Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Heart failure with reduced ejection fraction

Abstract

Heart failure is a global public health problem that affects more than 26 million people worldwide. The global burden of heart failure is growing and is expected to increase substantially with the ageing of the population. Heart failure with reduced ejection fraction accounts for approximately 50% of all cases of heart failure in the United States and is associated with substantial morbidity and reduced quality of life. Several diseases, such as myocardial infarction, certain infectious diseases and endocrine disorders, can initiate a primary pathophysiological process that can lead to reduced ventricular function and to heart failure. Initially, ventricular impairment is compensated for by the activation of the sympathetic nervous system and the renin–angiotensin–aldosterone system, but chronic activation of these pathways leads to worsening cardiac function. The symptoms of heart failure can be associated with other conditions and include dyspnoea, fatigue, limitations in exercise tolerance and fluid accumulation, which can make diagnosis difficult. Management strategies include the use of pharmacological therapies and implantable devices to regulate cardiac function. Despite these available treatments, heart failure remains incurable, and patients have a poor prognosis and high mortality rate. Consequently, the development of new therapies is imperative and requires further research.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Subtypes of heart failure.
Figure 2: Pathophysiology of heart failure.
Figure 3: Compensatory mechanisms in early heart failure.
Figure 4: Comorbidities and heart failure.
Figure 5: Bedside assessment of heart failure clinical profiles.
Figure 6: 2017 ACCF, AHA and HFSA guidelines for the treatment of stage C and stage D HFrEF.
Figure 7: European Society of Cardiology 2016 guidelines for the treatment of patients with symptomatic HFrEF.
Figure 8: Implanted devices for the management of heart failure.

References

  1. 1

    Mann, D. L. in Braunwald's Heart Disease: A Textbook of Cardiovascular Medicine (eds Bonow, R. O., Mann, D. L., Zipes, D. P. & Libby, P. ) 487–504 (Elsevier Saunders, 2012).

    Google Scholar 

  2. 2

    Yancy, C. W. et al. 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J. Am. Coll. Cardiol. 62, e147–e239 (2013). A guideline statement from the ACCF and AHA addressing diagnostic and treatment considerations in patients with acute and chronic heart failure.

    Google Scholar 

  3. 3

    Lang, R. M. et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 28, 1–39.e14 (2015).

    Google Scholar 

  4. 4

    Benjamin, E. J. et al. Heart disease and stroke statistics — 2017 update: a report from the American Heart Association. Circulation 135, e146–e603 (2017).

    Google Scholar 

  5. 5

    Dickstein, K. et al. ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2008: the Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2008 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association of the ESC (HFA) and endorsed by the European Society of Intensive Care Medicine (ESICM). Eur. Heart J. 29, 2388–2442 (2008). A guideline statement from the European Society of Cardiology addressing diagnostic and treatment considerations in patients with acute and chronic heart failure.

    Google Scholar 

  6. 6

    Weiwei, C. et al. Outline of the report on cardiovascular diseases in China, 2014. Eur. Hear. J. Suppl. 18, F2–F11 (2016).

    Google Scholar 

  7. 7

    Huffman, M. D. & Prabhakaran, D. Heart failure: epidemiology and prevention in India. Natl Med. J. India 23, 283–288 (2010).

    Google Scholar 

  8. 8

    Okamoto, H. & Kitabatake, A. The epidemiology of heart failure in Japan [Japanese]. Nihon Rinsho 61, 709–714 (2003).

    Google Scholar 

  9. 9

    Shiba, N. et al. Trend of westernization of etiology and clinical characteristics of heart failure patients in Japan — first report from the CHART-2 study. Circ. J. 75, 823–833 (2011).

    Google Scholar 

  10. 10

    Damasceno, A. et al. The causes, treatment, and outcome of acute heart failure in 1006 Africans from 9 countries. Arch. Intern. Med. 172, 1386–1394 (2012).

    Google Scholar 

  11. 11

    Dokainish, H. et al. Global mortality variations in patients with heart failure: results from the International Congestive Heart Failure (INTER-CHF) prospective cohort study. Lancet Glob. Health 5, e665–e672 (2017).

    Google Scholar 

  12. 12

    Levy, D. et al. Long-term trends in the incidence of and survival with heart failure. N. Engl. J. Med. 347, 1397–1402 (2002).

    Google Scholar 

  13. 13

    Roger, V. L. et al. Trends in heart failure incidence and survival in a community-based population. JAMA 292, 344–350 (2004).

    Google Scholar 

  14. 14

    Barker, W. H., Mullooly, J. P. & Getchell, W. Changing incidence and survival for heart failure in a well-defined older population, 1970–1974 and 1990–1994. Circulation 113, 799–805 (2006).

    Google Scholar 

  15. 15

    Lloyd-Jones, D. M. et al. Lifetime risk for developing congestive heart failure: the Framingham Heart Study. Circulation 106, 3068–3072 (2002).

    Google Scholar 

  16. 16

    Krumholz, H. M. Readmission after hospitalization for congestive heart failure among Medicare beneficiaries. Arch. Intern. Med. 157, 99–104 (1997).

    Google Scholar 

  17. 17

    Giamouzis, G. et al. Hospitalization epidemic in patients with heart failure: risk factors, risk prediction, knowledge gaps, and future directions. J. Card. Fail. 17, 54–75 (2011).

    Google Scholar 

  18. 18

    Ross, J. S. et al. Recent national trends in readmission rates after heart failure hospitalization. Circ. Heart Fail. 3, 97–103 (2010).

    Google Scholar 

  19. 19

    Roger, V. L. Epidemiology of heart failure. Circ. Res. 113, 646–659 (2013).

    Google Scholar 

  20. 20

    Callender, T. et al. Heart failure care in low- and middle-income countries: a systematic review and meta-analysis. PLoS Med. 11, e1001699 (2014).

    Google Scholar 

  21. 21

    Bui, A. L., Horwich, T. B. & Fonarow, G. C. Epidemiology and risk profile of heart failure. Nat. Rev. Cardiol. 8, 30–41 (2010).

    Google Scholar 

  22. 22

    Ho, J. E. et al. Predicting heart failure with preserved and reduced ejection fraction: the International Collaboration on Heart Failure Subtypes. Circ. Heart Fail. 9, e003116 (2016).

    Google Scholar 

  23. 23

    McMurray, J. J. V. et al. ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: the Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. Eur. Heart J. 33, 1787–1847 (2012).

    Google Scholar 

  24. 24

    Levy, D., Larson, M. G., Vasan, R. S., Kannel, W. B. & Ho, K. K. The progression from hypertension to congestive heart failure. JAMA 275, 1557–1562 (1996).

    Google Scholar 

  25. 25

    Bloom, M. W. et al. Cancer therapy-related cardiac dysfunction and heart failure: part 1: definitions, pathophysiology, risk factors, and imaging. Circ. Heart Fail. 9, e002661 (2016).

    Google Scholar 

  26. 26

    Mazurek, J. A. & Jessup, M. Understanding heart failure. Heart Fail. Clin. 13, 1–19 (2017).

    Google Scholar 

  27. 27

    Chatterjee, N. A. & Fifer, M. A. in Pathophysiology of Heart Disease (ed. Lilly, L. S. ) 216–243 (Lippincott Williams & Wilkins, 2010).

    Google Scholar 

  28. 28

    Page, R. L. et al. Drugs that may cause or exacerbate heart failure. Circulation 134, e32–e69 (2016).

    Google Scholar 

  29. 29

    Gaggin, H. K. & Dec, G. W. in Hurst's The Heart: 50th Anniversary Edition (eds Fuster, V., Harrington, R. A., Narula, J. & Eapen, Z. J. ) Ch. 68 (McGraw-Hill, 2017).

    Google Scholar 

  30. 30

    Kalogeropoulos, A. P. et al. Characteristics and outcomes of adult outpatients with heart failure and improved or recovered ejection fraction. JAMA Cardiol. 1, 510–518 (2016).

    Google Scholar 

  31. 31

    Hartupee, J. & Mann, D. L. Neurohormonal activation in heart failure with reduced ejection fraction. Nat. Rev. Cardiol. 14, 30–38 (2016).

    Google Scholar 

  32. 32

    Díez, J. Chronic heart failure as a state of reduced effectiveness of the natriuretic peptide system: implications for therapy. Eur. J. Heart Fail. 19, 167–176 (2017).

    Google Scholar 

  33. 33

    Prabhu, S. D. & Frangogiannis, N. G. The biological basis for cardiac repair after myocardial infarction. Circ. Res. 119, 91–112 (2016).

    Google Scholar 

  34. 34

    Sekaran, N. K., Crowley, A. L., de Souza, F. R., Resende, E. S. & Rao, S. V. The role for cardiovascular remodeling in cardiovascular outcomes. Curr. Atheroscler. Rep. 19, 23 (2017).

    Google Scholar 

  35. 35

    Hsiao, R. & Greenberg, B. Contemporary treatment of acute heart failure. Prog. Cardiovasc. Dis. 58, 367–378 (2016).

    Google Scholar 

  36. 36

    Davie, A. P. et al. Value of the electrocardiogram in identifying heart failure due to left ventricular systolic dysfunction. BMJ 312, 222 (1996).

    Google Scholar 

  37. 37

    Nohria, A. et al. Clinical assessment identifies hemodynamic profiles that predict outcomes in patients admitted with heart failure. J. Am. Coll. Cardiol. 41, 1797–1804 (2003). A guide to bedside haemodynamic assessment in patients with heart failure.

    Google Scholar 

  38. 38

    Yancy, C. W. et al. 2017 ACC/AHA/HFSA focused update of the 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America. J. Am. Coll. Cardiol. 70, 776–803 (2017). Most recent update to the ACC, AHA and HFSA comprehensive guidelines addressing the use of novel agents such as sacubitril/valsartan, as well as addressing the role of biomarkers in the diagnosis, prognosis and treatment of heart failure.

    Google Scholar 

  39. 39

    Januzzi, J. L. & Troughton, R. Are serial BNP measurements useful in heart failure management?: Serial natriuretic peptide measurements are useful in heart failure management. Circulation 127, 500–508 (2013).

    Google Scholar 

  40. 40

    Ahmad, T. et al. Evaluation of the incremental prognostic utility of increasingly complex testing in chronic heart failure. Circ. Heart Fail. 8, 709–716 (2015).

    Google Scholar 

  41. 41

    Mestroni, L. Guidelines for the study of familial dilated cardiomyopathies. Eur. Heart J. 20, 93–102 (1999).

    Google Scholar 

  42. 42

    Pérez-Serra, A. et al. Genetic basis of dilated cardiomyopathy. Int. J. Cardiol. 224, 461–472 (2016).

    Google Scholar 

  43. 43

    Cooper, L. T. et al. The role of endomyocardial biopsy in the management of cardiovascular disease. J. Am. Coll. Cardiol. 50, 1914–1931 (2007).

    Google Scholar 

  44. 44

    American College of Cardiology Foundation Appropriate Use Criteria Task Force et al. ACCF/ASE/AHA/ASNC/HFSA/HRS/SCAI/SCCM/SCCT/SCMR 2011 appropriate use criteria for echocardiography. A report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force, American Society of Echocardiography, American Heart Association, American Society of Nuclear Cardiology, Heart Failure Society of America, Heart Rhythm Society, Society for Cardiovascular Angiography and Interventions, Society of Critical Care Medicine, Society of Cardiovascular Computed Tomography, and Society for Cardiovascular Magnetic Resonance Endorsed by the American College of Chest Physicians. J. Am. Coll. Cardiol. 57, 1126–1166 (2011).

    Google Scholar 

  45. 45

    Gardin, J. M. et al. M-mode echocardiographic predictors of six- to seven-year incidence of coronary heart disease, stroke, congestive heart failure, and mortality in an elderly cohort (the cardiovascular health study). Am. J. Cardiol. 87, 1051–1057 (2001).

    Google Scholar 

  46. 46

    Grayburn, P. A. et al. Echocardiographic predictors of morbidity and mortality in patients with advanced heart failure. J. Am. Coll. Cardiol. 45, 1064–1071 (2005).

    Google Scholar 

  47. 47

    American College of Cardiology Foundation Appropriate Use Criteria Task Force et al. ACCF/ASE/AHA/ASNC/HFSA/HRS/SCAI/SCCM/SCCT/SCMR 2011 appropriate use criteria for echocardiography. A report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force, American Society of Echocardiography, American Heart Association, American Society of Nuclear Cardiology, Heart Failure Society of America, Heart Rhythm Society, Society for Cardiovascular Angiography and Interventions, Society of Critical Care Medicine, Society of Cardiovascular Computed Tomography, Society for Cardiovascular Magnetic Resonance American College of Chest Physicians. J. Am. Soc. Echocardiogr. 24, 229–267 (2011).

    Google Scholar 

  48. 48

    Thomas, J. T. et al. Utility of history, physical examination, electrocardiogram, and chest radiograph for differentiating normal from decreased systolic function in patients with heart failure. Am. J. Med. 112, 437–445 (2002).

    Google Scholar 

  49. 49

    Miller, W. L. & Mullan, B. P. Understanding the heterogeneity in volume overload and fluid distribution in decompensated heart failure is key to optimal volume management. JACC Heart Fail. 2, 298–305 (2014).

    Google Scholar 

  50. 50

    Ko, S. M., Hwang, H. K., Kim, S. M. & Cho, I. H. Multi-modality imaging for the assessment of myocardial perfusion with emphasis on stress perfusion CT and MR imaging. Int. J. Cardiovasc. Imaging 31, 1–21 (2015).

    Google Scholar 

  51. 51

    Kalisz, K. & Rajiah, P. Impact of cardiac magnetic resonance imaging in non-ischemic cardiomyopathies. World J. Cardiol. 8, 132–145 (2016).

    Google Scholar 

  52. 52

    Milani, R. V. Cardiopulmonary exercise testing: how do we differentiate the cause of dyspnea? Circulation 110, e27–e31 (2004).

    Google Scholar 

  53. 53

    Mancini, D. M. et al. Value of peak exercise oxygen consumption for optimal timing of cardiac transplantation in ambulatory patients with heart failure. Circulation 83, 778–786 (1991).

    Google Scholar 

  54. 54

    Corrà, U. et al. Cardiopulmonary exercise testing in systolic heart failure in 2014: the evolving prognostic role. Eur. J. Heart Fail. 16, 929–941 (2014).

    Google Scholar 

  55. 55

    Gidwani, U. K., Mohanty, B. & Chatterjee, K. The pulmonary artery catheter. Cardiol. Clin. 31, 545–565 (2013).

    Google Scholar 

  56. 56

    Ammar, K. A. et al. Prevalence and prognostic significance of heart failure stages: application of the American College of Cardiology/American Heart Association Heart Failure Staging Criteria in the Community. Circulation 115, 1563–1570 (2007).

    Google Scholar 

  57. 57

    New York Heart Association. Nomenclature and Criteria for Diagnosis of Diseases of the Heart and Great Vessels (Lippincott Williams & Wilkins, 1994).

  58. 58

    Goldman, L., Hashimoto, B., Cook, E. F. & Loscalzo, A. Comparative reproducibility and validity of systems for assessing cardiovascular functional class: advantages of a new specific activity scale. Circulation 64, 1227–1234 (1981).

    Google Scholar 

  59. 59

    SPRINT Research Group et al. Randomized trial of intensive versus standard blood-pressure control. N. Engl. J. Med. 373, 2103–2116 (2015).

    Google Scholar 

  60. 60

    Yancy, C. W. et al. 2016 ACC/AHA/HFSA focused update on new pharmacological therapy for heart failure: an update of the 2013 ACCF/AHA guideline for the management of heart failure. J. Am. Coll. Cardiol. 68, 1476–1488 (2016).

    Google Scholar 

  61. 61

    Ponikowski, P. et al. 2016 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 37, 2129–2200 (2016).

    Google Scholar 

  62. 62

    Maggioni, A. P. et al. Are hospitalized or ambulatory patients with heart failure treated in accordance with European Society of Cardiology guidelines? Evidence from 12 440 patients of the ESC Heart Failure Long-Term Registry. Eur. J. Heart Fail. 15, 1173–1184 (2013).

    Google Scholar 

  63. 63

    McMurray, J. J. V. et al. Angiotensin–neprilysin inhibition versus enalapril in heart failure. N. Engl. J. Med. 371, 993–1004 (2014). A landmark heart failure trial that compared sacubitril/valsartan with enalapril therapy.

    Google Scholar 

  64. 64

    Kjekshus, J. et al. Rosuvastatin in older patients with systolic heart failure. N. Engl. J. Med. 357, 2248–2261 (2007).

    Google Scholar 

  65. 65

    Tavazzi, L. Effect of rosuvastatin in patients with chronic heart failure (the GISSI-HF trial): a randomised, double-blind, placebo-controlled trial. Lancet 372, 1231–1239 (2008).

    Google Scholar 

  66. 66

    McMurray, J. J. V. et al. Aliskiren, enalapril, or aliskiren and enalapril in heart failure. N. Engl. J. Med. 374, 1521–1532 (2016).

    Google Scholar 

  67. 67

    Goldstein, R. E., Boccuzzi, S. J., Cruess, D. & Nattel, S. Diltiazem increases late-onset congestive heart failure in postinfarction patients with early reduction in ejection fraction. The Adverse Experience Committee; and the Multicenter Diltiazem Postinfarction Research Group. Circulation 83, 52–60 (1991).

    Google Scholar 

  68. 68

    Hernandez, A. V., Usmani, A., Rajamanickam, A. & Moheet, A. Thiazolidinediones and risk of heart failure in patients with or at high risk of type 2 diabetes mellitus. Am. J. Cardiovasc. Drugs 11, 115–128 (2011).

    Google Scholar 

  69. 69

    Scott, P. A., Kingsley, G. H. & Scott, D. L. Non-steroidal anti-inflammatory drugs and cardiac failure: meta-analyses of observational studies and randomised controlled trials. Eur. J. Heart Fail. 10, 1102–1107 (2008).

    Google Scholar 

  70. 70

    Crespo-Leiro, M. G. et al. European Society of Cardiology Heart Failure Long-Term Registry (ESC-HF-LT): 1-year follow-up outcomes and differences across regions. Eur. J. Heart Fail. 18, 613–625 (2016).

    Google Scholar 

  71. 71

    Epstein, A. E. et al. ACC/AHA/HRS 2008 guidelines for device-based therapy of cardiac rhythm abnormalities: executive summary. Heart Rhythm 5, 934–955 (2008).

    Google Scholar 

  72. 72

    Connolly, S. Meta-analysis of the implantable cardioverter defibrillator secondary prevention trials. Eur. Heart J. 21, 2071–2078 (2000).

    Google Scholar 

  73. 73

    Moss, A. J. et al. Prophylactic Implantation of a defibrillator in patients with myocardial infarction and reduced ejection fraction. N. Engl. J. Med. 346, 877–883 (2002).

    Google Scholar 

  74. 74

    Bardy, G. H. et al. Amiodarone or an implantable cardioverter–defibrillator for congestive heart failure. N. Engl. J. Med. 352, 225–237 (2005).

    Google Scholar 

  75. 75

    Desai, A. S., Fang, J. C., Maisel, W. H. & Baughman, K. L. Implantable defibrillators for the prevention of mortality in patients with nonischemic cardiomyopathy. JAMA 292, 2874–2879 (2004).

    Google Scholar 

  76. 76

    Kadish, A. et al. Prophylactic defibrillator implantation in patients with nonischemic dilated cardiomyopathy. N. Engl. J. Med. 350, 2151–2158 (2004).

    Google Scholar 

  77. 77

    Yancy, C. W. et al. 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation 128, e240–e327 (2013).

    Google Scholar 

  78. 78

    Køber, L. et al. Defibrillator implantation in patients with nonischemic systolic heart failure. N. Engl. J. Med. 375, 1221–1230 (2016).

    Google Scholar 

  79. 79

    McMurray, J. J. V. The ICD in heart failure — time for a rethink? N. Engl. J. Med. 375, 1283–1284 (2016).

    Google Scholar 

  80. 80

    Cleland, J. G. F. et al. The effect of cardiac resynchronization on morbidity and mortality in heart failure. N. Engl. J. Med. 352, 1539–1549 (2005).

    Google Scholar 

  81. 81

    Cleland, J. G. F. et al. Longer-term effects of cardiac resynchronization therapy on mortality in heart failure [the CArdiac REsynchronization-Heart Failure (CARE-HF) trial extension phase]. Eur. Heart J. 27, 1928–1932 (2006).

    Google Scholar 

  82. 82

    Bristow, M. R. et al. Cardiac-resynchronization therapy with or without an implantable defibrillator in advanced chronic heart failure. N. Engl. J. Med. 350, 2140–2150 (2004).

    Google Scholar 

  83. 83

    Cleland, J. G. et al. An individual patient meta-analysis of five randomized trials assessing the effects of cardiac resynchronization therapy on morbidity and mortality in patients with symptomatic heart failure. Eur. Heart J. 34, 3547–3556 (2013).

    Google Scholar 

  84. 84

    Tracy, C. M. et al. 2012 ACCF/AHA/HRS focused update incorporated into the ACCF/AHA/HRS 2008 guidelines for device-based therapy of cardiac rhythm abnormalities. J. Am. Coll. Cardiol. 61, e6–e75 (2013).

    Google Scholar 

  85. 85

    Barold, S. S. & Herweg, B. Cardiac resynchronization in patients with atrial fibrillation. J. Atr. Fibrillation 8, 1383 (2015).

    Google Scholar 

  86. 86

    Upadhyay, G. A., Choudhry, N. K., Auricchio, A., Ruskin, J. & Singh, J. P. Cardiac resynchronization in patients with atrial fibrillation: a meta-analysis of prospective cohort studies. J. Am. Coll. Cardiol. 52, 1239–1246 (2008).

    Google Scholar 

  87. 87

    Fang, J. C. et al. Advanced (stage D) heart failure: a statement from the Heart Failure Society of America Guidelines Committee. J. Card. Fail. 21, 519–534 (2015). A comprehensive paper on advanced heart failure, allowing a better understanding of this population of patients, underscoring current knowledge gaps and the importance of leading clinical research on this topic.

    Google Scholar 

  88. 88

    Slaughter, M. S. et al. Advanced heart failure treated with continuous-flow left ventricular assist device. N. Engl. J. Med. 361, 2241–2251 (2009). A landmark trial reporting the results of pulsatile versus continuous flow LVADs in patients ineligible for transplants.

    Google Scholar 

  89. 89

    Aaronson, K. D. et al. Use of an intrapericardial, continuous-flow, centrifugal pump in patients awaiting heart transplantation. Circulation 125, 3191–3200 (2012).

    Google Scholar 

  90. 90

    Starling, R. C. et al. Results of the post-U. S. Food and Drug Administration-approval study with a continuous flow left ventricular assist device as a bridge to heart transplantation. J. Am. Coll. Cardiol. 57, 1890–1898 (2011). A post-market trial reporting the results of the use of HM II LVAD as a bridge to transplantation, confirming the results of the original pivotal clinical trial.

    Google Scholar 

  91. 91

    Estep, J. D. et al. Risk assessment and comparative effectiveness of left ventricular assist device and medical management in ambulatory heart failure patients. J. Am. Coll. Cardiol. 66, 1747–1761 (2015).

    Google Scholar 

  92. 92

    Kirklin, J. K. et al. Seventh INTERMACS annual report: 15,000 patients and counting. J. Hear. Lung Transplant. 34, 1495–1504 (2015).

    Google Scholar 

  93. 93

    Carpentier, A. et al. First clinical use of a bioprosthetic total artificial heart: report of two cases. Lancet 386, 1556–1563 (2015).

    Google Scholar 

  94. 94

    Mehra, M. R. et al. Listing criteria for heart transplantation: International Society for Heart and Lung Transplantation guidelines for the care of cardiac transplant candidates — 2006. J. Heart Lung Transplant. 25, 1024–1042 (2006). A guideline statement on listing criteria for patients considered for cardiac transplantation.

    Google Scholar 

  95. 95

    Feldman, D. et al. The 2013 International Society for Heart and Lung Transplantation guidelines for mechanical circulatory support: executive summary. J. Heart Lung Transplant. 32, 157–187 (2013).

    Google Scholar 

  96. 96

    Mehra, M. R. et al. The 2016 International Society for Heart Lung Transplantation listing criteria for heart transplantation: a 10-year update. J. Heart Lung Transplant. 35, 1–23 (2016).

    Google Scholar 

  97. 97

    Slaughter, M. S. et al. Clinical management of continuous-flow left ventricular assist devices in advanced heart failure. J. Heart Lung Transplant. 29, S1–S39 (2010).

    Google Scholar 

  98. 98

    Ziemba, E. A. & John, R. Mechanical circulatory support for bridge to decision: which device and when to decide. J. Card. Surg. 25, 425–433 (2010).

    Google Scholar 

  99. 99

    Centers for Medicare & Medicaid Services. Decision memo for ventricular assist devices for bridge-to-transplant and destination therapy (CAG-00432R). CMShttps://www.cms.gov/medicare-coverage-database/details/nca-decision-memo.aspx?NCAId=268 (2013).

  100. 100

    Stevenson, L. W. et al. INTERMACS profiles of advanced heart failure: the current picture. J. Heart Lung Transplant. 28, 535–541 (2009). A founding paper that allows a better understanding and clinical profiling of patients who are NYHA class IV.

    Google Scholar 

  101. 101

    Mehra, M. R. et al. A fully magnetically levitated circulatory pump for advanced heart failure. N. Engl. J. Med. 376, 440–450 (2017).

    Google Scholar 

  102. 102

    de By, T. M. M. H. et al. The European Registry for Patients with Mechanical Circulatory Support (EUROMACS): first annual report. Eur. J. Cardiothorac. Surg. 47, 770–777 (2015).

    Google Scholar 

  103. 103

    Lund, L. H. et al. The Registry of the International Society for Heart and Lung Transplantation: thirty-third adult heart transplantation report? Focus theme: primary diagnostic indications for transplant. J. Heart Lung Transplant. 35, 1158–1169 (2016).

    Google Scholar 

  104. 104

    Lund, L. H. et al. The Registry of the International Society for Heart and Lung Transplantation: thirty-second official adult heart transplantation report? Focus theme: early graft failure. J. Heart Lung Transplant. 34, 1244–1254 (2015).

    Google Scholar 

  105. 105

    Lund, L. H. et al. The Registry of the International Society for Heart and Lung Transplantation: thirty-first official adult heart transplant report — focus theme: retransplantation. J. Heart Lung Transplant. 33, 996–1008 (2014).

    Google Scholar 

  106. 106

    Samsky, M. D. et al. Ten-year experience with extended criteria cardiac transplantation. Circ. Heart Fail. 6, 1230–1238 (2013).

    Google Scholar 

  107. 107

    Samara, M. A. & Wilson Tang, W. H. Device monitoring strategies in acute heart failure syndromes. Heart Fail. Rev. 16, 491–502 (2011).

    Google Scholar 

  108. 108

    Anker, S. D., Koehler, F. & Abraham, W. T. Telemedicine and remote management of patients with heart failure. Lancet 378, 731–739 (2011).

    Google Scholar 

  109. 109

    Emani, S. Remote monitoring to reduce heart failure readmissions. Curr. Heart Fail. Rep. 14, 40–47 (2017).

    Google Scholar 

  110. 110

    Dierckx, R., Pellicori, P., Cleland, J. G. F. & Clark, A. L. Telemonitoring in heart failure: BigBrother watching over you. Heart Fail. Rev. 20, 107–116 (2014).

    Google Scholar 

  111. 111

    Inglis, S. C., Clark, R. A., McAlister, F. A., Stewart, S. & Cleland, J. G. F. Which components of heart failure programmes are effective? A systematic review and meta-analysis of the outcomes of structured telephone support or telemonitoring as the primary component of chronic heart failure management in 8323 patients: abridged Cochrane review. Eur. J. Heart Fail. 13, 1028–1040 (2011).

    Google Scholar 

  112. 112

    Inglis, S. C., Clark, R. A., Dierckx, R., Prieto-Merino, D. & Cleland, J. G. F. Structured telephone support or non-invasive telemonitoring for patients with heart failure. Heart 103, 255–257 (2017).

    Google Scholar 

  113. 113

    Inglis, S. C., Clark, R. A., Dierckx, R., Prieto-Merino, D. & Cleland, J. G. Structured telephone support or non-invasive telemonitoring for patients with heart failure. Cochrane Database Syst. Rev. 10, CD007228 (2015).

    Google Scholar 

  114. 114

    Cleland, J. G. F., Lewinter, C. & Goode, K. M. Telemonitoring for heart failure: the only feasible option for good universal care? Eur. J. Heart Fail. 11, 227–228 (2009).

    Google Scholar 

  115. 115

    Hawkins, N. M. et al. Predicting heart failure decompensation using cardiac implantable electronic devices: a review of practices and challenges. Eur. J. Heart Fail. 18, 977–986 (2016).

    Google Scholar 

  116. 116

    Adamson, P. B., Ginn, G., Anker, S. D., Bourge, R. C. & Abraham, W. T. Remote haemodynamic-guided care for patients with chronic heart failure: a meta-analysis of completed trials. Eur. J. Heart Fail. 19, 426–433 (2017).

    Google Scholar 

  117. 117

    Abraham, W. T. et al. Wireless pulmonary artery haemodynamic monitoring in chronic heart failure: a randomised controlled trial. Lancet 377, 658–666 (2011).

    Google Scholar 

  118. 118

    Gaggin, H. K. & Januzzi, J. L. Biomarkers and diagnostics in heart failure. Biochim. Biophys. Acta 1832, 2442–2450 (2013).

    Google Scholar 

  119. 119

    Ahmad, T. et al. Charting a roadmap for heart failure biomarker studies. JACC Heart Fail. 2, 477–488 (2014).

    Google Scholar 

  120. 120

    Motiwala, S. R. & Januzzi, J. L. The role of natriuretic peptides as biomarkers for guiding the management of chronic heart failure. Clin. Pharmacol. Ther. 93, 57–67 (2012).

    Google Scholar 

  121. 121

    Januzzi, J. L. et al. Use of amino-terminal pro–B-type natriuretic peptide to guide outpatient therapy of patients with chronic left ventricular systolic dysfunction. J. Am. Coll. Cardiol. 58, 1881–1889 (2011).

    Google Scholar 

  122. 122

    Bhardwaj, A. et al. Quality of life and chronic heart failure therapy guided by natriuretic peptides: results from the ProBNP Outpatient Tailored Chronic Heart Failure Therapy (PROTECT) study. Am. Heart J. 164, 793–799.e1 (2012).

    Google Scholar 

  123. 123

    Weiner, R. B. et al. Improvement in structural and functional echocardiographic parameters during chronic heart failure therapy guided by natriuretic peptides: mechanistic insights from the ProBNP Outpatient Tailored Chronic Heart Failure (PROTECT) study. Eur. J. Heart Fail. 15, 342–351 (2013).

    Google Scholar 

  124. 124

    Felker, G. M. et al. Rationale and design of the GUIDE-IT study. JACC Heart Fail. 2, 457–465 (2014).

    Google Scholar 

  125. 125

    Gaggin, H. K. et al. Head-to-head comparison of serial soluble ST2, growth differentiation factor-15, and highly-sensitive troponin T measurements in patients with chronic heart failure. JACC Heart Fail. 2, 65–72 (2014).

    Google Scholar 

  126. 126

    Motiwala, S. R. et al. Serial measurement of galectin-3 in patients with chronic heart failure: results from the ProBNP Outpatient Tailored Chronic Heart Failure Therapy (PROTECT) study. Eur. J. Heart Fail. 15, 1157–1163 (2013).

    Google Scholar 

  127. 127

    Wu, A. H. B., Wians, F. & Jaffe, A. Biological variation of galectin-3 and soluble ST2 for chronic heart failure: Implication on interpretation of test results. Am. Heart J. 165, 995–999 (2013).

    Google Scholar 

  128. 128

    Januzzi, J. L., Pascual-Figal, D. & Daniels, L. B. ST2 testing for chronic heart failure therapy monitoring: the International ST2 Consensus Panel. Am. J. Cardiol. 115, 70B–75B (2015).

    Google Scholar 

  129. 129

    Gandhi, P. U. et al. Galectin-3 and mineralocorticoid receptor antagonist use in patients with chronic heart failure due to left ventricular systolic dysfunction. Am. Heart J. 169, 404–411.e3 (2015).

    Google Scholar 

  130. 130

    Meijers, W. C. et al. Variability of biomarkers in patients with chronic heart failure and healthy controls. Eur. J. Heart Fail. 19, 357–365 (2017).

    Google Scholar 

  131. 131

    Krumholz, H. M. A. Taxonomy for disease management: a scientific statement from the American Heart Association Disease Management Taxonomy Writing Group. Circulation 114, 1432–1445 (2006).

    Google Scholar 

  132. 132

    Rich, M. W. et al. A multidisciplinary intervention to prevent the readmission of elderly patients with congestive heart failure. N. Engl. J. Med. 333, 1190–1195 (1995).

    Google Scholar 

  133. 133

    Stromberg, A. Nurse-led heart failure clinics improve survival and self-care behaviour in patients with heart failure. Results from a prospective, randomised trial. Eur. Heart J. 24, 1014–1023 (2003).

    Google Scholar 

  134. 134

    Stewart, S., Pearson, S. & Horowitz, J. D. Effects of a home-based intervention among patients with congestive heart failure discharged from acute hospital care. Arch. Intern. Med. 158, 1067–1072 (1998).

    Google Scholar 

  135. 135

    Takeda, A. et al. Clinical service organisation for heart failure. Cochrane Database Syst. Rev. 9, CD002752 (2012).

    Google Scholar 

  136. 136

    McAlister, F. A., Stewart, S., Ferrua, S. & McMurray, J. J. J. V. Multidisciplinary strategies for the management of heart failure patients at high risk for admission. J. Am. Coll. Cardiol. 44, 810–819 (2004).

    Google Scholar 

  137. 137

    Fonarow, G. C. et al. Heart failure care in the outpatient cardiology practice setting: findings from IMPROVE HF. Circ. Heart Fail. 1, 98–106 (2008).

    Google Scholar 

  138. 138

    Lee, D. S. et al. Risk–treatment mismatch in the pharmacotherapy of heart failure. JAMA 294, 1240–1247 (2005).

    Google Scholar 

  139. 139

    Lesman-Leegte, I. et al. Quality of life and depressive symptoms in the elderly: a comparison between patients with heart failure and age- and gender-matched community controls. J. Card. Fail. 15, 17–23 (2009).

    Google Scholar 

  140. 140

    Juenger, J. Health related quality of life in patients with congestive heart failure: comparison with other chronic diseases and relation to functional variables. Heart 87, 235–241 (2002).

    Google Scholar 

  141. 141

    Jaarsma, T., Johansson, P., Agren, S. & Stromberg, A. Quality of life and symptoms of depression in advanced heart failure patients and their partners. Curr. Opin. Support. Palliat. Care 4, 233–237 (2010).

    Google Scholar 

  142. 142

    Li, C.-C. & Shun, S.-C. Understanding self care coping styles in patients with chronic heart failure: a systematic review. Eur. J. Cardiovasc. Nurs. 15, 12–19 (2016).

    Google Scholar 

  143. 143

    Obiegło, M., Uchmanowicz, I., Wleklik, M., Jankowska-Polan´ska, B. & Kus´mierz, M. The effect of acceptance of illness on the quality of life in patients with chronic heart failure. Eur. J. Cardiovasc. Nurs. 15, 241–247 (2016).

    Google Scholar 

  144. 144

    Thompson, D. R., Ski, C. F., Garside, J. & Astin, F. A review of health-related quality of life patient-reported outcome measures in cardiovascular nursing. Eur. J. Cardiovasc. Nurs. 15, 114–125 (2016).

    Google Scholar 

  145. 145

    Anker, S. D. et al. The importance of patient-reported outcomes: a call for their comprehensive integration in cardiovascular clinical trials. Eur. Heart J. 35, 2001–2009 (2014).

    Google Scholar 

  146. 146

    Kraai, I. H. et al. Preferences of heart failure patients in daily clinical practice: quality of life or longevity? Eur. J. Heart Fail. 15, 1113–1121 (2013).

    Google Scholar 

  147. 147

    Stevenson, L. W. et al. Changing preferences for survival after hospitalization with advanced heart failure. J. Am. Coll. Cardiol. 52, 1702–1708 (2008).

    Google Scholar 

  148. 148

    Brunner- La Rocca, H.-P. et al. End-of-life preferences of elderly patients with chronic heart failure. Eur. Heart J. 33, 752–759 (2011).

    Google Scholar 

  149. 149

    Iqbal, J., Francis, L., Reid, J., Murray, S. & Denvir, M. Quality of life in patients with chronic heart failure and their carers: a 3-year follow-up study assessing hospitalization and mortality. Eur. J. Heart Fail. 12, 1002–1008 (2010).

    Google Scholar 

  150. 150

    Hoekstra, T. et al. Quality of life and survival in patients with heart failure. Eur. J. Heart Fail. 15, 94–102 (2013).

    Google Scholar 

  151. 151

    Jonkman, N. H. et al. Do self-management interventions work in patients with heart failure? An individual patient data meta-analysis. Circulation 133, 1189–1198 (2016).

    Google Scholar 

  152. 152

    Mohammed, M. A., Moles, R. J. & Chen, T. F. Impact of pharmaceutical care interventions on health-related quality-of-life outcomes: a systematic review and meta-analysis. Ann. Pharmacother. 50, 862–881 (2016).

    Google Scholar 

  153. 153

    Jensen, L. et al. Improving heart failure outcomes in ambulatory and community care: a scoping study. Med. Care Res. Rev.http://dx.doi.org/10.1177/1077558716655451 (2016).

  154. 154

    Pandey, A. et al. Exercise training in patients with heart failure and preserved ejection fraction: meta-analysis of randomized control trials. Circ. Heart Fail. 8, 33–40 (2014).

    Google Scholar 

  155. 155

    Ponikowski, P. et al. Heart failure: preventing disease and death worldwide. ESC Heart Fail. 1, 4–25 (2014).

    Google Scholar 

  156. 156

    Anwar, M. S. et al. The future of pharmacogenetics in the treatment of heart failure. Pharmacogenomics 16, 1817–1827 (2015).

    Google Scholar 

  157. 157

    Zacchigna, S., Zentilin, L. & Giacca, M. Adeno-associated virus vectors as therapeutic and investigational tools in the cardiovascular system. Circ. Res. 114, 1827–1846 (2014).

    Google Scholar 

  158. 158

    Pulicherla, N. et al. Engineering liver-detargeted AAV9 vectors for cardiac and musculoskeletal gene transfer. Mol. Ther. 19, 1070–1078 (2011).

    Google Scholar 

  159. 159

    Boecker, W. et al. Cardiac-specific gene expression facilitated by an enhanced myosin light chain promoter. Mol. Imaging 3, 69–75 (2004).

    Google Scholar 

  160. 160

    Muller, O. et al. Improved cardiac gene transfer by transcriptional and transductional targeting of adeno-associated viral vectors. Cardiovasc. Res. 70, 70–78 (2006).

    Google Scholar 

  161. 161

    Ishikawa, K., Aguero, J., Naim, C., Fish, K. & Hajjar, R. J. Percutaneous approaches for efficient cardiac gene delivery. J. Cardiovasc. Transl Res. 6, 649–659 (2013).

    Google Scholar 

  162. 162

    Jessup, M. et al. Calcium upregulation by percutaneous administration of gene therapy in cardiac disease (CUPID): a phase 2 trial of intracoronary gene therapy of sarcoplasmic reticulum Ca2+-ATPase in patients with advanced heart failure. Circulation 124, 304–313 (2011).

    Google Scholar 

  163. 163

    Zsebo, K. et al. Long-term effects of AAV1/SERCA2a gene transfer in patients with severe heart failure: analysis of recurrent cardiovascular events and mortality. Circ. Res. 114, 101–108 (2014).

    Google Scholar 

  164. 164

    Pleger, S. T. et al. Cardiac AAV9-S100A1 gene therapy rescues post-ischemic heart failure in a preclinical large animal model. Sci. Transl Med. 3, 92ra64 (2011).

    Google Scholar 

  165. 165

    Lai, N. C. Intracoronary adenovirus encoding adenylyl cyclase VI increases left ventricular function in heart failure. Circulation 110, 330–336 (2004).

    Google Scholar 

  166. 166

    Kelkar, A. A. et al. Mechanisms contributing to the progression of ischemic and nonischemic dilated cardiomyopathy. J. Am. Coll. Cardiol. 66, 2038–2047 (2015).

    Google Scholar 

  167. 167

    Fisher, S. A., Doree, C., Mathur, A. & Martin-Rendon, E. Meta-analysis of cell therapy trials for patients with heart failure. Circ. Res. 116, 1361–1377 (2015).

    Google Scholar 

  168. 168

    Landin, A. M. & Hare, J. M. The quest for a successful cell-based therapeutic approach for heart failure. Eur. Heart J. 38, ehw626 (2017).

    Google Scholar 

  169. 169

    Segers, V. F. M. & Lee, R. T. Biomaterials to enhance stem cell function in the heart. Circ. Res. 109, 910–922 (2011).

    Google Scholar 

  170. 170

    Stevenson, L. W. The limited reliability of physical signs for estimating hemodynamics in chronic heart failure. JAMA 261, 884–888 (1989).

    Google Scholar 

  171. 171

    Felker, G. M., Cuculich, P. S. & Gheorghiade, M. The Valsalva maneuver: a bedside ‘biomarker’ for heart failure. Am. J. Med. 119, 117–122 (2006).

    Google Scholar 

  172. 172

    Harinstein, M. E. et al. Clinical assessment of acute heart failure syndromes: emergency department through the early post-discharge period. Heart 97, 1607–1618 (2011).

    Google Scholar 

  173. 173

    Leier, C. V. & Chatterjee, K. The physical examination in heart failure — part, I. Congest. Heart Fail. 13, 41–47 (2007).

    Google Scholar 

  174. 174

    Leier, C. V. Nuggets, pearls, and vignettes of master heart failure clinicians. Congest. Heart Fail. 7, 297–308 (2001).

    Google Scholar 

  175. 175

    Caldentey, G. et al. Prognostic value of the physical examination in patients with heart failure and atrial fibrillation. JACC Heart Fail. 2, 15–23 (2014).

    Google Scholar 

  176. 176

    Kaye, D. M. & Krum, H. Drug discovery for heart failure: a new era or the end of the pipeline? Nat. Rev. Drug Discov. 6, 127–139 (2007).

    Google Scholar 

  177. 177

    Triposkiadis, F. et al. Reframing the association and significance of co-morbidities in heart failure. Eur. J. Heart Fail. 18, 744–758 (2016).

    Google Scholar 

  178. 178

    Mentz, R. J. & Felker, G. M. Noncardiac comorbidities and acute heart failure patients. Heart Fail. Clin. 9, 359–367 (2013).

    Google Scholar 

  179. 179

    Skrtic, S., Cabrera, C., Olsson, M., Schnecke, V. & Lind, M. Contemporary risk estimates of three HbA 1c variables in relation to heart failure following diagnosis of type 2 diabetes. Heart 103, 353–358 (2016).

    Google Scholar 

  180. 180

    Swan, J. W. et al. Insulin resistance in chronic heart failure: relation to severity and etiology of heart failure. J. Am. Coll. Cardiol. 30, 527–532 (1997).

    Google Scholar 

  181. 181

    Vargas-Uricoechea, H. & Bonelo-Perdomo, A. Thyroid dysfunction and heart failure: mechanisms and associations. Curr. Heart Fail. Rep. 14, 48–58 (2017).

    Google Scholar 

  182. 182

    Mentz, R. J. & O’Connor, C. M. Pathophysiology and clinical evaluation of acute heart failure. Nat. Rev. Cardiol. 13, 28–35 (2016).

    Google Scholar 

  183. 183

    Swedberg, K. et al. Ivabradine and outcomes in chronic heart failure (SHIFT): a randomised placebo-controlled study. Lancet 376, 875–885 (2010).

    Google Scholar 

  184. 184

    Faris, R. F., Flather, M., Purcell, H., Poole-Wilson, P. A. & Coats, A. J. Diuretics for heart failure. Cochrane Database Syst. Rev. 2, CD003838 (2012).

    Google Scholar 

  185. 185

    Hart, R. G., Pearce, L. A. & Aguilar, M. I. Meta-analysis: antithrombotic therapy to prevent stroke in patients who have nonvalvular atrial fibrillation. Ann. Intern. Med. 146, 857–867 (2007).

    Google Scholar 

  186. 186

    Digitalis Investigation Group. The effect of digoxin on mortality and morbidity in patients with heart failure. N. Engl. J. Med. 336, 525–533 (1997).

    Google Scholar 

  187. 187

    Tavazzi, L. et al. Effect of n-3 polyunsaturated fatty acids in patients with chronic heart failure (the GISSI-HF trial): a randomised, double-blind, placebo-controlled trial. Lancet 372, 1223–1230 (2008).

    Google Scholar 

  188. 188

    Lewis, G. F. & Gold, M. R. Clinical experience with subcutaneous implantable cardioverter-defibrillators. Nat. Rev. Cardiol. 12, 398–405 (2015).

    Google Scholar 

  189. 189

    Abraham, W. T. & Smith, S. A. Devices in the management of advanced, chronic heart failure. Nat. Rev. Cardiol. 10, 98–110 (2013).

    Google Scholar 

Download references

Acknowledgements

J.B. received research support from the US National Institutes of Health, European Union and the Patient Centered Outcomes Research Institute.

Author information

Affiliations

Authors

Contributions

Introduction (J.B., M.W.B. and J.-N.T.); Epidemiology (J.B., M.W.B. and C.S.P.L.); Mechanisms/pathophysiology (M.W.B., J.L.J., A.P.M. and J.-N.T.); Diagnosis, screening and prevention (M.W.B., B.G., J.L.J., A.P.M. and J.T.); Management (M.W.B., B.G., C.S.P.L. and T.J.); Quality of life (T.J.); Outlook (J.B.); Overview of Primer (J.B.).

Corresponding author

Correspondence to Javed Butler.

Ethics declarations

Competing interests

M.W.B. has received speaker's bureau from Novartis Pharmaceuticals. B.G. has acted as a consultant for Teva Pharmaceuticals, Mesoblast, Celadon, Novartis Pharmaceuticals, Janssen and AstraZeneca. J.L.J. has received research support from Roche Diagnostics, Siemens, Prevencio and Singulex; consulting income from Boehringer Ingelheim, Novartis and Janssen; and participates on cardiology endpoint committees and/or data safety monitoring boards for Boehringer Ingelheim, Bayer, Novartis, Pfizer and Janssen. C.S.P.L. has received research support from Boston Scientific, Bayer, Thermofisher, Medtronic and Vifor Pharma; and has acted as a consultant for Bayer, Novartis, Takeda, Merck, AstraZeneca, Janssen Research & Development, LLC, Menarini, Boehringer Ingelheim and Abbott Diagnostics. A.P.M. has received honoraria for the participation in committees of trials sponsored by Novartis, Bayer, Cardiorentis and Fresenius. J.-N.T. has received research grants from Novartis, Carmat and Abbott; and has consulted for Abbott, Amgen, Bayer, Carmat, Daichi, Heartware, Novartis, Vifor Pharma, Sankyo and Resmed. J.B. is a consultant for Amgen, AstraZeneca, Bayer, Boehringer Ingelheim, Bristol-Myers Squibb, CVRx, Janssen, Luitpold, Medtronic, Novartis, Relypsa and ZS Pharma. T.J. has received honoraria for the participation in committees of projects sponsored by Novartis.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bloom, M., Greenberg, B., Jaarsma, T. et al. Heart failure with reduced ejection fraction. Nat Rev Dis Primers 3, 17058 (2017). https://doi.org/10.1038/nrdp.2017.58

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing