Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Psoriasis

Abstract

Psoriasis is a chronic, immune-mediated disorder with cutaneous and systemic manifestations and substantial negative effects on patient quality of life. Psoriasis has a strong, albeit polygenic, genetic basis. Whereas approximately half of the accountable genetic effect of psoriasis maps to the major histocompatibility complex, >70 other loci have been identified, many of which implicate nuclear factor-κB, interferon signalling and the IL-23–IL-23 receptor axis. Psoriasis pathophysiology is characterized by abnormal keratinocyte proliferation and immune cell infiltration in the dermis and epidermis involving the innate and adaptive immune systems, with important roles for dendritic cells and T cells, among other cells. Frequent comorbidities are rheumatological and cardiovascular in nature, in particular, psoriatic arthritis. Current treatments for psoriasis include topical agents, photo-based therapies, traditional systemic drugs and biologic agents. Treatments can be used in combination or as monotherapy. Biologic therapies that target specific disease mediators have become a mainstay in the treatment of moderate-to-severe disease, whereas advances in the treatment of mild-to-moderate disease have been limited.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Skin manifestations of psoriasis.
Figure 2: Global prevalence of psoriasis.
Figure 3: Evidence of systemic inflammation in patients with psoriasis.
Figure 4: Mechanisms of psoriasis.
Figure 5: Skin biopsy obtained from a patient with psoriasis vulgaris.
Figure 6: Clinical markers of psoriasis.

References

  1. 1

    Lebwohl, M. Psoriasis. Lancet 361, 1197–1204 (2003). This is a concise, yet comprehensive summary of the understanding of psoriasis pathophysiology and of the topical, light-based and biologic therapies that are used to treat the disease.

    Article  PubMed  Google Scholar 

  2. 2

    Gudjonsson, J. E. & Elder, J. T. in Fitzpatrick's Dermatology in General Medicine 8th edn (eds Goldmith, L. A. et al.) 197–231 (McGraw-Hill Education, 2012). This is a widely cited textbook chapter on psoriasis.

    Google Scholar 

  3. 3

    Gelfand, J. M. et al. Determinants of quality of life in patients with psoriasis: a study from the US population. J. Am. Acad. Dermatol. 51, 704–708 (2004).

    Article  PubMed  Google Scholar 

  4. 4

    Kim, N., Thrash, B. & Menter, A. Comorbidities in psoriasis patients. Semin. Cutan. Med. Surg. 29, 10–15 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. 5

    Parisi, R. et al. Global epidemiology of psoriasis: a systematic review of incidence and prevalence. J. Invest. Dermatol. 133, 377–385 (2013). This systematic review summarizes the global incidence and prevalence of psoriasis.

    Article  CAS  PubMed  Google Scholar 

  6. 6

    Tollefson, M. M., Crowson, C. S., McEvoy, M. T. & Maradit Kremers, H. Incidence of psoriasis in children: a population-based study. J. Am. Acad. Dermatol. 62, 979–987 (2010).

    Article  PubMed  Google Scholar 

  7. 7

    Icen, M. et al. Trends in incidence of adult-onset psoriasis over three decades: a population-based study. J. Am. Acad. Dermatol. 60, 394–401 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  8. 8

    National Psoriasis Foundation. About psoriasis. National Psoriasis Foundationhttps://www.psoriasis.org/about-psoriasis (accessed 11 Oct 2016).

  9. 9

    Langley, R. G. & Ellis, C. N. Evaluating psoriasis with Psoriasis Area and Severity Index, Psoriasis Global Assessment, and Lattice System Physician's Global Assessment. J. Am. Acad. Dermatol. 51, 563–569 (2004).

    Article  PubMed  Google Scholar 

  10. 10

    Zachariae, H. et al. Quality of life and prevalence of arthritis reported by 5,795 members of the Nordic Psoriasis Associations. Data from the Nordic Quality of Life Study. Acta Derm. Venereol. 82, 108–113 (2002).

    Article  PubMed  Google Scholar 

  11. 11

    Gelfand, J. M. et al. Epidemiology of psoriatic arthritis in the population of the United States. J. Am. Acad. Dermatol. 53, 573 (2005).

    Article  PubMed  Google Scholar 

  12. 12

    Reich, K., Krüger, K., Mössner, R. & Augustin, M. Epidemiology and clinical pattern of psoriatic arthritis in Germany: a prospective interdisciplinary epidemiological study of 1511 patients with plaque-type psoriasis. Br. J. Dermatol. 160, 1040–1047 (2009). This observational, prospective, cohort study demonstrates the substantial number of patients with psoriasis who were treated by dermatologists and had undiagnosed PsA, emphasizing the essential role of dermatologists in evaluating patients with psoriasis for joint involvement.

    Article  CAS  PubMed  Google Scholar 

  13. 13

    Mease, P. J. et al. Prevalence of rheumatologist-diagnosed psoriatic arthritis in patients with psoriasis in European/North American dermatology clinics. J. Am. Acad. Dermatol. 69, 729–735 (2013).

    Article  PubMed  Google Scholar 

  14. 14

    Gladman, D. D., Antoni, C., Mease, P., Clegg, D. O. & Nash, P. Psoriatic arthritis: epidemiology, clinical features, course, and outcome. Ann. Rheum. Dis. 64 (Suppl. 2), ii14–ii17 (2005). This comprehensive review characterizes the clinical features of PsA and the scope of disease prevalence, which may be underestimated.

    PubMed  PubMed Central  Google Scholar 

  15. 15

    Ahlehoff, O. et al. Cardiovascular disease event rates in patients with severe psoriasis treated with systemic anti-inflammatory drugs: a Danish real-world cohort study. J. Intern. Med. 273, 197–204 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. 16

    Yeung, H. et al. Psoriasis severity and the prevalence of major medical comorbidity: a population-based study. JAMA Dermatol. 149, 1173–1179 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  17. 17

    Ahlehoff, O. et al. Psoriasis is associated with clinically significant cardiovascular risk: a Danish nationwide cohort study. J. Intern. Med. 270, 147–157 (2011).

    Article  CAS  PubMed  Google Scholar 

  18. 18

    Gelfand, J. M. et al. Risk of myocardial infarction in patients with psoriasis. JAMA 296, 1735–1741 (2006). This population-based, prospective, cohort study from the United Kingdom describes a dose-dependent, increased risk of myocardial infarction among patients with psoriasis.

    Article  CAS  PubMed  Google Scholar 

  19. 19

    Dowlatshahi, E. A. et al. Psoriasis is not associated with atherosclerosis and incident cardiovascular events: the Rotterdam Study. J. Invest. Dermatol. 133, 2347–2354 (2013).

    Article  CAS  PubMed  Google Scholar 

  20. 20

    Wakkee, M., Herings, R. M. & Nijsten, T. Psoriasis may not be an independent risk factor for acute ischemic heart disease hospitalizations: results of a large population-based Dutch cohort. J. Invest. Dermatol. 130, 962–967 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. 21

    Dalgard, F. J. et al. The psychological burden of skin diseases: a cross-sectional multicenter study among dermatological out-patients in 13 European countries. J. Invest. Dermatol. 135, 984–991 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. 22

    Rahman, P. & Elder, J. T. Genetic epidemiology of psoriasis and psoriatic arthritis. Ann. Rheum. Dis. 64 (Suppl. 2), ii37–ii39; discussion ii40–ii41 (2005). This review describes our current understanding of the genetic contributions to psoriasis and PsA and the techniques used in determining these contributions.

    PubMed  PubMed Central  Google Scholar 

  23. 23

    Lonnberg, A. S. et al. Heritability of psoriasis in a large twin sample. Br. J. Dermatol. 169, 412–416 (2013).

    Article  CAS  PubMed  Google Scholar 

  24. 24

    Lonnberg, A. S. et al. Genetic factors explain variation in the age at onset of psoriasis: a population-based twin study. Acta Derm. Venereol. 96, 35–38 (2016).

    Article  CAS  PubMed  Google Scholar 

  25. 25

    Grjibovski, A. M., Olsen, A. O., Magnus, P. & Harris, J. R. Psoriasis in Norwegian twins: contribution of genetic and environmental effects. J. Eur. Acad. Dermatol. Venereol. 21, 1337–1343 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. 26

    Moll, J. M., Wright, V., O'Neill, T. & Silman, A. J. Familial occurrence of psoriatic arthritis. Ann. Rheum. Dis. 32, 181–201 (1973).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. 27

    Myers, A., Kay, L. J., Lynch, S. A. & Walker, D. J. Recurrence risk for psoriasis and psoriatic arthritis within sibships. Rheumatology (Oxford) 44, 773–776 (2005).

    Article  CAS  Google Scholar 

  28. 28

    Chandran, V. et al. Familial aggregation of psoriatic arthritis. Ann. Rheum. Dis. 68, 664–667 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. 29

    Karason, A., Love, T. J. & Gudbjornsson, B. A strong heritability of psoriatic arthritis over four generations — the Reykjavik Psoriatic Arthritis Study. Rheumatology (Oxford) 48, 1424–1428 (2009).

    Article  Google Scholar 

  30. 30

    Gudjonsson, J. E. & Elder, J. T. Psoriasis: epidemiology. Clin. Dermatol. 25, 535–546 (2007).

    Article  PubMed  Google Scholar 

  31. 31

    Mahil, S. K., Capon, F. & Barker, J. N. Genetics of psoriasis. Dermatol. Clin. 33, 1–11 (2015).

    Article  CAS  PubMed  Google Scholar 

  32. 32

    Tsoi, L. C. et al. Large-scale meta-analysis identifies 18 novel psoriasis susceptibility loci. Nat. Commun. (in the press).

  33. 33

    Veal, C. D. et al. Family-based analysis using a dense single-nucleotide polymorphism-based map defines genetic variation at PSORS1, the major psoriasis-susceptibility locus. Am. J. Hum. Genet. 71, 554–564 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. 34

    Nair, R. P. et al. Sequence and haplotype analysis supports HLA-C as the psoriasis susceptibility 1 gene. Am. J. Hum. Genet. 78, 827–851 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. 35

    Okada, Y. et al. Fine mapping major histocompatibility complex associations in psoriasis and its clinical subtypes. Am. J. Hum. Genet. 95, 162–172 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. 36

    Fan, X. et al. Fine mapping of the psoriasis susceptibility locus PSORS1 supports HLA-C as the susceptibility gene in the Han Chinese population. PLoS Genet. 4, e1000038 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. 37

    Henseler, T. & Christophers, E. Psoriasis of early and late onset: characterization of two types of psoriasis vulgaris. J. Am. Acad. Dermatol. 13, 450–456 (1985).

    Article  CAS  PubMed  Google Scholar 

  38. 38

    Thorleifsdottir, R. H. et al. HLA-Cw6 homozygosity in plaque psoriasis is associated with streptococcal throat infections and pronounced improvement after tonsillectomy: a prospective case series. J. Am. Acad. Dermatol. 75, 889–896 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. 39

    Sagoo, G. S. et al. Meta-analysis of genome-wide studies of psoriasis susceptibility reveals linkage to chromosomes 6p21 and 4q28–q31 in Caucasian and Chinese Hans population. J. Invest. Dermatol. 122, 1401–1405 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. 40

    Sagoo, G. S., Cork, M. J., Patel, R. & Tazi-Ahnini, R. Genome-wide studies of psoriasis susceptibility loci: a review. J. Dermatol. Sci. 35, 171–179 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. 41

    Karason, A. et al. Genetics of psoriasis in Iceland: evidence for linkage of subphenotypes to distinct loci. J. Invest. Dermatol. 124, 1177–1185 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. 42

    Tomfohrde, J. et al. Gene for familial psoriasis susceptibility mapped to the distal end of human chromosome 17q. Science 264, 1141–1145 (1994).

    Article  CAS  PubMed  Google Scholar 

  43. 43

    Capon, F., Semprini, S., Dallapiccola, B. & Novelli, G. Evidence for interaction between psoriasis-susceptibility loci on chromosomes 6p21 and 1q21 [letter]. Am. J. Hum. Genet. 65, 1798–1800 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. 44

    Veal, C. D. et al. Identification of a novel psoriasis susceptibility locus at 1p and evidence of epistasis between PSORS1 and candidate loci. J. Med. Genet. 38, 7–13 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. 45

    Lee, Y. A. et al. Genomewide scan in german families reveals evidence for a novel psoriasis-susceptibility locus on chromosome 19p13. Am. J. Hum. Genet. 67, 1020–1024 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. 46

    Risch, N. & Merikangas, K. The future of genetic studies of complex human diseases. Science 273, 1516–1517 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. 47

    Yin, X. et al. Genome-wide meta-analysis identifies multiple novel associations and ethnic heterogeneity of psoriasis susceptibility. Nat. Commun. 6, 6916 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. 48

    Zuo, X. et al. Whole-exome SNP array identifies 15 new susceptibility loci for psoriasis. Nat. Commun. 6, 6793 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. 49

    Tsoi, L. C. et al. Enhanced meta-analysis and replication studies identify five new psoriasis susceptibility loci. Nat. Commun. 6, 7001 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. 50

    Tsoi, L. C. et al. Identification of 15 new psoriasis susceptibility loci highlights the role of innate immunity. Nat. Genet. 44, 1341–1348 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. 51

    Bowes, J. et al. Dense genotyping of immune-related susceptibility loci reveals new insights into the genetics of psoriatic arthritis. Nat. Commun. 6, 6046 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. 52

    Stuart, P. E. et al. Genome-wide association analysis of psoriatic arthritis and cutaneous psoriasis reveals differences in their genetic architecture. Am. J. Hum. Genet. 97, 816–836 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. 53

    Bowes, J. et al. PTPN22 is associated with susceptibility to psoriatic arthritis but not psoriasis: evidence for a further PsA-specific risk locus. Ann. Rheum. Dis. 74, 1882–1885 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. 54

    Shendure, J. & Lieberman Aiden, E. The expanding scope of DNA sequencing. Nat. Biotechnol. 30, 1084–1094 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. 55

    Mossner, R. et al. Palmoplantar pustular psoriasis is associated with missense variants in CARD14, but not with loss-of-function mutations in IL36RN in European patients. J. Invest. Dermatol. 135, 2538–2541 (2015).

    Article  CAS  PubMed  Google Scholar 

  56. 56

    Jordan, C. T. et al. PSORS2 is due to mutations in CARD14. Am. J. Hum. Genet. 90, 784–795 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. 57

    Setta-Kaffetzi, N. et al. AP1S3 mutations are associated with pustular psoriasis and impaired Toll-like receptor 3 trafficking. Am. J. Hum. Genet. 94, 790–797 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. 58

    Marrakchi, S. et al. Interleukin-36-receptor antagonist deficiency and generalized pustular psoriasis. N. Engl. J. Med. 365, 620–628 (2011).

    Article  CAS  PubMed  Google Scholar 

  59. 59

    Onoufriadis, A. et al. Mutations in IL36RN/IL1F5 are associated with the severe episodic inflammatory skin disease known as generalized pustular psoriasis. Am. J. Hum. Genet. 89, 432–437 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. 60

    Setta-Kaffetzi, N. et al. Rare pathogenic variants in IL36RN underlie a spectrum of psoriasis-associated pustular phenotypes. J. Invest. Dermatol. 133, 1366–1369 (2013).

    Article  CAS  PubMed  Google Scholar 

  61. 61

    Capon, F. IL36RN mutations in generalized pustular psoriasis: just the tip of the iceberg?. J. Invest. Dermatol. 133, 2503–2504 (2013).

    Article  CAS  PubMed  Google Scholar 

  62. 62

    Edwards, S. L., Beesley, J., French, J. D. & Dunning, A. M. Beyond GWASs: illuminating the dark road from association to function. Am. J. Hum. Genet. 93, 779–797 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. 63

    Tsoi, L. C., Elder, J. T. & Abecasis, G. R. Graphical algorithm for integration of genetic and biological data: proof of principle using psoriasis as a model. Bioinformatics 31, 1243–1249 (2015).

    Article  PubMed  Google Scholar 

  64. 64

    Swindell, W. R. et al. Psoriasis drug development and GWAS interpretation through in silico analysis of transcription factor binding sites. Clin. Transl Med. 4, 13 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  65. 65

    Suzuki, E., Mellins, E. D., Gershwin, M. E., Nestle, F. O. & Adamopoulos, I. E. The IL-23/IL-17 axis in psoriatic arthritis. Autoimmun. Rev. 13, 496–502 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. 66

    Lande, R. et al. Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide. Nature 449, 564–569 (2007).

    Article  CAS  PubMed  Google Scholar 

  67. 67

    Zheng, Y. et al. Interleukin-22, a TH17 cytokine, mediates IL-23-induced dermal inflammation and acanthosis. Nature 445, 648–651 (2007).

    Article  CAS  Google Scholar 

  68. 68

    Man, X. Y., Yang, X. H., Cai, S. Q., Bu, Z. Y. & Zheng, M. Overexpression of vascular endothelial growth factor (VEGF) receptors on keratinocytes in psoriasis: regulated by calcium independent of VEGF. J. Cell. Mol. Med. 12, 649–660 (2008).

    Article  CAS  PubMed  Google Scholar 

  69. 69

    Tauber, M. et al. IL36RN mutations affect protein expression and function: a basis for genotype–phenotype correlation in pustular diseases. J. Invest. Dermatol. 136, 1811–1819 (2016).

    Article  CAS  PubMed  Google Scholar 

  70. 70

    Lizzul, P. F. et al. Differential expression of phosphorylated NF-κB/RelA in normal and psoriatic epidermis and downregulation of NF-κB in response to treatment with etanercept. J. Invest. Dermatol. 124, 1275–1283 (2005).

    Article  CAS  PubMed  Google Scholar 

  71. 71

    Raphael, I., Nalawade, S., Eagar, T. N. & Forsthuber, T. G. T cell subsets and their signature cytokines in autoimmune and inflammatory diseases. Cytokine 74, 5–17 (2015). This is an overview of the role of TH cell subsets and associated cytokine profiles in the development of inflammatory diseases, including psoriasis, in which T cell activity has a central function.

    Article  CAS  PubMed  Google Scholar 

  72. 72

    Zhu, J. & Paul, W. E. Heterogeneity and plasticity of T helper cells. Cell Res. 20, 4–12 (2010).

    Article  CAS  PubMed  Google Scholar 

  73. 73

    Chiricozzi, A. et al. IL-17 induces an expanded range of downstream genes in reconstituted human epidermis model. PLoS ONE 9, e90284 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. 74

    Nestle, F. O. et al. Plasmacytoid predendritic cells initiate psoriasis through interferon-α production. J. Exp. Med. 202, 135–143 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. 75

    Gladman, D. D. Clinical features and diagnostic considerations in psoriatic arthritis. Rheum. Dis. Clin. North Am. 41, 569–579 (2015).

    Article  PubMed  Google Scholar 

  76. 76

    Feldman, S. R. & Krueger, G. G. Psoriasis assessment tools in clinical trials. Ann. Rheum. Dis. 64 (Suppl. 2), ii65–ii68; discussion ii69–ii73 (2005).

    PubMed  PubMed Central  Google Scholar 

  77. 77

    Samman, P. D. & Fenton, D. A. Samman's The Nails in Disease 5th edn (Butterworth-Heinemann, 1995).

    Google Scholar 

  78. 78

    Menter, A. et al. Guidelines of care for the management of psoriasis and psoriatic arthritis: section 1. Overview of psoriasis and guidelines of care for the treatment of psoriasis with biologics. J. Am. Acad. Dermatol. 58, 826–850 (2008).

    Article  PubMed  Google Scholar 

  79. 79

    Gladman, D. D. & Rosen, C. T. Psoriatic Arthritis (The Facts) (Oxford Univ. Press, 2008).

    Google Scholar 

  80. 80

    Haroon, M., Kirby, B. & FitzGerald, O. High prevalence of psoriatic arthritis in patients with severe psoriasis with suboptimal performance of screening questionnaires. Ann. Rheum. Dis. 72, 736–740 (2013).

    Article  PubMed  Google Scholar 

  81. 81

    Eder, L., Chandran, V. & Gladman, D. D. What have we learned about genetic susceptibility in psoriasis and psoriatic arthritis? Curr. Opin. Rheumatol 27, 91–98 (2015).

    Article  CAS  PubMed  Google Scholar 

  82. 82

    Chandran, V. et al. Soluble biomarkers differentiate patients with psoriatic arthritis from those with psoriasis without arthritis. Rheumatology (Oxford) 49, 1399–1405 (2010).

    Article  CAS  Google Scholar 

  83. 83

    Ritchlin, C. T. et al. Treatment recommendations for psoriatic arthritis. Ann. Rheum. Dis. 68, 1387–1394 (2009).

    Article  CAS  PubMed  Google Scholar 

  84. 84

    Taylor, W. et al. Classification criteria for psoriatic arthritis: development of new criteria from a large international study. Arthritis Rheum. 54, 2665–2673 (2006).

    Article  PubMed  Google Scholar 

  85. 85

    Haroon, M., Gallagher, P. & FitzGerald, O. Diagnostic delay of more than 6 months contributes to poor radiographic and functional outcome in psoriatic arthritis. Ann. Rheum. Dis. 74, 1045–1050 (2015).

    Article  CAS  PubMed  Google Scholar 

  86. 86

    Wilson, P. W. et al. Prediction of coronary heart disease using risk factor categories. Circulation 97, 1837–1847 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. 87

    Mehta, N. N. et al. Attributable risk estimate of severe psoriasis on major cardiovascular events. Am. J. Med. 124, 775.e1–775.e6 (2011). This retrospective, cohort study demonstrates the absolute risk of major adverse cardiovascular events in patients with psoriasis, particularly those with severe cutaneous involvement, compared with the general population.

    Article  Google Scholar 

  88. 88

    Goff, D. C. et al. 2013 ACC/AHA guideline on the assessment of cardiovascular risk: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation 129, S49–S73 (2014).

    Article  PubMed  Google Scholar 

  89. 89

    European Association for Cardiovascular Prevention & Rehabilitation et al. ESC/EAS Guidelines for the management of dyslipidaemias: the Task Force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and the European Atherosclerosis Society (EAS). Eur. Heart J. 32, 1769–1818 (2011).

    Article  Google Scholar 

  90. 90

    Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, And Treatment of High Blood Cholesterol In Adults (Adult Treatment Panel III). JAMA 285, 2486–2497 (2001).

    Article  Google Scholar 

  91. 91

    Jokai, H. et al. Impact of effective tumor necrosis factor-alfa inhibitor treatment on arterial intima-media thickness in psoriasis: results of a pilot study. J. Am. Acad. Dermatol. 69, 523–529 (2013).

    Article  CAS  PubMed  Google Scholar 

  92. 92

    Bissonnette, R. et al. Effects of the tumor necrosis factor-alpha antagonist adalimumab on arterial inflammation assessed by positron emission tomography in patients with psoriasis: results of a randomized controlled trial. Circ. Cardiovasc. Imaging 6, 83–90 (2013).

    Article  PubMed  Google Scholar 

  93. 93

    Wu, J. J., Poon, K. Y., Channual, J. C. & Shen, A. Y. Association between tumor necrosis factor inhibitor therapy and myocardial infarction risk in patients with psoriasis. Arch. Dermatol. 148, 1244–1250 (2012). This cohort study demonstrates a decreased risk of myocardial infarction among patients with psoriasis who were treated with TNF inhibitors, with key implications about the potential systemic effect of psoriasis and the broader role of treatments on patient health.

    Article  CAS  PubMed  Google Scholar 

  94. 94

    US National Library of Medicine. ClinicalTrials.govhttps://clinicaltrials.gov/ct2/show/NCT01553058 (2016).

  95. 95

    US National Library of Medicine. ClinicalTrials.govhttps://clinicaltrials.gov/ct2/show/NCT02187172 (2016).

  96. 96

    American Academy of Dermatology Work Group et al. Guidelines of care for the management of psoriasis and psoriatic arthritis: section 6. Guidelines of care for the treatment of psoriasis and psoriatic arthritis: case-based presentations and evidence-based conclusions. J. Am. Acad. Dermatol. 65, 137–174 (2011). This is the most recent set of treatment guidelines produced by leaders in the field of psoriasis, with a set of case-based examples to illustrate evidence-based recommendations.

    Article  Google Scholar 

  97. 97

    Nast, A. et al. European S3-guidelines on the systemic treatment of psoriasis vulgaris — update 2015 — short version — EDF in cooperation with EADV and IPC. J. Eur.Acad. Dermatol. Venereol. 29, 2277–2294 (2015). This is a set of guidelines from an international group of dermatologists with graded recommendations for systemic treatments of psoriasis.

    Article  CAS  PubMed  Google Scholar 

  98. 98

    McGill, A. et al. The anti-psoriatic drug anthralin accumulates in keratinocyte mitochondria, dissipates mitochondrial membrane potential, and induces apoptosis through a pathway dependent on respiratory competent mitochondria. FASEB J. 19, 1012–1014 (2005).

    Article  CAS  PubMed  Google Scholar 

  99. 99

    Arbiser, J. L. et al. Carbazole is a naturally occurring inhibitor of angiogenesis and inflammation isolated from antipsoriatic coal tar. J. Invest. Dermatol. 126, 1396–1402 (2006).

    Article  CAS  PubMed  Google Scholar 

  100. 100

    Rizova, E. & Corroller, M. Topical calcitriol — studies on local tolerance and systemic safety. Br. J. Dermatol. 144 (Suppl. 58), 3–10 (2001).

    CAS  PubMed  Google Scholar 

  101. 101

    Lebwohl, M. G. et al. Tazarotene 0. 1% gel plus corticosteroid cream in the treatment of plaque psoriasis. J. Am. Acad. Dermatol. 39, 590–596 (1998).

    Article  CAS  PubMed  Google Scholar 

  102. 102

    Freeman, A. K. et al. Tacrolimus ointment for the treatment of psoriasis on the face and intertriginous areas. J. Am. Acad. Dermatol. 48, 564–568 (2003).

    Article  PubMed  Google Scholar 

  103. 103

    Tartar, D., Bhutani, T., Huynh, M., Berger, T. & Koo, J. Update on the immunological mechanism of action behind phototherapy. J. Drugs Dermatol. 13, 564–568 (2014).

    CAS  PubMed  Google Scholar 

  104. 104

    Goeckerman, W. H. Treatment of psoriasis. Northwest Med. 24, 229–231 (1925).

    Google Scholar 

  105. 105

    Pittelkow, M. R. et al. Skin cancer in patients with psoriasis treated with coal tar. A 25-year follow-up study. Arch. Dermatol. 117, 465–468 (1981).

    Article  CAS  PubMed  Google Scholar 

  106. 106

    Nolan, B. V., Yentzer, B. A. & Feldman, S. R. A review of home phototherapy for psoriasis. Dermatol. Online J. 16, 1 (2010).

    PubMed  Google Scholar 

  107. 107

    Stern, R. S. & PUVA Follow-Up Study. The risk of squamous cell and basal cell cancer associated with psoralen and ultraviolet A therapy: a 30-year prospective study. J. Am. Acad. Dermatol. 66, 553–562 (2012).

    Article  CAS  PubMed  Google Scholar 

  108. 108

    Stern, R. S. & PUVA Follow-Up Study. The risk of melanoma in association with long-term exposure to PUVA. J. Am. Acad. Dermatol. 44, 755–761 (2001).

    Article  CAS  PubMed  Google Scholar 

  109. 109

    Menter, A. et al. Guidelines of care for the management of psoriasis and psoriatic arthritis: section 4. Guidelines of care for the management and treatment of psoriasis with traditional systemic agents. J. Am. Acad. Dermatol. 61, 451–485 (2009).

    Article  CAS  PubMed  Google Scholar 

  110. 110

    Cronstein, B. N., Naime, D. & Ostad, E. The antiinflammatory mechanism of methotrexate. Increased adenosine release at inflamed sites diminishes leukocyte accumulation in an in vivo model of inflammation. J. Clin. Invest. 92, 2675–2682 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. 111

    Majumdar, S. & Aggarwal, B. B. Methotrexate suppresses NF-κB activation through inhibition of IκBα phosphorylation and degradation. J. Immunol. 167, 2911–2920 (2001).

    Article  CAS  PubMed  Google Scholar 

  112. 112

    Goldminz, A. M. et al. Methotrexate improves pro- and anti-atherogenic genomic expression in psoriatic skin. J. Dermatol. Sci. 82, 207–209 (2016).

    Article  CAS  PubMed  Google Scholar 

  113. 113

    Gutierrez-Urena, S., Molina, J. F., Garcia, C. O., Cuellar, M. L. & Espinoza, L. R. Pancytopenia secondary to methotrexate therapy in rheumatoid arthritis. Arthritis Rheum. 39, 272–276 (1996).

    Article  CAS  PubMed  Google Scholar 

  114. 114

    Al-Quteimat, O. M. & Al-Badaineh, M. A. Methotrexate and trimethoprim-sulphamethoxazole: extremely serious and life-threatening combination. J. Clin. Pharm. Ther. 38, 203–205 (2013).

    Article  CAS  PubMed  Google Scholar 

  115. 115

    Rosenberg, P. et al. Psoriasis patients with diabetes type 2 are at high risk of developing liver fibrosis during methotrexate treatment. J. Hepatol. 46, 1111–1118 (2007).

    Article  CAS  PubMed  Google Scholar 

  116. 116

    Kalb, R. E., Strober, B., Weinstein, G. & Lebwohl, M. Methotrexate and psoriasis: consensus conference. J. Am. Acad. Dermatol. 64, 1179 (2011).

    Article  PubMed  Google Scholar 

  117. 117

    Boffa, M. J. et al. Serum type III procollagen aminopeptide for assessing liver damage in methotrexate-treated psoriatic patients. Br. J. Dermatol. 135, 538–544 (1996).

    Article  CAS  PubMed  Google Scholar 

  118. 118

    Raposo, I. & Torres, T. Palmoplantar psoriasis and palmoplantar pustulosis: current treatment and future prospects. Am. J. Clin. Dermatol. 17, 349–358 (2016).

    Article  PubMed  Google Scholar 

  119. 119

    Lebwohl, M. et al. Consensus conference: acitretin in combination with UVB or PUVA in the treatment of psoriasis. J. Am. Acad. Dermatol. 45, 544–553 (2001).

    Article  CAS  PubMed  Google Scholar 

  120. 120

    Niu, X. et al. Acitretin exerted a greater influence on T-helper (Th)1 and Th17 than on Th2 cells in treatment of psoriasis vulgaris. J. Dermatol. 39, 916–921 (2012).

    Article  CAS  PubMed  Google Scholar 

  121. 121

    Katz, H. I., Waalen, J. & Leach, E. E. Acitretin in psoriasis: an overview of adverse effects. J. Am. Acad. Dermatol. 41, S7–S12 (1999).

    Article  CAS  PubMed  Google Scholar 

  122. 122

    Amor, K. T., Ryan, C. & Menter, A. The use of cyclosporine in dermatology: part I. J. Am. Acad. Dermatol. 63, 925–946 (2010).

    Article  CAS  PubMed  Google Scholar 

  123. 123

    Zachariae, H., Kragballe, K., Hansen, H. E., Marcussen, N. & Olsen, S. Renal biopsy findings in long-term cyclosporin treatment of psoriasis. Br. J. Dermatol. 136, 531–535 (1997).

    Article  CAS  PubMed  Google Scholar 

  124. 124

    Schafer, P. Apremilast mechanism of action and application to psoriasis and psoriatic arthritis. Biochem. Pharmacol. 83, 1583–1590 (2012).

    Article  CAS  PubMed  Google Scholar 

  125. 125

    Paul, C. et al. Efficacy and safety of apremilast, an oral phosphodiesterase 4 inhibitor, in patients with moderate-to-severe plaque psoriasis over 52 weeks: a phase III, randomized controlled trial (ESTEEM 2). Br. J. Dermatol. 173, 1387–1399 (2015).

    Article  CAS  PubMed  Google Scholar 

  126. 126

    Papp, K. et al. Apremilast, an oral phosphodiesterase 4 (PDE4) inhibitor, in patients with moderate to severe plaque psoriasis: results of a phase III, randomized, controlled trial (Efficacy and Safety Trial Evaluating the Effects of Apremilast in Psoriasis [ESTEEM] 1). J. Am. Acad. Dermatol. 73, 37–49 (2015).

    Article  CAS  PubMed  Google Scholar 

  127. 127

    Atwan, A. et al. Oral fumaric acid esters for psoriasis: abridged Cochrane systematic review including GRADE assessments. Br. J. Dermatol. 175, 873–881 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. 128

    Ghoreschi, K. et al. Fumarates improve psoriasis and multiple sclerosis by inducing type II dendritic cells. J. Exp. Med. 208, 2291–2303 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. 129

    Zweegers, J. et al. Body mass index predicts discontinuation due to ineffectiveness and female sex predicts discontinuation due to side-effects in patients with psoriasis treated with adalimumab, etanercept or ustekinumab in daily practice: a prospective, comparative, long-term drug-survival study from the BioCAPTURE registry. Br. J. Dermatol. 175, 340–347 (2016).

    Article  CAS  PubMed  Google Scholar 

  130. 130

    Gottlieb, A. et al. Guidelines of care for the management of psoriasis and psoriatic arthritis: section 2. Psoriatic arthritis: overview and guidelines of care for treatment with an emphasis on the biologics. J. Am. Acad. Dermatol. 58, 851–864 (2008).

    Article  PubMed  Google Scholar 

  131. 131

    Dixon, W. G. et al. Reduction in the incidence of myocardial infarction in patients with rheumatoid arthritis who respond to anti-tumor necrosis factor alpha therapy: results from the British Society for Rheumatology Biologics Register. Arthritis Rheum. 56, 2905–2912 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. 132

    Hoffman, M. B., Farhangian, M. & Feldman, S. R. Psoriasis during pregnancy: characteristics and important management recommendations. Expert Rev. Clin. Immunol. 11, 709–720 (2015).

    Article  CAS  PubMed  Google Scholar 

  133. 133

    Bongartz, T. et al. Anti-TNF antibody therapy in rheumatoid arthritis and the risk of serious infections and malignancies: systematic review and meta-analysis of rare harmful effects in randomized controlled trials. JAMA 295, 2275–2285 (2006).

    Article  CAS  Google Scholar 

  134. 134

    Papp, K. A. et al. Long-term safety of ustekinumab in patients with moderate-to-severe psoriasis: final results from 5 years of follow-up. Br. J. Dermatol. 168, 844–854 (2013)

    Article  CAS  PubMed  Google Scholar 

  135. 135

    Collamer, A. N., Guerrero, K. T., Henning, J. S. & Battafarano, D. F. Psoriatic skin lesions induced by tumor necrosis factor antagonist therapy: a literature review and potential mechanisms of action. Arthritis Rheum. 59, 996–1001 (2008).

    Article  CAS  PubMed  Google Scholar 

  136. 136

    Doherty, S. D. et al. National Psoriasis Foundation consensus statement on screening for latent tuberculosis infection in patients with psoriasis treated with systemic and biologic agents. J. Am. Acad. Dermatol. 59, 209–217 (2008).

    Article  PubMed  Google Scholar 

  137. 137

    Kavanaugh, A. et al. Maintenance of clinical efficacy and radiographic benefit through two years of ustekinumab therapy in patients with active psoriatic arthritis: results from a randomized, placebo-controlled phase III trial. Arthritis Care Res. (Hoboken) 67, 1739–1749 (2015).

    Article  CAS  Google Scholar 

  138. 138

    McInnes, I. B. et al. Secukinumab, a human anti-interleukin-17A monoclonal antibody, in patients with psoriatic arthritis (FUTURE 2): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 386, 1137–1146 (2015).

    Article  CAS  PubMed  Google Scholar 

  139. 139

    Elyoussfi, S., Thomas, B. J. & Ciurtin, C. Tailored treatment options for patients with psoriatic arthritis and psoriasis: review of established and new biologic and small molecule therapies. Rheumatol. Int. 36, 603–612 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. 140

    Mease, P. J. et al. Brodalumab, an anti-IL17RA monoclonal antibody, in psoriatic arthritis. N. Engl. J. Med. 370, 2295–2306 (2014).

    Article  CAS  PubMed  Google Scholar 

  141. 141

    Lebwohl, M. et al. Phase 3 studies comparing brodalumab with ustekinumab in psoriasis. N. Engl. J. Med. 373, 1318–1328 (2015).

    Article  CAS  PubMed  Google Scholar 

  142. 142

    Ling, Y. & Puel, A. IL-17 and infections. Actas Dermosifiliogr. 105 (Suppl. 1), 34–40 (2014).

    Article  PubMed  Google Scholar 

  143. 143

    Papp, K. A. et al. A prospective phase III, randomized, double-blind, placebo-controlled study of brodalumab in patients with moderate-to-severe plaque psoriasis. Br. J. Dermatol. 175, 273–286 (2016).

    Article  CAS  PubMed  Google Scholar 

  144. 144

    Sicotte, N. L. & Voskuhl, R. R. Onset of multiple sclerosis associated with anti-TNF therapy. Neurology 57, 1885–1888 (2001).

    Article  CAS  PubMed  Google Scholar 

  145. 145

    Young, M. S., Horn, E. J. & Cather, J. C. The ACCEPT study: ustekinumab versus etanercept in moderate-to-severe psoriasis patients. Expert Rev. Clin. Immunol. 7, 9–13 (2011).

    Article  CAS  PubMed  Google Scholar 

  146. 146

    Thaci, D. et al. Secukinumab is superior to ustekinumab in clearing skin of subjects with moderate to severe plaque psoriasis: CLEAR, a randomized controlled trial. J. Am. Acad. Dermatol. 73, 400–409 (2015).

    Article  CAS  PubMed  Google Scholar 

  147. 147

    Betts, K. A., Mittal, M., Joshi, A., Song, J. & Bao, Y. Relative efficacy of adalimumab versus secukinumab in active psoriatic arthritis: a matching-adjusted indirect comparison. Arthritis Rheumatol. Abstr. 67 (Suppl. 10), 2868 (2015).

    Google Scholar 

  148. 148

    Hsu, L., Snodgrass, B. T. & Armstrong, A. W. Antidrug antibodies in psoriasis: a systematic review. Br. J. Dermatol. 170, 261–273 (2014).

    Article  CAS  PubMed  Google Scholar 

  149. 149

    Dapavo, P., Vujic, I., Fierro, M. T., Quaglino, P. & Sanlorenzo, M. The infliximab biosimilar in the treatment of moderate to severe plaque psoriasis. J. Am. Acad. Dermatol. 75, 736–739 (2016).

    Article  CAS  PubMed  Google Scholar 

  150. 150

    Red. [First biosimilar etanercept is available]. MMW Fortschritte der Medizin 158, 82 (in German) (2016).

    PubMed  Google Scholar 

  151. 151

    de Korte, J., Sprangers, M. A., Mombers, F. M. & Bos, J. D. Quality of life in patients with psoriasis: a systematic literature review. J. Invest. Dermatol. Symp. Proc. 9, 140–147 (2004).

    Article  Google Scholar 

  152. 152

    Lee, Y. W., Park, E. J., Kwon, I. H., Kim, K. H. & Kim, K. J. Impact of psoriasis on quality of life: relationship between clinical response to therapy and change in health-related quality of life. Ann. Dermatol. 22, 389–396 (2010). This prospective, cohort study demonstrates the improvement in patients' health-related QOL measures after treatment, and elucidates key factors that make psoriasis more burdensome, emphasizing the important role of health care providers and the profound effect of psoriasis treatments on disease burden.

    Article  PubMed  PubMed Central  Google Scholar 

  153. 153

    Bhatti, Z. U. et al. Chronic disease influences over 40 major life-changing decisions (MLCDs): a qualitative study in dermatology and general medicine. J. Eur. Acad. Dermatol. Venereol. 28, 1344–1355 (2014).

    Article  CAS  PubMed  Google Scholar 

  154. 154

    Eghlileb, A. M., Davies, E. E. & Finlay, A. Y. Psoriasis has a major secondary impact on the lives of family members and partners. Br. J. Dermatol. 156, 1245–1250 (2007).

    Article  CAS  PubMed  Google Scholar 

  155. 155

    Iskandar, I. Y. et al. Demographics and disease characteristics of patients with psoriasis enrolled in the British Association of Dermatologists Biologic Interventions Register. Br. J. Dermatol. 173, 510–518 (2015).

    Article  CAS  PubMed  Google Scholar 

  156. 156

    Basra, M. K., Fenech, R., Gatt, R. M., Salek, M. S. & Finlay, A. Y. The Dermatology Life Quality Index 1994–2007: a comprehensive review of validation data and clinical results. Br. J. Dermatol. 159, 997–1035 (2008).

    CAS  PubMed  Google Scholar 

  157. 157

    Finlay, A. Y. Current severe psoriasis and the rule of tens. Br. J. Dermatol. 152, 861–867 (2005).

    Article  CAS  PubMed  Google Scholar 

  158. 158

    Ali, F. M. et al. A systematic review of the use of quality of life instruments in randomised controlled trials of psoriasis. Br J. Dermatol. http://dx.doi.org/10.1111/bjd.14788 (2016).

  159. 159

    Moller, A. H., Erntoft, S., Vinding, G. R. & Jemec, G. B. A systematic literature review to compare quality of life in psoriasis with other chronic diseases using EQ-5D-derived utility values. Patient Relat. Outcome Meas. 6, 167–177 (2015). This systematic review demonstrates that the burden of psoriatic disease is comparable to that of other chronic diseases, including cardiovascular disease and diabetes.

    PubMed  PubMed Central  Google Scholar 

  160. 160

    Takahashi, H., Iinuma, S., Tsuji, H., Honma, M. & Iizuka, H. Biologics are more potent than other treatment modalities for improvement of quality of life in psoriasis patients. J. Dermatol. 41, 686–689 (2014).

    Article  PubMed  Google Scholar 

  161. 161

    Stein, K. R., Pearce, D. J. & Feldman, S. R. The impact of biologics on the quality of life of psoriasis patients and the economics of psoriasis care. Semin. Cutan. Med. Surg. 24, 52–57 (2005).

    Article  CAS  PubMed  Google Scholar 

  162. 162

    Larsen, M. H., Hagen, K. B., Krogstad, A. L., Aas, E. & Wahl, A. K. Limited evidence of the effects of patient education and self-management interventions in psoriasis patients: a systematic review. Patient Educ. Couns. 94, 158–169 (2014).

    Article  PubMed  Google Scholar 

  163. 163

    Gedebjerg, A., Johansen, C., Kragballe, K. & Iversen, L. IL-20, IL-21 and p40: potential biomarkers of treatment response for ustekinumab. Acta Derm. Venereol. 93, 150–155 (2013).

    Article  CAS  PubMed  Google Scholar 

  164. 164

    Ryan, C. et al. Research gaps in psoriasis: opportunities for future studies. J. Am. Acad. Dermatol. 70, 146–167 (2014).

    Article  PubMed  Google Scholar 

  165. 165

    Armstrong, A. W., Gelfand, J. M., Boehncke, W. H. & Armstrong, E. J. Cardiovascular comorbidities of psoriasis and psoriatic arthritis: a report from the GRAPPA 2012 annual meeting. J. Rheumatol. 40, 1434–1437 (2013).

    Article  PubMed  Google Scholar 

  166. 166

    Kirkham, B. et al. Early treatment of psoriatic arthritis is associated with improved patient-reported outcomes: findings from the etanercept PRESTA trial. Clin. Exp. Rheumatol. 33, 11–19 (2015).

    PubMed  Google Scholar 

  167. 167

    Kimball, A. B. et al. National Psoriasis Foundation clinical consensus on psoriasis comorbidities and recommendations for screening. J. Am. Acad. Dermatol. 58, 1031–1042 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  168. 168

    Capon, F. & Barker, J. N. The quest for psoriasis susceptibility genes in the postgenome-wide association studies era: charting the road ahead. Br. J. Dermatol. 166, 1173–1175 (2012).

    Article  CAS  PubMed  Google Scholar 

  169. 169

    Alwan, W. & Nestle, F. O. Pathogenesis and treatment of psoriasis: exploiting pathophysiological pathways for precision medicine. Clin. Exp. Rheumatol 33, S2–S6 (2015). This review elucidates future areas of psoriasis research based on the trend towards highly precise targeted therapies.

    PubMed  Google Scholar 

  170. 170

    Zweegers, J. et al. Effectiveness of biologic and conventional systemic therapies in adults with chronic plaque psoriasis in daily practice: a systematic review. Acta Derm. Venereol. 96, 453–458 (2016).

    Article  CAS  PubMed  Google Scholar 

  171. 171

    De Mozzi, P., Johnston, G. A., Alexandroff, A. B. Psoriasis: an evidence-based update. Report of the 9th evidenced based update meeting, 12 May 2011, Loughborough, UK. Br. J. Dermatol. 166, 252–260 (2012).

    Article  CAS  PubMed  Google Scholar 

  172. 172

    Eissing, L., Radtke, M. A., Zander, N. & Augustin, M. Barriers to guideline-compliant psoriasis care: analyses and concepts. J. Eur. Acad. Dermatol. Venereol. 30, 569–575 (2016).

    Article  CAS  PubMed  Google Scholar 

  173. 173

    FitzGerald, O. & Mease, P. J. Biomarkers: project update from the GRAPPA 2012 annual meeting. J. Rheumatol. 40, 1453–1454 (2013).

    Article  PubMed  Google Scholar 

  174. 174

    FitzGerald, O., Mease, P. J., Helliwell, P. S. & Chandran, V. GRAPPA 2013 annual meeting, rheumatology updates: psoriatic arthritis (PsA) biomarker project, arthritis mutilans, PsA-peripheral spondyloarthritis epidemiology project. J. Rheumatol. 41, 1244–1248 (2014).

    Article  PubMed  Google Scholar 

  175. 175

    Villanova, F., Di Meglio, P. & Nestle, F. O. Biomarkers in psoriasis and psoriatic arthritis. Ann. Rheum. Dis. 72 (Suppl. 2), ii104–ii110 (2013).

    Article  CAS  PubMed  Google Scholar 

  176. 176

    Armstrong, A. W., Robertson, A. D., Wu, J., Schupp, C. & Lebwohl, M. G. Undertreatment, treatment trends, and treatment dissatisfaction among patients with psoriasis and psoriatic arthritis in the United States: findings from the National Psoriasis Foundation surveys, 2003–2011. JAMA Dermatol. 149, 1180–1185 (2013).

    Article  CAS  PubMed  Google Scholar 

  177. 177

    Croughan, M. S., Konstantinov, K. B. & Cooney, C. The future of industrial bioprocessing: batch or continuous? Biotechnol. Bioeng. 112, 648–651 (2015).

    Article  CAS  PubMed  Google Scholar 

  178. 178

    Gottlieb, A. B. et al. The International Dermatology Outcome Measures Group: formation of patient-centered outcome measures in dermatology. J. Am. Acad. Dermatol. 72, 345–348 (2015).

    Article  PubMed  Google Scholar 

  179. 179

    Tan, K. W. & Griffiths, C. E. Novel systemic therapies for the treatment of psoriasis. Expert Opin. Pharmacother. 17, 79–92 (2016).

    Article  CAS  PubMed  Google Scholar 

  180. 180

    Feely, M. A., Smith, B. L. & Weinberg, J. M. Novel psoriasis therapies and patient outcomes, part 1: topical medications. Cutis 95, 164–168, 170 (2015).

    PubMed  Google Scholar 

  181. 181

    Rahman, M. et al. Nanomedicine-based drug targeting for psoriasis: potentials and emerging trends in nanoscale pharmacotherapy. Expert Opin. Drug Deliv. 12, 635–652 (2015).

    Article  CAS  PubMed  Google Scholar 

  182. 182

    Yin, X. et al. A weighted polygenic risk score using 14 known susceptibility variants to estimate risk and age onset of psoriasis in Han Chinese. PLoS ONE 10, e0125369 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. 183

    Latchman, D. S. Transcription-factor mutations and disease. N. Engl. J. Med. 334, 28–33 (1996).

    Article  CAS  PubMed  Google Scholar 

  184. 184

    Sano, S. et al. Stat3 links activated keratinocytes and immunocytes required for development of psoriasis in a novel transgenic mouse model. Nat. Med. 11, 43–49 (2005).

    Article  CAS  PubMed  Google Scholar 

  185. 185

    Kryczek, I. et al. Induction of IL-17+ T cell trafficking and development by IFN-γ: mechanism and pathological relevance in psoriasis. J. Immunol. 181, 4733–4741 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. 186

    Harden, J. L. et al. Humanized anti-IFN-γ (HuZAF) in the treatment of psoriasis. J. Allergy Clin. Immunol. 135, 553–556 (2015).

    Article  CAS  PubMed  Google Scholar 

  187. 187

    National Psoriasis Foundation. Drug pipeline 2016. National Psoriasis Foundationhttps://services.psoriasis.org/drug-pipeline/index.php (accessed 7 Oct 2016).

  188. 188

    Papp, K. A. et al. Efficacy and safety of ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with psoriasis: 52-week results from a randomised, double-blind, placebo-controlled trial (PHOENIX 2). Lancet 371, 1675–1684 (2008).

    Article  CAS  PubMed  Google Scholar 

  189. 189

    Baldassare, J. J., Fisher, G. J., Henderson, P. A. & Voorhees, J. J. Epidermal growth factor (EGF) stimulates phosphatidylcholine hydrolysis by phospholipases c and d in human dermal fibroblasts (meeting abstract). FASEB J. 4, A2059 (1990).

    Google Scholar 

  190. 190

    Mease, P. J., Garg, A., Helliwell, P. S., Park, J. J. & Gladman, D. D. Development of criteria to distinguish inflammatory from noninflammatory arthritis, enthesitis, dactylitis, and spondylitis: a report from the GRAPPA 2013 annual meeting. J. Rheumatol. 41, 1249–1251 (2014).

    Article  PubMed  Google Scholar 

  191. 191

    Gladman, D. D., Helliwell, P. S., Khraishi, M., Callis Duffin, K. & Mease, P. J. Dermatology screening tools: project update from the GRAPPA 2012 annual meeting. J. Rheumatol. 40, 1425–1427 (2013).

    Article  PubMed  Google Scholar 

  192. 192

    Tom, B. D., Chandran, V., Farewell, V. T., Rosen, C. F. & Gladman, D. D. Validation of the Toronto Psoriatic Arthritis Screen Version 2 (ToPAS 2). J. Rheumatol. 42, 841–846 (2015).

    Article  PubMed  Google Scholar 

  193. 193

    Bronsard, V. et al. What are the best outcome measures for assessing quality of life in plaque type psoriasis? A systematic review of the literature. J. Eur. Acad. Dermatol. Venereol. 24 (Suppl. 2), 17–22 (2010).

    Article  PubMed  Google Scholar 

  194. 194

    Pedersen, C. B. et al. Reliability and validity of the Psoriasis Itch Visual Analog Scale in psoriasis vulgaris. J. Dermatol. Treat. 5 Sept 2016 [epub ahead of print].

  195. 195

    Bushnell, D. M. et al. Validation of the Psoriasis Symptom Inventory (PSI), a patient-reported outcome measure to assess psoriasis symptom severity. J. Dermatol. Treat. 24, 356–360 (2013).

    Article  Google Scholar 

  196. 196

    Fotiou, K., Hofmann, M., Kaufmann, R. & Thaci, D. Pictorial representation of illness and self measure (PRISM): an effective tool to assess the burden of psoriasis. J. Eur. Acad. Dermatol. Venereol. 29, 2356–2362 (2015).

    Article  CAS  PubMed  Google Scholar 

  197. 197

    Holme, S. A. et al. The Children's Dermatology Life Quality Index: validation of the cartoon version. Br. J. Dermatol. 148, 285–290 (2003).

    Article  CAS  PubMed  Google Scholar 

  198. 198

    Eghlileb, A. M., Basra, M. K. & Finlay, A. Y. The Psoriasis Family Index: preliminary results of validation of a quality of life instrument for family members of patients with psoriasis. Dermatology 219, 63–70 (2009).

    Article  CAS  PubMed  Google Scholar 

  199. 199

    Finlay, A. Y., Salek, S. S. & Piguet, V. Measuring family impact of skin diseases: FDLQI and FROM-16. Acta Derm. Venereol. 95, 1036 (2015).

    Article  CAS  PubMed  Google Scholar 

  200. 200

    Jacobson, C. C., Kumar, S. & Kimball, A. B. Latitude and psoriasis prevalence. J. Am. Acad. Dermatol. 65, 870–873 (2011).

    Article  PubMed  Google Scholar 

  201. 201

    Williams, H. C. & Strachan, D. P. The Challenge of Dermato-Epidemiology (CRC Press, 1997).

    Google Scholar 

  202. 202

    Grob, J. J. in Textbook of Psoriasis (ed. van de Kerkhof, P. C. M. ) 57–69 (Blackwell Publishing, 2003).

    Book  Google Scholar 

  203. 203

    Yip, S. Y. The prevalence of psoriasis in the Mongoloid race. J. Am. Acad. Dermatol. 10, 965–968 (1984).

    Article  CAS  PubMed  Google Scholar 

  204. 204

    International Psoriasis Council. IPC psoriasis review. IPChttp://www.psoriasiscouncil.org/docs/ipc_review_2016-july_final.pdf (2016).

  205. 205

    Alexis, A. F. & Blackcloud, P. Psoriasis in skin of color: epidemiology, genetics, clinical presentation, and treatment nuances. J. Clin. Aesthet. Dermatol. 7, 16–24 (2014).

    PubMed  PubMed Central  Google Scholar 

  206. 206

    International Psoriasis Council. IPC psoriasis review focus on Latin America. IPChttp://www.psoriasiscouncil.org/docs/ipcpsoriasisreview_dec_2009_english.pdf?LanguageID=EN-US (2009).

  207. 207

    Imafuku, S., Naito, R. & Nakayama, J. Possible association of hepatitis C virus infection with late-onset psoriasis: a hospital-based observational study. J. Dermatol. 40, 813–818 (2013).

    CAS  PubMed  Google Scholar 

  208. 208

    Kim, T. G. et al. Dermal clusters of mature dendritic cells and T cells are associated with the CCL20/CCR6 chemokine system in chronic psoriasis. J. Invest. Dermatol. 134, 1462–1465 (2014).

    Article  CAS  PubMed  Google Scholar 

  209. 209

    Mease, P. J. et al. Continued inhibition of radiographic progression in patients with psoriatic arthritis following 2 years of treatment with etanercept. J. Rheumatol. 33, 712–721 (2006).

    CAS  PubMed  Google Scholar 

  210. 210

    Leonardi, C. L. et al. Etanercept as monotherapy in patients with psoriasis. N. Engl. J. Med. 349, 2014–2022 (2003).

    Article  CAS  PubMed  Google Scholar 

  211. 211

    Gordon, K. B. et al. Clinical response to adalimumab treatment in patients with moderate to severe psoriasis: double-blind, randomized controlled trial and open-label extension study. J. Am. Acad. Dermatol. 55, 598–606 (2006).

    Article  PubMed  Google Scholar 

  212. 212

    Mease, P. J. et al. Adalimumab for the treatment of patients with moderately to severely active psoriatic arthritis: results of a double-blind, randomized, placebo-controlled trial. Arthritis Rheum. 52, 3279–3289 (2005).

    Article  CAS  PubMed  Google Scholar 

  213. 213

    Kavanaugh, A. et al. The Infliximab Multinational Psoriatic Arthritis Controlled Trial (IMPACT): results of radiographic analyses after 1 year. Ann. Rheum. Dis. 65, 1038–1043 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. 214

    Chaudhari, U. et al. Efficacy and safety of infliximab monotherapy for plaque-type psoriasis: a randomised trial. Lancet 357, 1842–1847 (2001).

    Article  CAS  PubMed  Google Scholar 

  215. 215

    Gottlieb, A. B. et al. Infliximab induction therapy for patients with severe plaque-type psoriasis: a randomized, double-blind, placebo-controlled trial. J. Am. Acad. Dermatol. 51, 534–542 (2004).

    Article  PubMed  Google Scholar 

  216. 216

    Salmon-Ceron, D. et al. Drug-specific risk of non-tuberculosis opportunistic infections in patients receiving anti-TNF therapy reported to the 3-year prospective French RATIO registry. Ann. Rheum. Dis. 70, 616–623 (2011).

    Article  CAS  PubMed  Google Scholar 

  217. 217

    Reich, K. et al. Successful treatment of moderate to severe plaque psoriasis with the PEGylated Fab' certolizumab pegol: results of a phase II randomized, placebo-controlled trial with a re-treatment extension. Br. J. Dermatol. 167, 180–190 (2012).

    Article  CAS  PubMed  Google Scholar 

  218. 218

    Mease, P. J. et al. Effect of certolizumab pegol on signs and symptoms in patients with psoriatic arthritis: 24-week results of a phase 3 double-blind randomised placebo-controlled study (RAPID-PsA). Ann. Rheum. Dis. 73, 48–55 (2014).

    Article  CAS  PubMed  Google Scholar 

  219. 219

    Kavanaugh, A. et al. Golimumab in psoriatic arthritis: one-year clinical efficacy, radiographic, and safety results from a phase III, randomized, placebo-controlled trial. Arthritis Rheum. 64, 2504–2517 (2012).

    Article  CAS  PubMed  Google Scholar 

  220. 220

    Langley, R. G. et al. Secukinumab in plaque psoriasis — results of two phase 3 trials. N. Engl. J. Med. 371, 326–338 (2014).

    Article  CAS  PubMed  Google Scholar 

  221. 221

    Griffiths, C. E. et al. Comparison of ixekizumab with etanercept or placebo in moderate-to-severe psoriasis (UNCOVER-2 and UNCOVER-3): results from two phase 3 randomised trials. Lancet 386, 541–551 (2015).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the late Dr T. Henseler for his pivotal early genetic and epidemiological research and his contribution to the psoriasis field.

Author information

Affiliations

Authors

Contributions

Introduction (J.E.G. and A.B.G.); Epidemiology (J.J.W.); Mechanisms/pathophysiology (A.M.G. and A.B.G.); Diagnosis, screening and prevention (A.M.G., J.T.E., D.D.G. and N.N.M.); Management (M.G.L.); Quality of life (A.Y.F.); Outlook (J.E.G. and A.B.G.); Overview of Primer (A.B.G., J.E.G. and A.M.G.).

Corresponding author

Correspondence to Alice B. Gottlieb.

Ethics declarations

Competing interests

J.T.E. is currently serving as a scientific advisor for Janssen, a division of Johnson and Johnson. Since 2013 he has also served as a consultant or scientific advisor for Janssen, Novartis and Lilly and as a consultant for Pfizer. M.G.L. is an employee of Mount Sinai, which receives research funds from Amgen, Anacor, Boehringer Ingelheim, Celgene, Lilly, Janssen Biotech, Kadmon, LEO Pharmaceuticals, Medimmune, Novartis, Pfizer, Sun Pharmaceuticals and Valeant. D.D.G. has consulted and/or received grant support from AbbVie, Amgen, Bristol-Myers Squibb, Celgene, Eli Lilly, Janssen, Novartis, Pfizer and UCB. J.J.W. has received research funding from AbbVie, Amgen, AstraZeneca, Boehringer Ingelheim, Coherus Biosciences, Dermira, Eli Lilly, Janssen, Merck, Novartis, Pfizer, Regeneron, Sandoz and Sun Pharmaceuticals; he is a consultant for AbbVie, Amgen, Celgene, Dermira, Eli Lilly, Pfizer, Regeneron, Sun Pharmaceuticals and Valeant Pharmaceuticals. All funds go to his employer. N.N.M. is a full-time US Government employee and Chief of the Section of Inflammation and Cardiometabolic Diseases at the National Heart, Lung, and Blood Institute. A.Y.F. has consultancy agreements with Novartis and received honoraria for advisory boards with Novartis, Galderma, Napp, Sanofi, Eli Lilly and Janssen, which funded a recent Cardiff University Dermatology Life Quality Index (DLQI) research project, in which he is a joint inventor and receives royalties. A.B.G. has current consulting and/or advisory board agreements: Amgen Inc., Astellas, Akros, Centocor (Janssen), Inc., Celgene Corp., Bristol-Myers Squibb Co., Beiersdorf, Inc., Abbott Labs (AbbVie), TEVA, Actelion, UCB, Novo Nordisk, Novartis, Dermipsor Ltd., Incyte, Pfizer, Canfite, Lilly, Coronado, Vertex, Karyopharm, CSL Behring Biotherapies for Life, GlaxoSmithKline, Xenoport, Catabasis, Meiji Seika Pharma Co., Ltd, Takeda, Mitsubishi, Tanabe Pharma Development America, Inc, Genentech, Baxalta, Kineta One, KPI Therapeutics, Crescendo Bioscience, Aclaris, Amicus, Reddy Labs. Research and/or educational grants (paid to Tufts Medical Center) until 5 November 2016, then none: Centocor (Janssen), Amgen, Abbott (AbbVie), Novartis, Celgene, Pfizer, Lilly, Levia, Merck, Xenoport, Dermira, Baxalta. J.E.G. and A.M.G. declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Greb, J., Goldminz, A., Elder, J. et al. Psoriasis. Nat Rev Dis Primers 2, 16082 (2016). https://doi.org/10.1038/nrdp.2016.82

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing