Huttunen Foundation. A.J.J. is supported by grants from the Royal Society, the Medical Research Council and the Wellcome Trust (UK). S.K. is supported by grants from the US National Institutes of Health and the Byrne Fund.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez

ADA

ARE1

HIS4

Lmp2

LRP5

PGM1

SHOX

Spo11

TAP2

FURTHER INFORMATION

Alec Jeffreys' laboratory

GermOnline (a web database for information about germ cell biology, including meiosis)

International HapMap Project

Scott Keeney's laboratory

Glossary

HAPLOTYPE

A combination of alleles at different loci that is transmitted together from one generation to the next.

CENTIMORGAN

(cM). A measure of genetic distance. 1 cM corresponds to a 1% frequency of recombinant progeny.

CHIASMA

(pl. chiasmata). A cytologically visible physical connection between homologous chromosomes that corresponds to the position of a meiotic crossover.

LINKAGE DISEQUILIBRIUM

(LD). A measure of whether alleles at two loci coexist in a population in a nonrandom fashion. Alleles that are in LD are found together on the same haplotype more often than would be expected by chance.

MINISATELLITES

Regions of DNA in which repeat units of 6–100 bp are arranged in tandem arrays that are 0.5–30 kb in length.

LD BLOCK

A DNA segment within which markers are in significant linkage disequilibrium with each other, which implies that there is low recombination activity within the block.

GENE CONVERSION

The non-reciprocal transfer of information between homologous DNA sequences as a consequence of heteroduplex formation during recombination, which is followed by repair of mismatches in the heteroduplex.

ADMIXTURE

The mixing of two genetically differentiated populations.

ENRICHMENT-BASED ASSAY

An allele-specific hybridization method for enriching DNA molecules that carry certain allelic combinations from bulk genomic DNA.

LIKELIHOOD RATIO

The relative likelihood of obtaining observed experimental data under two different models.

ISOCHORE

A region of genomic DNA sequence in which G+C compositions are relatively uniform.

R-BANDS

A chromosome banding pattern that is produced with various staining procedures; it is reciprocal to the pattern that is produced by Giemsa staining (G-Bands).

HOLLIDAY JUNCTION

A point at which the strands of two double-stranded DNA molecules exchange partners, which occurs as an intermediate in crossing-over.

COALESCENT APPROACHES

A means of investigating the shared genealogical history of genes. A genealogy is constructed backwards in time starting with the present-day sample. Lineages coalesce when they have a common ancestor.

MEIOTIC DRIVE

Distortion of meiotic inheritance such that one allele at a heterozygous site is recovered in greater than half of the gametes (as opposed to the expected 50:50 Mendelian segregation).

PCR COLONY METHOD

A method in which individual DNA molecules are immobilized in a matrix and then subjected to PCR amplification in situ. For (haploid) sperm DNA, polymorphic sites can be typed within amplification products to yield haplotypes of chromosomal regions, allowing, in principle, the identification of recombinant molecules.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kauppi, L., Jeffreys, A. & Keeney, S. Where the crossovers are: recombination distributions in mammals. Nat Rev Genet 5, 413–424 (2004). https://doi.org/10.1038/nrg1346

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg1346

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing