Obesity

Abstract

Excessive fat deposition in obesity has a multifactorial aetiology, but is widely considered the result of disequilibrium between energy intake and expenditure. Despite specific public health policies and individual treatment efforts to combat the obesity epidemic, >2 billion people worldwide are overweight or obese. The central nervous system circuitry, fuel turnover and metabolism as well as adipose tissue homeostasis are important to comprehend excessive weight gain and associated comorbidities. Obesity has a profound impact on quality of life, even in seemingly healthy individuals. Diet, physical activity or exercise and lifestyle changes are the cornerstones of obesity treatment, but medical treatment and bariatric surgery are becoming important. Family history, food environment, cultural preferences, adverse reactions to food, perinatal nutrition, previous or current diseases and physical activity patterns are relevant aspects for the health care professional to consider when treating the individual with obesity. Clinicians and other health care professionals are often ill-equipped to address the important environmental and socioeconomic drivers of the current obesity epidemic. Finally, understanding the epigenetic and genetic factors as well as metabolic pathways that take advantage of ‘omics’ technologies could play a very relevant part in combating obesity within a precision approach.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Global body mass index in men and women.
Figure 2: Evolution of obesity prevalence.
Figure 3: Critical periods in the development of obesity.
Figure 4: Key factors involved in the regulation of energy balance.
Figure 5: The relationship between the body mass index and mortality and morbidity risk.
Figure 6: Control of hunger and satiety.
Figure 7: Pathological changes in adipose tissue.
Figure 8: Bariatric surgery.

References

  1. 1

    NCD Risk Factor Collaboration (NCD-RisC). Trends in adult body-mass index in 200 countries from 1975 to 2014: a pooled analysis of 1698 population-based measurement studies with 19.2 million participants. Lancet 387, 1377–1396 (2016). This article discusses that obesity prevalence could reach 20% of the population by 2025.

    Google Scholar 

  2. 2

    Williams, E. P., Mesidor, M., Winters, K., Dubbert, P. M. & Wyatt, S. B. Overweight and obesity: prevalence, consequences, and causes of a growing public health problem. Curr. Obes. Rep. 4, 363–370 (2015).

    Google Scholar 

  3. 3

    Alberti, K. G. et al. Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 120, 1640–1645 (2009).

    Google Scholar 

  4. 4

    Sellayah, D., Cagampang, F. R. & Cox, R. D. On the evolutionary origins of obesity: a new hypothesis. Endocrinology 155, 1573–1588 (2014).

    Google Scholar 

  5. 5

    Bhupathiraju, S. N. & Hu, F. B. Epidemiology of obesity and diabetes and their cardiovascular complications. Circ. Res. 118, 1723–1735 (2016).

    Google Scholar 

  6. 6

    Martinez, J. A. Body-weight regulation: causes of obesity. Proc. Nutr. Soc. 59, 337–345 (2000).

    Google Scholar 

  7. 7

    McAllister, E. J. et al. Ten putative contributors to the obesity epidemic. Crit. Rev. Food Sci. Nutr. 49, 868–913 (2009). This review discusses the putative causes for obesity, which are not generally considered.

    Google Scholar 

  8. 8

    Heymsfield, S. B. et al. Multi-component molecular-level body composition reference methods: evolving concepts and future directions. Obes. Rev. 16, 282–294 (2015). This paper suggests that the methods traditionally used to diagnose obesity have been underestimating the problem, but more precise tools are under study and in development.

    Google Scholar 

  9. 9

    Seabolt, L. A., Welch, E. B. & Silver, H. J. Imaging methods for analyzing body composition in human obesity and cardiometabolic disease. Ann. NY Acad. Sci. 1353, 41–59 (2015).

    Google Scholar 

  10. 10

    Fosbol, M. O. & Zerahn, B. Contemporary methods of body composition measurement. Clin. Physiol. Funct. Imaging 35, 81–97 (2015).

    Google Scholar 

  11. 11

    Javed, A. et al. Diagnostic performance of body mass index to identify obesity as defined by body adiposity in children and adolescents: a systematic review and meta-analysis. Pediatr. Obes. 10, 234–244 (2015).

    Google Scholar 

  12. 12

    Despres, J. P. Body fat distribution and risk of cardiovascular disease: an update. Circulation 126, 1301–1313 (2012). This paper shows that visceral fat accumulation increases the risk of developing obesity-related comorbidities.

    Google Scholar 

  13. 13

    Cerhan, J. R. et al. A pooled analysis of waist circumference and mortality in 650,000 adults. Mayo Clin. Proc. 89, 335–345 (2014).

    Google Scholar 

  14. 14

    Sahakyan, K. R. et al. Normal-weight central obesity: implications for total and cardiovascular mortality. Ann. Intern. Med. 163, 827–835 (2015).

    Google Scholar 

  15. 15

    Urdampilleta, A., Gonzalez-Muniesa, P., Portillo, M. P. & Martinez, J. A. Usefulness of combining intermittent hypoxia and physical exercise in the treatment of obesity. J. Physiol. Biochem. 68, 289–304 (2012).

    Google Scholar 

  16. 16

    World Health Organization. Obesity and overweight. WHOhttp://www.who.int/mediacentre/factsheets/fs311/en/ (2015).

  17. 17

    Dobbs, R. et al. How the world could better fight obesity (McKinsey Global Institute, 2014).

    Google Scholar 

  18. 18

    Cornelsen, L., Green, R., Dangour, A. & Smith, R. Why fat taxes won’t make us thin. J. Public Health (Oxf.) 37, 18–23 (2015).

    Google Scholar 

  19. 19

    Malik, V. S., Willett, W. C. & Hu, F. B. Global obesity: trends, risk factors and policy implications. Nat. Rev. Endocrinol. 9, 13–27 (2013).

    Google Scholar 

  20. 20

    Lauby-Secretan, B. et al. Body fatness and cancer — viewpoint of the IARC Working Group. N. Engl. J. Med. 375, 794–798 (2016). These data indicate a causal cancer-preventive effect of intentional weight loss.

    Google Scholar 

  21. 21

    Ng, M. et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 384, 766–781 (2014).

    Google Scholar 

  22. 22

    Yang, L. & Colditz, G. A. Prevalence of overweight and obesity in the United States, 2007–2012. JAMA Intern. Med. 175, 1412–1413 (2015).

    Google Scholar 

  23. 23

    Nazare, J. A. et al. Ethnic influences on the relations between abdominal subcutaneous and visceral adiposity, liver fat, and cardiometabolic risk profile: the International Study of Prediction of Intra-Abdominal Adiposity and Its Relationship With Cardiometabolic Risk/Intra-Abdominal Adiposity. Am. J. Clin. Nutr. 96, 714–726 (2012).

    Google Scholar 

  24. 24

    Finucane, M. M. et al. National, regional, and global trends in body-mass index since 1980: systematic analysis of health examination surveys and epidemiological studies with 960 country-years and 9.1 million participants. Lancet 377, 557–567 (2011).

    Google Scholar 

  25. 25

    Finkelstein, E. A. et al. Obesity and severe obesity forecasts through 2030. Am. J. Prev. Med. 42, 563–570 (2012).

    Google Scholar 

  26. 26

    Kelly, T., Yang, W., Chen, C. S., Reynolds, K. & He, J. Global burden of obesity in 2005 and projections to 2030. Int. J. Obes. (Lond.) 32, 1431–1437 (2008).

    Google Scholar 

  27. 27

    Ahmad, O. B. et al. Age standardization of rates: a new WHO standard (WHO, 2001).

    Google Scholar 

  28. 28

    Ahluwalia, N. et al. Trends in overweight prevalence among 11-, 13- and 15-year-olds in 25 countries in Europe, Canada and USA from 2002 to 2010. Eur. J. Public Health 25 (Suppl. 2), 28–32 (2015).

    Google Scholar 

  29. 29

    Koletzko, B., Symonds, M. E. & Olsen, S. F. Programming research: where are we and where do we go from here? Am. J. Clin. Nutr. 94, 2036S–2043S (2011).

    Google Scholar 

  30. 30

    Hanley, B. et al. Metabolic imprinting, programming and epigenetics — a review of present priorities and future opportunities. Br. J. Nutr. 104, S1–S25 (2010).

    Google Scholar 

  31. 31

    Eriksson, J. G. Developmental origins of health and disease — from a small body size at birth to epigenetics. Ann. Med. 48, 456–467 (2016).

    Google Scholar 

  32. 32

    Dearden, L. & Ozanne, S. E. Early life origins of metabolic disease: developmental programming of hypothalamic pathways controlling energy homeostasis. Front. Neuroendocrinol. 39, 3–16 (2015).

    Google Scholar 

  33. 33

    Lin, X. et al. Developmental pathways to adiposity begin before birth and are influenced by genotype, prenatal environment and epigenome. BMC Med. 15, 50 (2017).

    Google Scholar 

  34. 34

    Yu, Z. B. et al. Birth weight and subsequent risk of obesity: a systematic review and meta-analysis. Obes. Rev. 12, 525–542 (2011).

    Google Scholar 

  35. 35

    Labayen, I. et al. Early life programming of abdominal adiposity in adolescents: the HELENA study. Diabetes Care 32, 2120–2122 (2009).

    Google Scholar 

  36. 36

    Druet, C. et al. Prediction of childhood obesity by infancy weight gain: an individual-level meta-analysis. Paediatr. Perinat. Epidemiol. 26, 19–26 (2012).

    Google Scholar 

  37. 37

    Chen, L. W. et al. Associations of maternal macronutrient intake during pregnancy with infant BMI peak characteristics and childhood BMI. Am. J. Clin. Nutr. 105, 705–713 (2017).

    Google Scholar 

  38. 38

    Arenz, S., Ruckerl, R., Koletzko, B. & von Kries, R. Breast-feeding and childhood obesity — a systematic review. Int. J. Obes. Relat. Metab. Disord. 28, 1247–1256 (2004).

    Google Scholar 

  39. 39

    Weber, M. et al. Lower protein content in infant formula reduces BMI and obesity risk at school age: follow-up of a randomized trial. Am. J. Clin. Nutr. 99, 1041–1051 (2014).

    Google Scholar 

  40. 40

    Ohlsson, C., Lorentzon, M., Norjavaara, E. & Kindblom, J. M. Age at adiposity rebound is associated with fat mass in young adult males — the GOOD study. PLoS ONE 7, e49404 (2012).

    Google Scholar 

  41. 41

    Peneau, S. et al. Age at adiposity rebound: determinants and association with nutritional status and the metabolic syndrome at adulthood. Int. J. Obes. (Lond.) 40, 1150–1156 (2016). This paper suggests that monitoring childhood growth will help to identify children at risk of developing an adverse cardiometabolic profile in adulthood.

    Google Scholar 

  42. 42

    Prentice, P. & Viner, R. M. Pubertal timing and adult obesity and cardiometabolic risk in women and men: a systematic review and meta-analysis. Int. J. Obes. (Lond.) 37, 1036–1043 (2013).

    Google Scholar 

  43. 43

    Hu, F. B. Obesity Epidemiology (Oxford Univ. Press, 2008).

    Google Scholar 

  44. 44

    Hall, K. D. et al. Quantification of the effect of energy imbalance on bodyweight. Lancet 378, 826–837 (2011).

    Google Scholar 

  45. 45

    Vague, J. The degree of masculine differentiation of obesities: a factor determining predisposition to diabetes, atherosclerosis, gout, and uric calculous disease. Am. J. Clin. Nutr. 4, 20–34 (1956).

    Google Scholar 

  46. 46

    Saeed, S. et al. Genetic variants in LEP, LEPR, and MC4R explain 30% of severe obesity in children from a consanguineous population. Obesity (Silver Spring) 23, 1687–1695 (2015).

    Google Scholar 

  47. 47

    Flier, J. S. Obesity wars: molecular progress confronts an expanding epidemic. Cell 116, 337–350 (2004).

    Google Scholar 

  48. 48

    Ferguson, L. R. et al. Guide and position of the International Society of Nutrigenetics/Nutrigenomics on personalised nutrition: part 1 — fields of precision nutrition. J. Nutrigenet. Nutrigenomics 9, 12–27 (2016).

    Google Scholar 

  49. 49

    Ludwig, D. S. & Nestle, M. Can the food industry play a constructive role in the obesity epidemic? JAMA 300, 1808–1811 (2008).

    Google Scholar 

  50. 50

    Bes-Rastrollo, M. et al. A prospective study of eating away-from-home meals and weight gain in a Mediterranean population: the SUN (Seguimiento Universidad de Navarra) cohort. Public Health Nutr. 13, 1356–1363 (2010).

    Google Scholar 

  51. 51

    Vandevijvere, S., Chow, C. C., Hall, K. D., Umali, E. & Swinburn, B. A. Increased food energy supply as a major driver of the obesity epidemic: a global analysis. Bull. World Health Organ. 93, 446–456 (2015).

    Google Scholar 

  52. 52

    Sayon-Orea, C. et al. Association between sleeping hours and siesta and the risk of obesity: the SUN Mediterranean cohort. Obes. Facts 6, 337–347 (2013).

    Google Scholar 

  53. 53

    Ludwig, D. S. Lifespan weighed down by diet. JAMA 315, 2269–2270 (2016).

    Google Scholar 

  54. 54

    Jensen, M. D. et al. 2013 AHA/ACC/TOS guideline for the management of overweight and obesity in adults: a report of the American College of Cardiology/American Heart Association task force on practice guidelines and The Obesity Society. J. Am. Coll. Cardiol. 63, 2985–3023 (2014).

    Google Scholar 

  55. 55

    Martinez, J. A., Navas-Carretero, S., Saris, W. H. & Astrup, A. Personalized weight loss strategies-the role of macronutrient distribution. Nat. Rev. Endocrinol. 10, 749–760 (2014). This paper shows that the role of macronutrient distribution has to be considered for individualized dietary approaches.

    Google Scholar 

  56. 56

    Razquin, C. et al. A 3 years follow-up of a Mediterranean diet rich in virgin olive oil is associated with high plasma antioxidant capacity and reduced body weight gain. Eur. J. Clin. Nutr. 63, 1387–1393 (2009).

    Google Scholar 

  57. 57

    Estruch, R. et al. Effect of a high-fat Mediterranean diet on bodyweight and waist circumference: a prespecified secondary outcomes analysis of the PREDIMED randomised controlled trial. Lancet Diabetes Endocrinol. 4, 666–676 (2016). This paper shows that the Mediterranean diet (without calorie restriction) was associated with body weight loss and less gain in central adiposity.

    Google Scholar 

  58. 58

    Mozaffarian, D., Hao, T., Rimm, E. B., Willett, W. C. & Hu, F. B. Changes in diet and lifestyle and long-term weight gain in women and men. N. Engl. J. Med. 364, 2392–2404 (2011).

    Google Scholar 

  59. 59

    Schwingshackl, L. et al. Fruit and vegetable consumption and changes in anthropometric variables in adult populations: a systematic review and meta-analysis of prospective cohort studies. PLoS ONE 10, e0140846 (2015).

    Google Scholar 

  60. 60

    Smith, J. D. et al. Changes in intake of protein foods, carbohydrate amount and quality, and long-term weight change: results from 3 prospective cohorts. Am. J. Clin. Nutr. 101, 1216–1224 (2015).

    Google Scholar 

  61. 61

    Mozaffarian, D. Food and weight gain: time to end our fear of fat. Lancet Diabetes Endocrinol. 4, 633–635 (2016).

    Google Scholar 

  62. 62

    Tobias, D. K. et al. Effect of low-fat diet interventions versus other diet interventions on long-term weight change in adults: a systematic review and meta-analysis. Lancet Diabetes Endocrinol. 3, 968–979 (2015).

    Google Scholar 

  63. 63

    Cornier, M. A., Marshall, J. A., Hill, J. O., Maahs, D. M. & Eckel, R. H. Prevention of overweight/obesity as a strategy to optimize cardiovascular health. Circulation 124, 840–850 (2011).

    Google Scholar 

  64. 64

    World Health Organization. Obesity: preventing and managing the global epidemic. Report of a WHO Consultation (WHO Technical Report Series 894) (WHO, 2000).

  65. 65

    Nordestgaard, B. G. et al. The effect of elevated body mass index on ischemic heart disease risk: causal estimates from a Mendelian randomisation approach. PLoS Med. 9, e1001212 (2012).

    Google Scholar 

  66. 66

    Park, M. H., Sovio, U., Viner, R. M., Hardy, R. J. & Kinra, S. Overweight in childhood, adolescence and adulthood and cardiovascular risk in later life: pooled analysis of three British birth cohorts. PLoS ONE 8, e70684 (2013).

    Google Scholar 

  67. 67

    Renehan, A. G. et al. Incident cancer burden attributable to excess body mass index in 30 European countries. Int. J. Cancer 126, 692–702 (2010).

    Google Scholar 

  68. 68

    Wang, Y. C., McPherson, K., Marsh, T., Gortmaker, S. L. & Brown, M. Health and economic burden of the projected obesity trends in the USA and the UK. Lancet 378, 815–825 (2011).

    Google Scholar 

  69. 69

    Jauch-Chara, K. & Oltmanns, K. M. Obesity — a neuropsychological disease? Systematic review and neuropsychological model. Prog. Neurobiol. 114, 84–101 (2014).

    Google Scholar 

  70. 70

    Global BMI Mortality Collaboration. Body-mass index and all-cause mortality: individual-participant-data meta-analysis of 239 prospective studies in four continents. Lancet 388, 776–786 (2016). This article reports that overweight and obesity consistently increase all-cause mortality worldwide.

    Google Scholar 

  71. 71

    Flegal, K. M., Kit, B. K., Orpana, H. & Graubard, B. I. Association of all-cause mortality with overweight and obesity using standard body mass index categories: a systematic review and meta-analysis. JAMA 309, 71–82 (2013).

    Google Scholar 

  72. 72

    de Onis, M. & Lobstein, T. Defining obesity risk status in the general childhood population: which cut-offs should we use? Int. J. Pediatr. Obes. 5, 458–460 (2010).

    Google Scholar 

  73. 73

    Stokes, A. Using maximum weight to redefine body mass index categories in studies of the mortality risks of obesity. Popul. Health Metr. 12, 6 (2014).

    Google Scholar 

  74. 74

    Despres, J. P. & Lemieux, I. Abdominal obesity and metabolic syndrome. Nature 444, 881–887 (2006).

    Google Scholar 

  75. 75

    Elks, C. E. et al. Variability in the heritability of body mass index: a systematic review and meta-regression. Front. Endocrinol. (Lausanne) 3, 29 (2012).

    Google Scholar 

  76. 76

    Meyers, M. G. Jr & Leibel, R. L. Lessons from rodent models of obesity. Endotexthttps://www.ncbi.nlm.nih.gov/books/NBK279123/ (updated 6 Sept 2015).

  77. 77

    van der Klaauw, A. A. & Farooqi, I. S. The hunger genes: pathways to obesity. Cell 161, 119–132 (2015).

    Google Scholar 

  78. 78

    Frayling, T. M. et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science 316, 889–894 (2007).

    Google Scholar 

  79. 79

    Scuteri, A. et al. Genome-wide association scan shows genetic variants in the FTO gene are associated with obesity-related traits. PLoS Genet. 3, e115 (2007).

    Google Scholar 

  80. 80

    Yang, J. et al. FTO genotype is associated with phenotypic variability of body mass index. Nature 490, 267–272 (2012).

    Google Scholar 

  81. 81

    Milagro, F. I., Moreno-Aliaga, M. J. & Martinez, J. A. FTO obesity variant and adipocyte browning in humans. N. Engl. J. Med. 374, 190–191 (2016).

    Google Scholar 

  82. 82

    Locke, A. E. et al. Genetic studies of body mass index yield new insights for obesity biology. Nature 518, 197–206 (2015).

    Google Scholar 

  83. 83

    Shungin, D. et al. New genetic loci link adipose and insulin biology to body fat distribution. Nature 518, 187–196 (2015).

    Google Scholar 

  84. 84

    Winkler, T. W. et al. The influence of age and sex on genetic associations with adult body size and shape: a large-scale genome-wide interaction study. PLoS Genet. 11, e1005378 (2015).

    Google Scholar 

  85. 85

    Loche, E. & Ozanne, S. E. Early nutrition, epigenetics, and cardiovascular disease. Curr. Opin. Lipidol. 27, 449–458 (2016).

    Google Scholar 

  86. 86

    Ravelli, G. P., Stein, Z. A. & Susser, M. Obesity in young men after famine exposure in utero and early infancy. N. Engl. J. Med. 295, 349–353 (1976).

    Google Scholar 

  87. 87

    Heijmans, B. T. et al. Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc. Natl Acad. Sci. USA 105, 17046–17049 (2008).

    Google Scholar 

  88. 88

    Dick, K. J. et al. DNA methylation and body-mass index: a genome-wide analysis. Lancet 383, 1990–1998 (2014).

    Google Scholar 

  89. 89

    Jiang, C. et al. Disruption of hypoxia-inducible factor 1 in adipocytes improves insulin sensitivity and decreases adiposity in high-fat diet-fed mice. Diabetes 60, 2484–2495 (2011).

    Google Scholar 

  90. 90

    Wahl, S. et al. Epigenome-wide association study of body mass index, and the adverse outcomes of adiposity. Nature 541, 81–86 (2017).

    Google Scholar 

  91. 91

    Mendelson, M. M. et al. Association of body mass index with DNA methylation and gene expression in blood cells and relations to cardiometabolic disease: a Mendelian randomization approach. PLoS Med. 14, e1002215 (2017).

    Google Scholar 

  92. 92

    van Dijk, S. J. et al. Epigenetics and human obesity. Int. J. Obes. (Lond.) 39, 85–97 (2015). This paper reports that unfavourable epigenomic profiles could be modified with appropriate lifestyle programmes.

    Google Scholar 

  93. 93

    Giralt, M. & Villarroya, F. White, brown, beige/brite: different adipose cells for different functions? Endocrinology 154, 2992–3000 (2013). This paper suggests that understanding brown adipocyte activity and differentiation could be a useful tool to increase energy expenditure and the fight against obesity.

    Google Scholar 

  94. 94

    Sacks, H. & Symonds, M. E. Anatomical locations of human brown adipose tissue functional relevance and implications in obesity and type 2 diabetes. Diabetes 62, 1783–1790 (2013).

    Google Scholar 

  95. 95

    Santhanam, P., Solnes, L., Hannukainen, J. C. & Taieb, D. Adiposity-related cancer and functional imaging of brown adipose tissue. Endocr. Pract. 21, 1282–1290 (2015).

    Google Scholar 

  96. 96

    Prodhomme, H. et al. Imaging and identification of brown adipose tissue on CT scan. Clin. Physiol. Funct. Imaginghttp://dx.doi.org/10.1111/cpf.12373 (2016).

  97. 97

    Matsuzawa, Y. The metabolic syndrome and adipocytokines. FEBS Lett. 580, 2917–2921 (2006).

    Google Scholar 

  98. 98

    Kotani, K. et al. Sexual dimorphism of age-related changes in whole-body fat distribution in the obese. Int. J. Obes. Relat. Metab. Disord. 18, 207–202 (1994).

    Google Scholar 

  99. 99

    Rosen, E. D. & Spiegelman, B. M. What we talk about when we talk about fat. Cell 156, 20–44 (2014).

    Google Scholar 

  100. 100

    Shulman, G. I. Ectopic fat in insulin resistance, dyslipidemia, and cardiometabolic disease. N. Engl. J. Med. 371, 1131–1141 (2014).

    Google Scholar 

  101. 101

    Gonzalez-Muniesa, P. et al. Effects of hyperoxia on oxygen-related inflammation with a focus on obesity. Oxid. Med. Cell. Longev. 2015, 8957827 (2015).

    Google Scholar 

  102. 102

    Karpe, F. & Pinnick, K. E. Biology of upper-body and lower-body adipose tissue — link to whole-body phenotypes. Nat. Rev. Endocrinol. 11, 90–100 (2015).

    Google Scholar 

  103. 103

    Rosito, G. A. et al. Pericardial fat, visceral abdominal fat, cardiovascular disease risk factors, and vascular calcification in a community-based sample: the Framingham Heart Study. Circulation 117, 605–613 (2008).

    Google Scholar 

  104. 104

    Thanassoulis, G. et al. Prevalence, distribution, and risk factor correlates of high pericardial and intrathoracic fat depots in the Framingham Heart Study. Circ. Cardiovasc. Imaging 3, 559–566 (2010).

    Google Scholar 

  105. 105

    Thomas, E. L. et al. The missing risk: MRI and MRS phenotyping of abdominal adiposity and ectopic fat. Obesity (Silver Spring) 20, 76–87 (2012). This article defines a new subphenotype, called thin-on-the-outside fat-on-the-inside (TOFI), for individuals at increased metabolic risk.

    Google Scholar 

  106. 106

    Ross, R. et al. Does the relationship between waist circumference, morbidity and mortality depend on measurement protocol for waist circumference? Obes. Rev. 9, 312–325 (2008).

    Google Scholar 

  107. 107

    Fabbrini, E. et al. Intrahepatic fat, not visceral fat, is linked with metabolic complications of obesity. Proc. Natl Acad. Sci. USA 106, 15430–15435 (2009).

    Google Scholar 

  108. 108

    Neeland, I. J. et al. Body fat distribution and incident cardiovascular disease in obese adults. J. Am. Coll. Cardiol. 65, 2150–2151 (2015).

    Google Scholar 

  109. 109

    Monajemi, H., Stroes, E., Hegele, R. A. & Fliers, E. Inherited lipodystrophies and the metabolic syndrome. Clin. Endocrinol. (Oxf.) 67, 479–484 (2007).

    Google Scholar 

  110. 110

    Patni, N. & Garg, A. Congenital generalized lipodystrophies — new insights into metabolic dysfunction. Nat. Rev. Endocrinol. 11, 522–534 (2015).

    Google Scholar 

  111. 111

    Iannucci, C. V., Capoccia, D., Calabria, M. & Leonetti, F. Metabolic syndrome and adipose tissue: new clinical aspects and therapeutic targets. Curr. Pharm. Des. 13, 2148–2168 (2007).

    Google Scholar 

  112. 112

    Camilleri, M. Peripheral mechanisms in appetite regulation. Gastroenterology 148, 1219–1233 (2015).

    Google Scholar 

  113. 113

    Ridaura, V. K. et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 341, 1241214 (2013).

    Google Scholar 

  114. 114

    Santacruz, A. et al. Interplay between weight loss and gut microbiota composition in overweight adolescents. Obesity (Silver Spring) 17, 1906–1915 (2009).

    Google Scholar 

  115. 115

    Stenholm, S. et al. Sarcopenic obesity: definition, cause and consequences. Curr. Opin. Clin. Nutr. Metab. Care 11, 693–700 (2008).

    Google Scholar 

  116. 116

    Prado, C. M. et al. A population-based approach to define body-composition phenotypes. Am. J. Clin. Nutr. 99, 1369–1377 (2014).

    Google Scholar 

  117. 117

    Stefan, N., Haring, H. U., Hu, F. B. & Schulze, M. B. Metabolically healthy obesity: epidemiology, mechanisms, and clinical implications. Lancet Diabetes Endocrinol. 1, 152–162 (2013).

    Google Scholar 

  118. 118

    Teixeira, T. F., Alves, R. D., Moreira, A. P. & Peluzio Mdo, C. Main characteristics of metabolically obese normal weight and metabolically healthy obese phenotypes. Nutr. Rev. 73, 175–190 (2015).

    Google Scholar 

  119. 119

    Hwang, Y. C. et al. Visceral abdominal fat accumulation predicts the conversion of metabolically healthy obese subjects to an unhealthy phenotype. Int. J. Obes. (Lond.) 39, 1365–1370 (2015). This paper provides data to differentiate between metabolically healthy obese and metabolically unhealthy obese, and the conversion from the former to the latter.

    Google Scholar 

  120. 120

    Franco, L. P., Morais, C. C. & Cominetti, C. Normal-weight obesity syndrome: diagnosis, prevalence, and clinical implications. Nutr. Rev. 74, 558–570 (2016).

    Google Scholar 

  121. 121

    Chan, J. C. et al. Diabetes in Asia: epidemiology, risk factors, and pathophysiology. JAMA 301, 2129–2140 (2009).

    Google Scholar 

  122. 122

    Zheng, W. et al. Association between body-mass index and risk of death in more than 1 million Asians. N. Engl. J. Med. 364, 719–729 (2011).

    Google Scholar 

  123. 123

    Ortega, F. B., Sui, X., Lavie, C. J. & Blair, S. N. Body mass index, the most widely used but also widely criticized index: would a criterion standard measure of total body fat be a better predictor of cardiovascular disease mortality? Mayo Clin. Proc. 91, 443–455 (2016).

    Google Scholar 

  124. 124

    Savva, S. C., Lamnisos, D. & Kafatos, A. G. Predicting cardiometabolic risk: waist-to-height ratio or BMI. A meta-analysis. Diabetes Metab. Syndr. Obes. 6, 403–419 (2013).

    Google Scholar 

  125. 125

    Marques, M. et al. Design of the nutritional therapy for overweight and obese Spanish adolescents conducted by registered dieticians: the EVASYON study. Nutr. Hosp. 27, 165–176 (2012).

    Google Scholar 

  126. 126

    Dong, B., Wang, Z., Wang, H. J. & Ma, J. Associations between adiposity indicators and elevated blood pressure among Chinese children and adolescents. J. Hum. Hypertens. 29, 236–240 (2015).

    Google Scholar 

  127. 127

    Guo, F., Moellering, D. R. & Garvey, W. T. The progression of cardiometabolic disease: validation of a new cardiometabolic disease staging system applicable to obesity. Obesity (Silver Spring) 22, 110–118 (2014).

    Google Scholar 

  128. 128

    Sharma, A. M. & Kushner, R. F. A proposed clinical staging system for obesity. Int. J. Obes. (Lond.) 33, 289–295 (2009).

    Google Scholar 

  129. 129

    Heo, M., Faith, M. S., Pietrobelli, A. & Heymsfield, S. B. Percentage of body fat cutoffs by sex, age, and race-ethnicity in the US adult population from NHANES 1999–2004. Am. J. Clin. Nutr. 95, 594–602 (2012).

    Google Scholar 

  130. 130

    Lobstein, T. et al. Child and adolescent obesity: part of a bigger picture. Lancet 385, 2510–2520 (2015).

    Google Scholar 

  131. 131

    Swinburn, B. A. et al. The global obesity pandemic: shaped by global drivers and local environments. Lancet 378, 804–814 (2011).

    Google Scholar 

  132. 132

    Blake-Lamb, T. L. et al. Interventions for childhood obesity in the first 1,000 days a systematic review. Am. J. Prev. Med. 50, 780–789 (2016).

    Google Scholar 

  133. 133

    Tanvig, M. et al. Anthropometrics and body composition by dual energy X-ray in children of obese women: a follow-up of a randomized controlled trial (the Lifestyle in Pregnancy and Offspring [LiPO] study). PLoS ONE 9, e89590 (2014).

    Google Scholar 

  134. 134

    Gillman, M. W. et al. Effect of treatment of gestational diabetes mellitus on obesity in the next generation. Diabetes Care 33, 964–968 (2010).

    Google Scholar 

  135. 135

    Wen, L. M. et al. Effectiveness of home based early intervention on children's BMI at age 2: randomised controlled trial. BMJ 344, e3732 (2012).

    Google Scholar 

  136. 136

    Navarro, J. I., Sigulem, D. M., Ferraro, A. A., Polanco, J. J. & Barros, A. J. The double task of preventing malnutrition and overweight: a quasi-experimental community-based trial. BMC Public Health 13, 212 (2013).

    Google Scholar 

  137. 137

    Ciampa, P. J. et al. Interventions aimed at decreasing obesity in children younger than 2 years: a systematic review. Arch. Pediatr. Adolesc. Med. 164, 1098–1104 (2010).

    Google Scholar 

  138. 138

    Summerbell, C. D. et al. Evidence-based recommendations for the development of obesity prevention programs targeted at preschool children. Obes. Rev. 13 (Suppl. 1), 129–132 (2012).

    Google Scholar 

  139. 139

    Waters, E. et al. Interventions for preventing obesity in children. Cochrane Database Syst. Rev. 12, CD001871 (2011).

    Google Scholar 

  140. 140

    Shah, R., Kennedy, S., Clark, M. D., Bauer, S. C. & Schwartz, A. Primary care-based interventions to promote positive parenting behaviors: a meta-analysis. Pediatrics 137, e20153393 (2016).

    Google Scholar 

  141. 141

    Ewart-Pierce, E., Mejia Ruiz, M. J. & Gittelsohn, J. “Whole-of-community” obesity prevention: a review of challenges and opportunities in multilevel, multicomponent interventions. Curr. Obes. Rep. 5, 361–374 (2016).

    Google Scholar 

  142. 142

    Gluckman, P., Nishtar, S. & Armstrong, T. Ending childhood obesity: a multidimensional challenge. Lancet 385, 1048–1050 (2015).

    Google Scholar 

  143. 143

    Moreno, L. A. et al. Nutrition and lifestyle in European adolescents: the HELENA (Healthy Lifestyle in Europe by Nutrition in Adolescence) study. Adv. Nutr. 5, 615S–623S (2014).

    Google Scholar 

  144. 144

    Burke, L. E., Wang, J. & Sevick, M. A. Self-monitoring in weight loss: a systematic review of the literature. J. Am. Diet. Assoc. 111, 92–102 (2011).

    Google Scholar 

  145. 145

    Apovian, C. M. et al. Pharmacological management of obesity: an Endocrine Society clinical practice guideline. J. Clin. Endocrinol. Metab. 100, 342–362 (2015).

    Google Scholar 

  146. 146

    Eckel, R. H. et al. 2013 AHA/ACC guideline on lifestyle management to reduce cardiovascular risk: a report of the American College of Cardiology/American Heart Association Task Force on practice guidelines. J. Am. Coll. Cardiol. 63, 2960–2984 (2014).

    Google Scholar 

  147. 147

    Garvey, W. T. et al. American Association of Clinical Endocrinologists and American College of Endocrinology comprehensive clinical practice guidelines for medical care of patients with obesity: executive summary: complete guidelines available at https://www.aace.com/publications/guidelines. Endocr. Pract. 22, 842–884 (2016).

  148. 148

    National Clinical Guideline Centre. Obesity: identification, assessment and management of overweight and obesity in children, young people and adults: partial update of CG43 (National Clinical Guideline Centre, 2014).

  149. 149

    Jensen, M. D. et al. Executive summary: guidelines (2013) for the management of overweight and obesity in adults. Obesity 22, S5–S39 (2014).

    Google Scholar 

  150. 150

    Yumuk, V., Fruhbeck, G., Oppert, J. M., Woodward, E. & Toplak, H. An EASO position statement on multidisciplinary obesity management in adults. Obes. Facts 7, 96–101 (2014).

    Google Scholar 

  151. 151

    Bray, G. A. & Siri-Tarino, P. W. The role of macronutrient content in the diet for weight management. Endocrinol. Metab. Clin. North Am. 45, 581–604 (2016).

    Google Scholar 

  152. 152

    Bray, G. A., Fruhbeck, G., Ryan, D. H. & Wilding, J. P. Management of obesity. Lancet 387, 1947–1956 (2016). This review explains the latest lifestyle programmes, pharmacological treatments and surgical procedures to manage obesity.

    Google Scholar 

  153. 153

    Wadden, T. A., Webb, V. L., Moran, C. H. & Bailer, B. A. Lifestyle modification for obesity: new developments in diet, physical activity, and behavior therapy. Circulation 125, 1157–1170 (2012).

    Google Scholar 

  154. 154

    Leblanc, E. S., O’Connor, E., Whitlock, E. P., Patnode, C. D. & Kapka, T. Effectiveness of primary care-relevant treatments for obesity in adults: a systematic evidence review for the U.S. Preventive Services Task Force. Ann. Intern. Med. 155, 434–447 (2011).

    Google Scholar 

  155. 155

    Robinson, E. et al. A systematic review and meta-analysis examining the effect of eating rate on energy intake and hunger. Am. J. Clin. Nutr. 100, 123–151 (2014).

    Google Scholar 

  156. 156

    Tate, D. F. A series of studies examining Internet treatment of obesity to inform Internet interventions for substance use and misuse. Subst. Use Misuse 46, 57–65 (2011).

    Google Scholar 

  157. 157

    Mozaffarian, D. Dietary and policy priorities for cardiovascular disease, diabetes, and obesity: a comprehensive review. Circulation 133, 187–225 (2016).

    Google Scholar 

  158. 158

    Johnston, B. C. et al. Comparison of weight loss among named diet programs in overweight and obese adults: a meta-analysis. JAMA 312, 923–933 (2014).

    Google Scholar 

  159. 159

    Abete, I., Astrup, A., Martínez, J. A., Thorsdottir, I. & Zulet, M. A. Obesity and the metabolic syndrome: role of different dietary macronutrient distribution patterns and specific nutritional components on weight loss and maintenance. Nutr. Rev. 68, 214–231 (2010).

    Google Scholar 

  160. 160

    Larsen, T. M. et al. Diets with high or low protein content and glycemic index for weight-loss maintenance. N. Engl. J. Med. 363, 2102–2113 (2010).

    Google Scholar 

  161. 161

    de la Iglesia, R. et al. Dietary strategies implicated in the prevention and treatment of metabolic syndrome. Int. J. Mol. Sci. 17, E1877 (2016).

    Google Scholar 

  162. 162

    Donnelly, J. E. et al. American College of Sports Medicine Position Stand. Appropriate physical activity intervention strategies for weight loss and prevention of weight regain for adults. Med. Sci. Sports Exerc. 41, 459–471 (2009).

    Google Scholar 

  163. 163

    World Health Organization. Global recommendations on physical activity for health (WHO, 2010).

  164. 164

    Wu, T., Gao, X., Chen, M. & van Dam, R. M. Long-term effectiveness of diet-plus-exercise interventions versus diet-only interventions for weight loss: a meta-analysis. Obes. Rev. 10, 313–323 (2009).

    Google Scholar 

  165. 165

    Jakicic, J. M., Marcus, B. H., Lang, W. & Janney, C. Effect of exercise on 24-month weight loss maintenance in overweight women. Arch. Intern. Med. 168, 1550–1559 (2008).

    Google Scholar 

  166. 166

    Look AHEAD Research Group. Eight-year weight losses with an intensive lifestyle intervention: the look AHEAD study. Obesity (Silver Spring) 22, 5–13 (2014).

    Google Scholar 

  167. 167

    Ross, R., Hudson, R., Stotz, P. J. & Lam, M. Effects of exercise amount and intensity on abdominal obesity and glucose tolerance in obese adults: a randomized trial. Ann. Intern. Med. 162, 325–334 (2015).

    Google Scholar 

  168. 168

    Solas, M., Milagro, F. I., Martinez-Urbistondo, D., Ramirez, M. J. & Martinez, J. A. Precision obesity treatments including pharmacogenetic and nutrigenetic approaches. Trends Pharmacol. Sci. 37, 575–593 (2016).

    Google Scholar 

  169. 169

    Schauer, P. R. et al. Bariatric surgery versus intensive medical therapy for diabetes — 3-year outcomes. N. Engl. J. Med. 370, 2002–2013 (2014).

    Google Scholar 

  170. 170

    Rubino, F. et al. Metabolic surgery in the treatment algorithm for type 2 diabetes: a joint statement by International Diabetes Organizations. Diabetes Care 39, 861–877 (2016).

    Google Scholar 

  171. 171

    Courcoulas, A. P. et al. Weight change and health outcomes at 3 years after bariatric surgery among individuals with severe obesity. JAMA 310, 2416–2425 (2013).

    Google Scholar 

  172. 172

    Inge, T. H. et al. Weight loss and health status 3 years after bariatric surgery in adolescents. N. Engl. J. Med. 374, 113–123 (2016).

    Google Scholar 

  173. 173

    Sjostrom, L. Review of the key results from the Swedish Obese Subjects (SOS) trial — a prospective controlled intervention study of bariatric surgery. J. Intern. Med. 273, 219–234 (2013).

    Google Scholar 

  174. 174

    Ikramuddin, S. et al. Roux-en-Y gastric bypass versus intensive medical management for the control of type 2 diabetes, hypertension, and hyperlipidemia: the Diabetes Surgery Study randomized clinical trial. JAMA 309, 2240–2249 (2013).

    Google Scholar 

  175. 175

    Sjostrom, L. et al. Association of bariatric surgery with long-term remission of type 2 diabetes and with microvascular and macrovascular complications. JAMA 311, 2297–2304 (2014).

    Google Scholar 

  176. 176

    Nguyen, K. T. & Korner, J. The sum of many parts: potential mechanisms for improvement in glucose homeostasis after bariatric surgery. Curr. Diab. Rep. 14, 481 (2014).

    Google Scholar 

  177. 177

    Colquitt, J. L., Pickett, K., Loveman, E. & Frampton, G. K. Surgery for weight loss in adults. Cochrane Database Syst. Rev. 8, CD003641 (2014).

    Google Scholar 

  178. 178

    Chang, S. H. et al. The effectiveness and risks of bariatric surgery: an updated systematic review and meta-analysis, 2003–2012. JAMA Surg. 149, 275–287 (2014).

    Google Scholar 

  179. 179

    Kroes, M., Osei-Assibey, G., Baker-Searle, R. & Huang, J. Impact of weight change on quality of life in adults with overweight/obesity in the United States: a systematic review. Curr. Med. Res. Opin. 32, 485–508 (2016). This paper reports that weight loss should improve quality of life in people who are overweight and obese.

    Google Scholar 

  180. 180

    Perez-Cornago, A. et al. A decline in inflammation is associated with less depressive symptoms after a dietary intervention in metabolic syndrome patients: a longitudinal study. Nutr. J. 13, 36 (2014).

    Google Scholar 

  181. 181

    Vallis, M. Quality of life and psychological well-being in obesity management: improving the odds of success by managing distress. Int. J. Clin. Pract. 70, 196–205 (2016).

    Google Scholar 

  182. 182

    Groessl, E. J., Kaplan, R. M., Barrett-Connor, E. & Ganiats, T. G. Body mass index and quality of well-being in a community of older adults. Am. J. Prev. Med. 26, 126–129 (2004).

    Google Scholar 

  183. 183

    Brazier, J., Jones, N. & Kind, P. Testing the validity of the Euroqol and comparing it with the SF-36 health survey questionnaire. Qual. Life Res. 2, 169–180 (1993).

    Google Scholar 

  184. 184

    Muennig, P., Lubetkin, E., Jia, H. & Franks, P. Gender and the burden of disease attributable to obesity. Am. J. Public Health 96, 1662–1668 (2006).

    Google Scholar 

  185. 185

    Cameron, A. J. et al. A bi-directional relationship between obesity and health-related quality of life: evidence from the longitudinal AusDiab study. Int. J. Obes. (Lond.) 36, 295–303 (2012).

    Google Scholar 

  186. 186

    Kolotkin, R. L., Crosby, R. D., Williams, G. R., Hartley, G. G. & Nicol, S. The relationship between health-related quality of life and weight loss. Obes. Res. 9, 564–571 (2001).

    Google Scholar 

  187. 187

    Pan, A. et al. Changes in body weight and health-related quality of life: 2 cohorts of US women. Am. J. Epidemiol. 180, 254–262 (2014).

    Google Scholar 

  188. 188

    Warkentin, L. M. et al. Weight loss required by the severely obese to achieve clinically important differences in health-related quality of life: two-year prospective cohort study. BMC Med. 12, 175 (2014).

    Google Scholar 

  189. 189

    de Beer, M. et al. Health-related-quality-of-life in obese adolescents is decreased and inversely related to BMI. Acta Paediatr. 96, 710–714 (2007).

    Google Scholar 

  190. 190

    Helseth, S., Haraldstad, K. & Christophersen, K. A. A cross-sectional study of health related quality of life and body mass index in a Norwegian school sample (8–18 years): a comparison of child and parent perspectives. Health Qual. Life Outcomes 13, 47 (2015).

    Google Scholar 

  191. 191

    Tsiros, M. D. et al. Health-related quality of life in obese children and adolescents. Int. J. Obes. (Lond.) 33, 387–400 (2009).

    Google Scholar 

  192. 192

    Wille, N., Erhart, M., Petersen, C. & Ravens-Sieberer, U. The impact of overweight and obesity on health-related quality of life in childhood — results from an intervention study. BMC Public Health 8, 421 (2008).

    Google Scholar 

  193. 193

    Wu, J., Cohen, P. & Spiegelman, B. M. Adaptive thermogenesis in adipocytes: is beige the new brown? Genes Dev. 27, 234–250 (2013).

    Google Scholar 

  194. 194

    Goni, L., Cuervo, M., Milagro, F. I. & Martinez, J. A. Future perspectives of personalized weight loss interventions based on nutrigenetic, epigenetic, and metagenomic data. J. Nutr. 146, 905S–912S (2016). This paper suggests that personalized dietary treatments could benefit from the integration of nutrigenetic, epigenetic and metagenomic data.

    Google Scholar 

  195. 195

    Giles-Corti, B. et al. City planning and population health: a global challenge. Lancet 388, 2912–2924 (2016).

    Google Scholar 

  196. 196

    Taheri, S. The link between short sleep duration and obesity: we should recommend more sleep to prevent obesity. Arch. Dis. Child. 91, 881–884 (2006).

    Google Scholar 

  197. 197

    Diaz-Gutierrez, J. et al. Living at higher altitude and incidence of overweight/obesity: prospective analysis of the SUN cohort. PLoS ONE 11, e0164483 (2016).

    Google Scholar 

  198. 198

    Lopez-Pascual, A. et al. Living at a geographically higher elevation is associated with lower risk of metabolic syndrome: prospective analysis of the SUN cohort. Front. Physiol. 7, 658 (2016).

    Google Scholar 

  199. 199

    Kelley, C. P., Sbrocco, G. & Sbrocco, T. Behavioral modification for the management of obesity. Prim. Care 43, 159–175 (2016).

    Google Scholar 

  200. 200

    Enright, G. et al. Evaluating factors influencing the delivery and outcomes of an incentive-based behaviour change strategy targeting child obesity: protocol for a qualitative process and impact evaluation. BMJ Open 6, e012536 (2016).

    Google Scholar 

  201. 201

    Kahn, R., Buse, J., Ferrannini, E. & Stern, M. The metabolic syndrome: time for a critical appraisal: joint statement from the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care 28, 2289–2304 (2005).

    Google Scholar 

  202. 202

    Zulet, M. A. et al. The reduction of the metabolyc syndrome in Navarra-Spain (RESMENA-S) study: a multidisciplinary strategy based on chrononutrition and nutritional education, together with dietetic and psychological control. Nutr. Hosp. 26, 16–26 (2011).

    Google Scholar 

  203. 203

    Brazier, J. E. et al. Validating the SF-36 health survey questionnaire: new outcome measure for primary care. BMJ 305, 160–164 (1992).

    Google Scholar 

  204. 204

    Kolotkin, R. L., Crosby, R. D., Kosloski, K. D. & Williams, G. R. Development of a brief measure to assess quality of life in obesity. Obes. Res. 9, 102–111 (2001).

    Google Scholar 

  205. 205

    McHorney, C. A., Ware, J. E. Jr & Raczek, A. E. The MOS 36-Item Short-Form Health Survey (SF-36): II. Psychometric and clinical tests of validity in measuring physical and mental health constructs. Med. Care 31, 247–263 (1993).

    Google Scholar 

  206. 206

    Kolotkin, R. L. & Crosby, R. D. Psychometric evaluation of the impact of weight on quality of life-lite questionnaire (IWQOL-lite) in a community sample. Qual. Life Res. 11, 157–171 (2002).

    Google Scholar 

  207. 207

    Crosby, R. D., Kolotkin, R. L. & Williams, G. R. An integrated method to determine meaningful changes in health-related quality of life. J. Clin. Epidemiol. 57, 1153–1160 (2004).

    Google Scholar 

  208. 208

    Wyrwich, K. W., Tierney, W. M., Babu, A. N., Kroenke, K. & Wolinsky, F. D. A comparison of clinically important differences in health-related quality of life for patients with chronic lung disease, asthma, or heart disease. Health Serv. Res. 40, 577–591 (2005).

    Google Scholar 

  209. 209

    Janicke, D. M. et al. Systematic review and meta-analysis of comprehensive behavioral family lifestyle interventions addressing pediatric obesity. J. Pediatr. Psychol. 39, 809–825 (2014).

    Google Scholar 

  210. 210

    Modi, A. C. & Zeller, M. H. The IWQOL-Kids©: establishing minimal clinically important difference scores and test-retest reliability. Int. J. Pediatr. Obes. 6, e94–e96 (2011).

    Google Scholar 

  211. 211

    Lai, C. S., Wu, J. C., Ho, C. T. & Pan, M. H. Chemoprevention of obesity by dietary natural compounds targeting mitochondrial regulation. Mol. Nutr. Food Res. 61, 1600721 (2017).

    Google Scholar 

  212. 212

    De Fanti, B. A., Milagro, F. I., Lamas, O., Martinez-Anso, E. & Martinez, J. A. Immunomanipulation of appetite and body temperature through the functional mimicry of leptin. Obes. Res. 10, 833–837 (2002).

    Google Scholar 

  213. 213

    De Fanti, B. A., Lamas, O., Milagro, F. I., Martinez-Anso, E. & Martinez, J. A. Immunoneutralization and anti-idiotype production: two-sided applications of leptin. Trends Immunol. 23, 180–181 (2002). This article reports on immunotherapy as an obesity treatment.

    Google Scholar 

  214. 214

    Martinez-Fernandez, L., Laiglesia, L. M., Huerta, A. E., Martinez, J. A. & Moreno-Aliaga, M. J. Omega-3 fatty acids and adipose tissue function in obesity and metabolic syndrome. Prostaglandins Other Lipid Mediat. 121, 24–41 (2015).

    Google Scholar 

  215. 215

    Arias, N. et al. A combination of resveratrol and quercetin induces browning in white adipose tissue of rats fed an obesogenic diet. Obesity (Silver Spring) 25, 111–121 (2017).

    Google Scholar 

  216. 216

    Gonzalez-Muniesa, P. et al. Impact of intermittent hypoxia and exercise on blood pressure and metabolic features from obese subjects suffering sleep apnea-hypopnea syndrome. J. Physiol. Biochem. 71, 589–599 (2015).

    Google Scholar 

  217. 217

    Quintero, P., Milagro, F., Campion, J. & Martinez, J. Impact of oxygen availability on body weight management. Med. Hypotheses 74, 901–907 (2010).

    Google Scholar 

  218. 218

    Gonzalez-Muniesa, P., Milagro, F. I., Campion, J. & Martinez, J. A. Reduction in energy efficiency induced by expression of the uncoupling protein, UCP1, in mouse liver mitochondria. Int. J. Mol. Med. 17, 591–597 (2006).

    Google Scholar 

  219. 219

    Marti, A., Larrarte, E., Novo, F. J., Garcia, M. & Martinez, J. A. UCP2 muscle gene transfer modifies mitochondrial membrane potential. Int. J. Obes. Relat. Metab. Disord. 25, 68–74 (2001).

    Google Scholar 

  220. 220

    Cordero, P., Campion, J., Milagro, F. I., Marzo, F. & Martinez, J. A. Fat-to-glucose interconversion by hydrodynamic transfer of two glyoxylate cycle enzyme genes. Lipids Health Dis. 7, 49 (2008).

    Google Scholar 

  221. 221

    Rolland-Cachera, M. F., Deheeger, M., Maillot, M. & Bellisle, F. Early adiposity rebound: causes and consequences for obesity in children and adults. Int. J. Obes. (Lond.) 30, S11–S17 (2006).

    Google Scholar 

  222. 222

    Jensen, S. M., Ritz, C., Ejlerskov, K. T., Molgaard, C. & Michaelsen, K. F. Infant BMI peak, breastfeeding, and body composition at age 3y. Am. J. Clin. Nutr. 101, 319–325 (2015).

    Google Scholar 

  223. 223

    Hiuge-Shimizu, A. et al. Absolute value of visceral fat area measured on computed tomography scans and obesity-related cardiovascular risk factors in large-scale Japanese general population (the VACATION-J study). Ann. Med. 44, 82–92 (2012).

    Google Scholar 

  224. 224

    de Heredia, F. P., Gomez-Martinez, S. & Marcos, A. Obesity, inflammation and the immune system. Proc. Nutr. Soc. 71, 332–338 (2012).

    Google Scholar 

  225. 225

    Ouchi, N., Parker, J. L., Lugus, J. J. & Walsh, K. Adipokines in inflammation and metabolic disease. Nat. Rev. Immunol. 11, 85–97 (2011).

    Google Scholar 

  226. 226

    Naik, R. D., Choksi, Y. A. & Vaezi, M. F. Consequences of bariatric surgery on oesophageal function in health and disease. Nat. Rev. Gastroenterol. Hepatol. 13, 111–119 (2016).

    Google Scholar 

  227. 227

    Torgerson, J. S., Hauptman, J., Boldrin, M. N. & Sjostrom, L. XENical in the prevention of diabetes in obese subjects (XENDOS) study: a randomized study of orlistat as an adjunct to lifestyle changes for the prevention of type 2 diabetes in obese patients. Diabetes Care 27, 155–161 (2004).

    Google Scholar 

  228. 228

    Smith, S. R. et al. Multicenter, placebo-controlled trial of lorcaserin for weight management. N. Engl. J. Med. 363, 245–256 (2010).

    Google Scholar 

  229. 229

    Pi-Sunyer, X. et al. A randomized, controlled trial of 3.0 mg of liraglutide in weight management. N. Engl. J. Med. 373, 11–22 (2015).

    Google Scholar 

  230. 230

    Marso, S. P. et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N. Engl. J. Med. 375, 311–322 (2016).

    Google Scholar 

  231. 231

    Aronne, L. J. et al. Evaluation of phentermine and topiramate versus phentermine/topiramate extended-release in obese adults. Obesity (Silver Spring) 21, 2163–2171 (2013).

    Google Scholar 

  232. 232

    Nissen, S. E. et al. Effect of naltrexone-bupropion on major adverse cardiovascular events in overweight and obese patients with cardiovascular risk factors: a randomized clinical trial. JAMA 315, 990–1004 (2016).

    Google Scholar 

  233. 233

    Cefalu, W. T. et al. Advances in the science, treatment, and prevention of the disease of obesity: reflections from a Diabetes Care Editors’ Expert Forum. Diabetes Care 38, 1567–1582 (2015).

    Google Scholar 

Download references

Acknowledgements

The authors thank the Spanish Government Carlos III Health Institute Centre of Biomedical Research Network (CIBERobn Physiopathology of Obesity and Nutrition) for support and funding.

Author information

Affiliations

Authors

Contributions

Introduction (P.G.-M. and J.A.M.); Epidemiology (F.B.H. and M.-A.M.-G.); Mechanisms/pathophysiology (J.-P.D., Y.M. and R.J.F.L.); Diagnosis, screening and prevention (L.A.M.); Management (G.A.B.); Quality of life (M.-A.M.-G.); Outlook (P.G.-M. and J.A.M.); Overview of the Primer (J.A.M.).

Corresponding author

Correspondence to J. Alfredo Martinez.

Ethics declarations

Competing interests

The authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

González-Muniesa, P., Mártinez-González, M., Hu, F. et al. Obesity. Nat Rev Dis Primers 3, 17034 (2017). https://doi.org/10.1038/nrdp.2017.34

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing