Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Aortic dissection

A Correction to this article was published on 25 August 2016

Abstract

Aortic dissection is a life-threatening condition caused by a tear in the intimal layer of the aorta or bleeding within the aortic wall, resulting in the separation (dissection) of the layers of the aortic wall. Aortic dissection is most common in those 65–75 years of age, with an incidence of 35 cases per 100,000 people per year in this population. Other risk factors include hypertension, dyslipidaemia and genetic disorders that involve the connective tissue, such as Marfan syndrome. Swift diagnostic confirmation and adequate treatment are crucial in managing affected patients. Contemporary management is multidisciplinary and includes serial non-invasive imaging, biomarker testing and genetic risk profiling for aortopathy. The choice of approach for repairing or replacing the damaged region of the aorta depends on the severity and the location of the dissection and the risks of complication from surgery. Open surgical repair is most commonly used for dissections involving the ascending aorta and the aortic arch, whereas minimally invasive endovascular intervention is appropriate for descending aorta dissections that are complicated by rupture, malperfusion, ongoing pain, hypotension or imaging features of high risk. Recent advances in the understanding of the underlying pathophysiology of aortic dissection have led to more patients being considered at substantial risk of complications and, therefore, in need of endovascular intervention rather than only medical or surgical intervention.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Aortic dissection is caused by bleeding within the aortic wall.
Figure 2: Classification systems for aortic dissection.
Figure 3: Incidence of aortic dissection.
Figure 4: Pathophysiology of aortic dissection involving inflammation.
Figure 5: CT imaging of aortic dissection.
Figure 6: MRI detection of aortic dissection.
Figure 7: Transoesophageal echocardiography detection of aortic dissection.
Figure 8: An algorithm for the identification and treatment of aortic dissection in patients presenting with chest pain.
Figure 9: Endovascular repair of Stanford type B aortic dissection.
Figure 10: Engagement of physical activities before and after aortic dissection.

References

  1. 1

    Clough, R. E. & Nienaber, C. A. Management of acute aortic syndrome. Nat. Rev. Cardiol. 12, 103–114 (2015).

    Article  CAS  PubMed  Google Scholar 

  2. 2

    Vilacosta, I. & Roman, J. A. Acute aortic syndrome. Heart 85, 365–368 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. 3

    Erbel, R. et al. 2014 ESC Guidelines on the diagnosis and treatment of aortic diseases: document covering acute and chronic aortic diseases of the thoracic and abdominal aorta of the adult. The Task Force for the Diagnosis and Treatment of Aortic Diseases of the European Society of Cardiology (ESC). Eur. Heart J. 35, 2873–2926 (2014). This paper describes a multidisciplinary guideline highlighting the changing trends in the management of acute aortic conditions.

    Article  PubMed  Google Scholar 

  4. 4

    Nienaber, C. A. et al. Endovascular repair of type B aortic dissection: long-term results of the randomized investigation of stent grafts in aortic dissection trial. Circ. Cardiovasc. Interv. 6, 407–416 (2013). This paper reports the first randomized long-term comparison between medical management and pre-emptive stent grafting in Stanford type B aortic dissection, showing a long-term benefit using the latter approach.

    Article  CAS  PubMed  Google Scholar 

  5. 5

    Nienaber, C. A. & Clough, R. E. Management of acute aortic dissection. Lancet 385, 800–811 (2015). This article provides the most recent update on changing trends in the management of aortic dissection.

    Article  PubMed  Google Scholar 

  6. 6

    Bickerstaff, L. K. et al. Thoracic aortic aneurysms: a population-based study. Surgery 92, 1103–1108 (1982).

    CAS  PubMed  Google Scholar 

  7. 7

    Clouse, W. D. et al. Acute aortic dissection: population-based incidence compared with degenerative aortic aneurysm rupture. Mayo Clin. Proc. 79, 176–180 (2004).

    Article  PubMed  Google Scholar 

  8. 8

    Olsson, C., Thelin, S., Stahle, E., Ekbom, A. & Granath, F. Thoracic aortic aneurysm and dissection: increasing prevalence and improved outcomes reported in a nationwide population-based study of more than 14,000 cases from 1987 to 2002. Circulation 114, 2611–2618 (2006).

    Article  PubMed  Google Scholar 

  9. 9

    Acosta, S. et al. Increasing incidence of ruptured abdominal aortic aneurysm: a population-based study. J. Vasc. Surg. 44, 237–243 (2006).

    Article  PubMed  Google Scholar 

  10. 10

    Mehta, R. H. et al. Chronobiological patterns of acute aortic dissection. Circulation 106, 1110–1115 (2002).

    Article  PubMed  Google Scholar 

  11. 11

    Collins, J. S. et al. Differences in clinical presentation, management, and outcomes of acute type a aortic dissection in patients with and without previous cardiac surgery. Circulation 110, II237–II242 (2004).

    Article  PubMed  Google Scholar 

  12. 12

    Suzuki, T. et al. Clinical profiles and outcomes of acute type B aortic dissection in the current era: lessons from the International Registry of Aortic Dissection (IRAD). Circulation 108 (Suppl. 1), II312–II317 (2003).

    PubMed  Google Scholar 

  13. 13

    Ramanath, V. S., Oh, J. K., Sundt, T. M. 3rd & Eagle, K. A. Acute aortic syndromes and thoracic aortic aneurysm. Mayo Clin. Proc. 84, 465–481 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  14. 14

    Feldman, M., Shah, M. & Elefteriades, J. A. Medical management of acute type A aortic dissection. Ann. Thorac Cardiovasc. Surg. 15, 286–293 (2009).

    PubMed  Google Scholar 

  15. 15

    Thrumurthy, S. G., Karthikesalingam, A., Patterson, B. O., Holt, P. J. & Thompson, M. M. The diagnosis and management of aortic dissection. BMJ 344, d8290 (2012).

    Article  Google Scholar 

  16. 16

    Landenhed, M. et al. Risk profiles for aortic dissection and ruptured or surgically treated aneurysms: a prospective cohort study. J. Am. Heart Assoc. 4, e001513 (2015). This paper provides a prospective analysis of 30,412 middle-aged individuals with 20 years of follow-up, reporting 15 cases per 100,000 patient-years for aortic dissection with a male preponderance.

    Article  PubMed  PubMed Central  Google Scholar 

  17. 17

    Howard, D. P. et al. Population-based study of incidence and outcome of acute aortic dissection and premorbid risk factor control: 10-year results from the Oxford Vascular Study. Circulation 127, 2031–2037 (2013). This article describes a population-based study reporting an aortic dissection incidence of 35 cases per 100,000 patient-years in those 65–75 years of age.

    Article  PubMed  PubMed Central  Google Scholar 

  18. 18

    Nienaber, C. A. et al. Gender-related differences in acute aortic dissection. Circulation 109, 3014–3021 (2004).

    Article  PubMed  Google Scholar 

  19. 19

    Bossone, E. et al. Acute aortic dissection in blacks: insights from the International Registry of Acute Aortic Dissection. Am. J. Med. 126, 909–915 (2013).

    Article  PubMed  Google Scholar 

  20. 20

    Yeh, T. Y. et al. Epidemiology and medication utilization pattern of aortic dissection in Taiwan: a population-based study. Medicine (Baltimore) 94, e1522 (2015). This article demonstrates that the incidence of aortic dissection is rising in China and Japan alongside a high prevalence of arterial hypertension.

    Article  Google Scholar 

  21. 21

    Hagan, P. G. et al. The International Registry of Acute Aortic Dissection (IRAD): new insights into an old disease. JAMA 283, 897–903 (2000). This paper reports contemporary figures on the outcomes of Stanford type A and Stanford type B aortic dissection as a function of surgical or medical management from the International Registry for Aortic Dissection.

    Article  CAS  PubMed  Google Scholar 

  22. 22

    Evangelista, A. et al. Echocardiography in aortic diseases: EAE recommendations for clinical practice. Eur. J. Echocardiogr. 11, 645–658 (2010).

    Article  PubMed  Google Scholar 

  23. 23

    Hirsch, A. T. et al. ACC/AHA guidelines for the management of patients with peripheral arterial disease (lower extremity, renal, mesenteric, and abdominal aortic): a collaborative report from the American Associations for Vascular Surgery/Society for Vascular Surgery, Society for Cardiovascular Angiography and Interventions, Society for Vascular Medicine and Biology, Society of Interventional Radiology, and the ACC/AHA Task Force on Practice Guidelines (writing committee to develop guidelines for the management of patients with peripheral arterial disease) — summary of recommendations. J. Vasc. Interv. Radiol. 17, 1383–1397 (2006).

    Article  PubMed  Google Scholar 

  24. 24

    von Kodolitsch, Y. et al. Intramural hematoma of the aorta: predictors of progression to dissection and rupture. Circulation 107, 1158–1163 (2003).

    Article  PubMed  Google Scholar 

  25. 25

    Yin, H. & Pickering, J. G. Cellular senescence and vascular disease: novel routes to better understanding and therapy. Can. J. Cardiol. 32, 612–623 (2016).

    Article  PubMed  Google Scholar 

  26. 26

    Pape, L. A. et al. Presentation, diagnosis, and outcomes of acute aortic dissection: 17-year trends from the International Registry of Acute Aortic Dissection. J. Am. Coll. Cardiol. 66, 350–358 (2015).

    Article  PubMed  Google Scholar 

  27. 27

    Januzzi, J. L. et al. Characterizing the young patient with aortic dissection: results from the International Registry of Aortic Dissection (IRAD). J. Am. Coll. Cardiol. 43, 665–669 (2004).

    Article  PubMed  Google Scholar 

  28. 28

    Nienaber, C. A. Diabetes mellitus and thoracic aortic disease: are people with diabetes mellitus protected from acute aortic dissection? J. Am. Heart Assoc. 1, e001404 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  29. 29

    Milewicz, D. M. & Regalado, E. S. Use of genetics for personalized management of heritable thoracic aortic disease: how do we get there? J. Thorac Cardiovasc. Surg. 149, S3–S5 (2015).

    Article  PubMed  Google Scholar 

  30. 30

    Ziganshin, B. A. et al. Routine genetic testing for thoracic aortic aneurysm and dissection in a clinical setting. Ann. Thorac Surg. 100, 1604–1611 (2015). This is an interesting report on the clinical experience of routine genetic testing in non-syndromic and syndromic patients with aortic aneurysm and dissection.

    Article  PubMed  Google Scholar 

  31. 31

    Pyeritz, R. E. Recent progress in understanding the natural and clinical histories of the Marfan syndrome. Trends Cardiovasc. Med. 26, 423–428 (2016).

    Article  PubMed  Google Scholar 

  32. 32

    Deng, H. et al. Identification of a novel missense FBN2 mutation in a Chinese family with congenital contractural arachnodactyly using exome sequencing. PLoS ONE 11, e0155908 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. 33

    Pyeritz, R. E. & McKusick, V. A. The Marfan syndrome: diagnosis and management. N. Engl. J. Med. 300, 772–777 (1979).

    Article  CAS  PubMed  Google Scholar 

  34. 34

    Loeys, B. L. et al. Aneurysm syndromes caused by mutations in the TGF-β receptor. N. Engl. J. Med. 355, 788–798 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. 35

    Habashi, J. P. et al. Losartan, an AT1 antagonist, prevents aortic aneurysm in a mouse model of Marfan syndrome. Science 312, 117–121 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. 36

    Michelena, H. I. et al. Incidence of aortic complications in patients with bicuspid aortic valves. JAMA 306, 1104–1112 (2011).

    Article  CAS  PubMed  Google Scholar 

  37. 37

    Guo, D. C. et al. LOX mutations predispose to thoracic aortic aneurysms and dissections. Circ. Res. 118, 928–934 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. 38

    Kuang, S. Q. et al. FOXE3 mutations predispose to thoracic aortic aneurysms and dissections. J. Clin. Invest. 126, 948–961 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  39. 39

    Barbier, M. et al. MFAP5 loss-of-function mutations underscore the involvement of matrix alteration in the pathogenesis of familial thoracic aortic aneurysms and dissections. Am. J. Hum. Genet. 95, 736–743 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. 40

    Davies, R. R. et al. Yearly rupture or dissection rates for thoracic aortic aneurysms: simple prediction based on size. Ann. Thorac Surg. 73, 17–27; discussion 27–28 (2002).

    Article  PubMed  Google Scholar 

  41. 41

    Kim, J. B. et al. Risk of rupture or dissection in descending thoracic aortic aneurysm. Circulation 132, 1620–1629 (2015).

    Article  PubMed  Google Scholar 

  42. 42

    Pape, L. A. et al. Aortic diameter > or = 5.5 cm is not a good predictor of type A aortic dissection: observations from the International Registry of Acute Aortic Dissection (IRAD). Circulation 116, 1120–1127 (2007). This is an interesting report from the International Registry for Aortic Dissection supporting the observation that the ascending aorta dissects at a normal diameter or at a diameter of <55 mm in half of patients with Stanford type A aortic dissection.

    Article  PubMed  Google Scholar 

  43. 43

    Humphrey, J. D., Schwartz, M. A., Tellides, G. & Milewicz, D. M. Role of mechanotransduction in vascular biology: focus on thoracic aortic aneurysms and dissections. Circ. Res. 116, 1448–1461 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. 44

    Ye, P. et al. GM-CSF contributes to aortic aneurysms resulting from SMAD3 deficiency. J. Clin. Invest. 123, 2317–2331 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. 45

    Bellini, C., Wang, S., Milewicz, D. M. & Humphrey, J. D. Myh11 (R247C/R247C) mutations increase thoracic aorta vulnerability to intramural damage despite a general biomechanical adaptivity. J. Biomech. 48, 113–121 (2015).

    Article  PubMed  Google Scholar 

  46. 46

    Son, B. K. et al. Granulocyte macrophage colony-stimulating factor is required for aortic dissection/intramural haematoma. Nat. Commun. 6, 6994 (2015).

    Article  CAS  PubMed  Google Scholar 

  47. 47

    Ju, X. et al. Interleukin-6–signal transducer and activator of transcription-3 signaling mediates aortic dissections induced by angiotensin II via the T-helper lymphocyte 17–interleukin 17 axis in C57BL/6 mice. Arterioscler. Thromb. Vasc. Biol. 33, 1612–1621 (2013).

    Article  CAS  PubMed  Google Scholar 

  48. 48

    Anzai, A. et al. Adventitial CXCL1/G-CSF expression in response to acute aortic dissection triggers local neutrophil recruitment and activation leading to aortic rupture. Circ. Res. 116, 612–623 (2015).

    Article  CAS  PubMed  Google Scholar 

  49. 49

    Boyle, J. J., Weissberg, P. L. & Bennett, M. R. Tumor necrosis factor-α promotes macrophage-induced vascular smooth muscle cell apoptosis by direct and autocrine mechanisms. Arterioscler. Thromb. Vasc. Biol. 23, 1553–1558 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. 50

    Ju, X. et al. IL-6 regulates extracellular matrix remodeling associated with aortic dilation in a fibrillin-1 hypomorphic mgR/mgR mouse model of severe Marfan syndrome. J. Am. Heart Assoc. 3, e000476 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. 51

    Nienaber, C. A. & Eagle, K. A. Aortic dissection: new frontiers in diagnosis and management: part II: therapeutic management and follow-up. Circulation 108, 772–778 (2003).

    Article  PubMed  Google Scholar 

  52. 52

    Clough, R. E., Waltham, M., Giese, D., Taylor, P. R. & Schaeffter, T. A new imaging method for assessment of aortic dissection using four-dimensional phase contrast magnetic resonance imaging. J. Vasc. Surg. 55, 914–923 (2012). This article introduces 4D phase-contrast MRI for functional imaging of aortic dissection.

    Article  PubMed  Google Scholar 

  53. 53

    Frauenfelder, T. et al. Triple rule-out CT in the emergency department: protocols and spectrum of imaging findings. Eur. Radiol. 19, 789–799 (2009).

    Article  PubMed  Google Scholar 

  54. 54

    Moore, A. G. et al. Choice of computed tomography, transesophageal echocardiography, magnetic resonance imaging, and aortography in acute aortic dissection: International Registry of Acute Aortic Dissection (IRAD). Am. J. Cardiol. 89, 1235–1238 (2002).

    Article  PubMed  Google Scholar 

  55. 55

    Elefteriades, J. A. et al. Indications and imaging for aortic surgery: size and other matters. J. Thorac Cardiovasc. Surg. 149, S10–S13 (2015).

    Article  PubMed  Google Scholar 

  56. 56

    Redheuil, A. et al. Age-related changes in aortic arch geometry: relationship with proximal aortic function and left ventricular mass and remodeling. J. Am. Coll. Cardiol. 58, 1262–1270 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  57. 57

    Lederle, F. A. et al. Variability in measurement of abdominal aortic aneurysms. Abdominal Aortic Aneurysm Detection and Management Veterans Administration Cooperative Study Group. J. Vasc. Surg. 21, 945–952 (1995).

    Article  CAS  PubMed  Google Scholar 

  58. 58

    Singh, K. et al. Intra- and interobserver variability in the measurements of abdominal aortic and common iliac artery diameter with computed tomography. The Tromsø study. Eur. J. Vasc. Endovasc. Surg. 25, 399–407 (2003).

    Article  CAS  PubMed  Google Scholar 

  59. 59

    Cayne, N. S. et al. Variability of maximal aortic aneurysm diameter measurements on CT scan: significance and methods to minimize. J. Vasc. Surg. 39, 811–815 (2004).

    Article  PubMed  Google Scholar 

  60. 60

    Wen, D., Du, X., Dong, J. Z., Zhou, X. L. & Ma, C. S. Value of D-dimer and C reactive protein in predicting inhospital death in acute aortic dissection. Heart 99, 1192–1197 (2013). This article provides an interesting analysis of D-dimer and C-reactive protein as common biomarkers to predict in-hospital death from acute aortic dissection.

    Article  CAS  PubMed  Google Scholar 

  61. 61

    Okina, N. et al. Utility of measuring C-reactive protein for prediction of in-hospital events in patients with acute aortic dissection. Heart Vessels 28, 330–335 (2013).

    Article  PubMed  Google Scholar 

  62. 62

    Jing, Q. et al. Angiotensin-converting enzyme I/D polymorphism and the risk of thoracic aortic dissection in Chinese Han population. Mol. Biol. Rep. 40, 1249–1254 (2013).

    Article  CAS  PubMed  Google Scholar 

  63. 63

    Treasure, T. & Pepper, J. The potential of personalized external aortic root support (PEARS) to restore and maintain aortic valve competence. Ann. Thorac Surg. 100, 2415 (2015). This paper describes the introduction of a personalized external aortic root support to prevent enlargement of the ascending aorta in aortopathy.

    Article  PubMed  Google Scholar 

  64. 64

    Trimarchi, S. et al. Descending aortic diameter of 5.5 cm or greater is not an accurate predictor of acute type B aortic dissection. J. Thorac Cardiovasc. Surg. 142, e101–e107 (2011).

    Article  PubMed  Google Scholar 

  65. 65

    Mehta, R. H. et al. Acute type A aortic dissection in the elderly: clinical characteristics, management, and outcomes in the current era. J. Am. Coll. Cardiol. 40, 685–692 (2002).

    Article  PubMed  Google Scholar 

  66. 66

    Cooley, D. A. & De Bakey, M. E. Resection of entire ascending aorta in fusiform aneurysm using cardiac bypass. J. Am. Med. Assoc. 162, 1158–1159 (1956).

    Article  CAS  PubMed  Google Scholar 

  67. 67

    DeBakey, M. E. et al. Surgical management of dissecting aneurysms of the aorta. J. Thorac Cardiovasc. Surg. 49, 130–149 (1965).

    CAS  PubMed  Google Scholar 

  68. 68

    Wheat, M. W. Jr, Wilson, J. R. & Bartley, T. D. Successful replacement of the entire ascending aorta and aortic valve. JAMA 188, 717–719 (1964).

    Article  PubMed  Google Scholar 

  69. 69

    Bentall, H. & De Bono, A. A technique for complete replacement of the ascending aorta. Thorax 23, 338–339 (1968).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. 70

    Yacoub, M. H. et al. Late results of a valve-preserving operation in patients with aneurysms of the ascending aorta and root. J. Thorac Cardiovasc. Surg. 115, 1080–1090 (1998).

    Article  CAS  PubMed  Google Scholar 

  71. 71

    David, T. E. & Feindel, C. M. An aortic valve-sparing operation for patients with aortic incompetence and aneurysm of the ascending aorta. J. Thorac Cardiovasc. Surg. 103, 617–621; discussion 622 (1992). This article reports the introduction of the surgical aortic valve-sparing concept for patients with aneurysm of the ascending aorta.

    CAS  PubMed  Google Scholar 

  72. 72

    Cabrol, C., Gandjbakhch, I. & Cham, B. [Aneurysms of the ascending aorta; total replacement with reimplantation of the coronary arteries (author's transl)]. Nouv. Presse Med. 7, 363–365 (in French) (1978).

    CAS  PubMed  Google Scholar 

  73. 73

    Karck, M. et al. The frozen elephant trunk technique: a new treatment for thoracic aortic aneurysms. J. Thorac Cardiovasc. Surg. 125, 1550–1553 (2003).

    Article  PubMed  Google Scholar 

  74. 74

    Sayer, D. et al. Aortic morphology following endovascular repair of acute and chronic type B aortic dissection: implications for management. Eur. J. Vasc. Endovasc. Surg. 36, 522–529 (2008).

    Article  CAS  PubMed  Google Scholar 

  75. 75

    Dake, M. D. et al. Endovascular stent-graft placement for the treatment of acute aortic dissection. N. Engl. J. Med. 340, 1546–1552 (1999).

    Article  CAS  PubMed  Google Scholar 

  76. 76

    Nienaber, C. A. et al. Nonsurgical reconstruction of thoracic aortic dissection by stent-graft placement. N. Engl. J. Med. 340, 1539–1545 (1999).

    Article  CAS  PubMed  Google Scholar 

  77. 77

    Cochennec, F. et al. Hybrid repair of aortic arch dissections. J. Vasc. Surg. 57, 1560–1567 (2013). This paper outlines endovascular stenting and associated vascular re-routing surgery for the treatment of dissection that encroaches onto the aortic arch.

    Article  PubMed  Google Scholar 

  78. 78

    Canaud, L. et al. Retrograde aortic dissection after thoracic endovascular aortic repair. Ann. Surg. 260, 389–395 (2014).

    Article  PubMed  Google Scholar 

  79. 79

    Lombardi, J. V. et al. Prospective multicenter clinical trial (STABLE) on the endovascular treatment of complicated type B aortic dissection using a composite device design. J. Vasc. Surg. 55, 629–640.e2 (2012).

    Article  PubMed  Google Scholar 

  80. 80

    Nienaber, C. A. et al. Provisional extension to induce complete attachment after stent-graft placement in type B aortic dissection: the PETTICOAT concept. J. Endovasc. Ther. 13, 738–746 (2006).

    Article  PubMed  Google Scholar 

  81. 81

    VIRTUE Registry Investigators. Mid-term outcomes and aortic remodelling after thoracic endovascular repair for acute, subacute, and chronic aortic dissection: the VIRTUE Registry. Eur. J. Vasc. Endovasc. Surg. 48, 363–371 (2014).

    Article  Google Scholar 

  82. 82

    Fattori, R. et al. Complicated acute type B dissection: is surgery still the best option?: A report from the International Registry of Acute Aortic Dissection. JACC Cardiovasc. Interv. 1, 395–402 (2008).

    Article  PubMed  Google Scholar 

  83. 83

    Parker, J. D. & Golledge, J. Outcome of endovascular treatment of acute type B aortic dissection. Ann. Thorac Surg. 86, 1707–1712 (2008).

    Article  PubMed  Google Scholar 

  84. 84

    Patterson, B. et al. Aortic pathology determines midterm outcome after endovascular repair of the thoracic aorta: report from the Medtronic Thoracic Endovascular Registry (MOTHER) database. Circulation 127, 24–32 (2013).

    Article  PubMed  Google Scholar 

  85. 85

    Conrad, M. F. et al. Late aortic remodeling persists in the stented segment after endovascular repair of acute complicated type B aortic dissection. J. Vasc. Surg. 62, 600–605 (2015).

    Article  PubMed  Google Scholar 

  86. 86

    Trimarchi, S. et al. Role and results of surgery in acute type B aortic dissection: insights from the International Registry of Acute Aortic Dissection (IRAD). Circulation 114, I357–I364 (2006).

    Article  PubMed  Google Scholar 

  87. 87

    Bozinovski, J. & Coselli, J. S. Outcomes and survival in surgical treatment of descending thoracic aorta with acute dissection. Ann. Thorac Surg. 85, 965–970; discussion 970–971 (2008).

    Article  PubMed  Google Scholar 

  88. 88

    Corvera, J. S. & Fehrenbacher, J. W. Open repair of chronic aortic dissections using deep hypothermia and circulatory arrest. Ann. Thorac Surg. 94, 78–81; discussion 82–83 (2012).

    Article  PubMed  Google Scholar 

  89. 89

    Kouchoukos, N. T., Kulik, A. & Castner, C. F. Outcomes after thoracoabdominal aortic aneurysm repair using hypothermic circulatory arrest. J. Thorac Cardiovasc. Surg. 145, S139–S141 (2013).

    Article  PubMed  Google Scholar 

  90. 90

    Mommertz, G. et al. Thoracoabdominal aortic aneurysm repair in patients with Marfan syndrome. Eur. J. Vasc. Endovasc. Surg. 35, 181–186 (2008).

    Article  CAS  PubMed  Google Scholar 

  91. 91

    Pujara, A. C. et al. Open repair of chronic distal aortic dissection in the endovascular era: implications for disease management. J. Thorac Cardiovasc. Surg. 144, 866–873 (2012).

    Article  PubMed  Google Scholar 

  92. 92

    Estrera, A. L. et al. Early and late outcomes after complete aortic replacement. Ann. Thorac Surg. 100, 528–534 (2015).

    Article  PubMed  Google Scholar 

  93. 93

    Tian, D. H., De Silva, R. P., Wang, T. & Yan, T. D. Open surgical repair for chronic type B aortic dissection: a systematic review. Ann. Cardiothorac. Surg. 3, 340–350 (2014).

    PubMed  PubMed Central  Google Scholar 

  94. 94

    Coselli, J. S. et al. Mortality and paraplegia after thoracoabdominal aortic aneurysm repair: a risk factor analysis. Ann. Thorac Surg. 69, 409–414 (2000).

    Article  CAS  PubMed  Google Scholar 

  95. 95

    Geisbusch, P. et al. Thoracic aortic endografting in patients with connective tissue diseases. J. Endovasc. Ther. 15, 144–149 (2008).

    Article  PubMed  Google Scholar 

  96. 96

    Drinkwater, S. L. et al. The incidence of spinal cord ischaemia following thoracic and thoracoabdominal aortic endovascular intervention. Eur. J. Vasc. Endovasc. Surg. 40, 729–735 (2010).

    Article  CAS  PubMed  Google Scholar 

  97. 97

    Bisdas, T., Panuccio, G., Sugimoto, M., Torsello, G. & Austermann, M. Risk factors for spinal cord ischemia after endovascular repair of thoracoabdominal aortic aneurysms. J. Vasc. Surg. 61, 1408–1416 (2015).

    Article  PubMed  Google Scholar 

  98. 98

    Griepp, E. B. et al. The anatomy of the spinal cord collateral circulation. Ann. Cardiothorac Surg. 1, 350–357 (2012).

    PubMed  PubMed Central  Google Scholar 

  99. 99

    Verhoeven, E. L. et al. Editor's choice — ten-year experience with endovascular repair of thoracoabdominal aortic aneurysms: results from 166 consecutive patients. Eur. J. Vasc. Endovasc. Surg. 49, 524–531 (2015).

    Article  CAS  PubMed  Google Scholar 

  100. 100

    Augoustides, J. G., Stone, M. E. & Drenger, B. Novel approaches to spinal cord protection during thoracoabdominal aortic interventions. Curr. Opin. Anaesthesiol. 27, 98–105 (2014).

    Article  PubMed  Google Scholar 

  101. 101

    Griepp, R. B. & Di Luozzo, G. Hypothermia for aortic surgery. J. Thorac Cardiovasc. Surg. 145, S56–S58 (2013).

    Article  PubMed  Google Scholar 

  102. 102

    Zipfel, B. et al. Spinal cord ischemia after thoracic stent-grafting: causes apart from intercostal artery coverage. Ann. Thorac Surg. 96, 31–38 (2013).

    Article  PubMed  Google Scholar 

  103. 103

    Etz, C. D. et al. Staged repair significantly reduces paraplegia rate after extensive thoracoabdominal aortic aneurysm repair. J. Thorac Cardiovasc. Surg. 139, 1464–1472 (2010). This article reports that the staged repair of thoraco-abdominal aneurysm reduces the rate of paraplegia in this condition.

    Article  PubMed  Google Scholar 

  104. 104

    Etz, C. D., Debus, E. S., Mohr, F. W. & Kolbel, T. First-in-man endovascular preconditioning of the paraspinal collateral network by segmental artery coil embolization to prevent ischemic spinal cord injury. J. Thorac Cardiovasc. Surg. 149, 1074–1079 (2015).

    Article  PubMed  Google Scholar 

  105. 105

    Lohse, F. et al. Quality of life after replacement of the ascending aorta in patients with true aneurysms. Tex. Heart Inst. J. 36, 104–110 (2009).

    PubMed  PubMed Central  Google Scholar 

  106. 106

    Immer, F. F. et al. Improvement of quality of life after surgery on the thoracic aorta: effect of antegrade cerebral perfusion and short duration of deep hypothermic circulatory arrest. Circulation 110, II250–II255 (2004).

    Article  PubMed  Google Scholar 

  107. 107

    Chaddha, A. et al. Survivors of aortic dissection: activity, mental health, and sexual function. Clin. Cardiol. 38, 652–659 (2015). This is the first report on changes in physical activities, mental health and sexual function after aortic dissection.

    Article  PubMed  Google Scholar 

  108. 108

    Tang, G. H. et al. Surgery for acute type A aortic dissection in octogenarians is justified. J. Thorac Cardiovasc. Surg. 145, S186–S190 (2013).

    Article  PubMed  Google Scholar 

  109. 109

    Fattori, R. et al. Interdisciplinary expert consensus document on management of type B aortic dissection. J. Am. Coll. Cardiol. 61, 1661–1678 (2013).

    Article  PubMed  Google Scholar 

  110. 110

    Svensson, L. G. et al. Aortic valve and ascending aorta guidelines for management and quality measures. Ann. Thorac Surg. 95, S1–S66 (2013). This paper presents the most recent guidelines for managing disease of the aortic valve and ascending aorta, including measures on quality of life.

    Article  PubMed  Google Scholar 

  111. 111

    Nienaber, C. A., Divchev, D., Palisch, H., Clough, R. E. & Richartz, B. Early and late management of type B aortic dissection. Heart 100, 1491–1497 (2014).

    Article  PubMed  Google Scholar 

  112. 112

    Suzuki, T. et al. Type-selective benefits of medications in treatment of acute aortic dissection (from the International Registry of Acute Aortic Dissection [IRAD]). Am. J. Cardiol. 109, 122–127 (2012).

    Article  CAS  PubMed  Google Scholar 

  113. 113

    Sakalihasan, N. et al. (Tissue PET) Vascular metabolic imaging and peripheral plasma biomarkers in the evolution of chronic aortic dissections. Eur. Heart J. Cardiovasc. Imaging 16, 626–633 (2015). This paper describes a study that found that PET imaging of aortic wall inflammation correlates with biomarker activity and may have prognostic usefulness in the chronic phase of aortic dissection.

    Article  PubMed  Google Scholar 

  114. 114

    Hertault, A. et al. Benefits of completion 3D angiography associated with contrast enhanced ultrasound to assess technical success after EVAR. Eur. J. Vasc. Endovasc. Surg. 49, 541–548 (2015).

    Article  CAS  PubMed  Google Scholar 

  115. 115

    Ulug, P., McCaslin, J. E., Stansby, G. & Powell, J. T. Endovascular versus conventional medical treatment for uncomplicated chronic type B aortic dissection. Cochrane Database Syst. Rev. 11, CD006512 (2012).

    PubMed  Google Scholar 

  116. 116

    Metcalfe, M. J. et al. The first endovascular repair of an acute type A dissection using an endograft designed for the ascending aorta. J. Vasc. Surg. 55, 220–222 (2012).

    Article  PubMed  Google Scholar 

  117. 117

    Sobocinski, J. et al. Endovascular approaches to acute aortic type A dissection: a CT-based feasibility study. Eur. J. Vasc. Endovasc. Surg. 42, 442–447 (2011). This paper describes radiographic evaluation of CT images in proximal aortic dissection, with results suggesting that endovascular treatment is suitable for approximately 50% of patients.

    Article  CAS  PubMed  Google Scholar 

  118. 118

    Moon, M. C. et al. Computed tomography-based anatomic characterization of proximal aortic dissection with consideration for endovascular candidacy. J. Vasc. Surg. 53, 942–949 (2011).

    Article  PubMed  Google Scholar 

  119. 119

    Lu, Q. et al. Endovascular repair of ascending aortic dissection: a novel treatment option for patients judged unfit for direct surgical repair. J. Am. Coll. Cardiol. 61, 1917–1924 (2013). This paper describes the introduction of endovascular repair of the ascending aorta in cases of Stanford type A aortic dissection that are not suitable for surgical repair.

    Article  PubMed  Google Scholar 

  120. 120

    Idrees, J., Roselli, E. E., Shafii, S., Reside, J. & Lytle, B. W. Outcomes after false lumen embolization with covered stent devices in chronic dissection. J. Vasc. Surg. 60, 1507–1513 (2014).

    Article  PubMed  Google Scholar 

  121. 121

    Oikonomou, K. et al. Outcomes of fenestrated/branched endografting in post-dissection thoracoabdominal aortic aneurysms. Eur. J. Vasc. Endovasc. Surg. 48, 641–648 (2014).

    Article  CAS  PubMed  Google Scholar 

  122. 122

    Sobocinski, J. et al. Treatment options for postdissection aortic aneurysms. J. Cardiovasc. Surg. (Torino) 57, 202–211 (2016).

    Google Scholar 

  123. 123

    Bonatti, J., Vetrovec, G., Riga, C., Wazni, O. & Stadler, P. Robotic technology in cardiovascular medicine. Nat. Rev. Cardiol. 11, 266–275 (2014).

    Article  PubMed  Google Scholar 

  124. 124

    Saratzis, A. & Bown, M. J. The genetic basis for aortic aneurysmal disease. Heart 100, 916–922 (2014).

    Article  CAS  PubMed  Google Scholar 

  125. 125

    Callewaert, B., De Paepe, A. & Coucke, P. Arterial tortuosity syndrome. GeneReviewshttp://www.ncbi.nlm.nih.gov/books/NBK253404/ (updated 13 Nov 2014).

  126. 126

    Schubert, J. A., Landis, B. J., Shikany, A. R., Hinton, R. B. & Ware, S. M. Clinically relevant variants identified in thoracic aortic aneurysm patients by research exome sequencing. Am. J. Med. Genet. A 170, 1288–1294 (2016).

    Article  CAS  Google Scholar 

  127. 127

    Guo, D. C. et al. MAT2A mutations predispose individuals to thoracic aortic aneurysms. Am. J. Hum. Genet. 96, 170–177 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. 128

    Guo, D. C. et al. Recurrent gain-of-function mutation in PRKG1 causes thoracic aortic aneurysms and acute aortic dissections. Am. J. Hum. Genet. 93, 398–404 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. 129

    Pyeritz, R. E. Heritable thoracic aortic disorders. Curr. Opin. Cardiol. 29, 97–102 (2014).

    Article  PubMed  Google Scholar 

  130. 130

    Clough, R. E., Zymvragoudakis, V. E., Biasi, L. & Taylor, P. R. Usefulness of new imaging methods for assessment of type B aortic dissection. Ann. Cardiothorac Surg. 3, 314–318 (2014).

    PubMed  PubMed Central  Google Scholar 

  131. 131

    Nienaber, C. A. & Powell, J. T. Management of acute aortic syndromes. Eur. Heart J. 33, 26–35b (2012).

    Article  PubMed  Google Scholar 

  132. 132

    LeMaire, S. A. & Russell, L. Epidemiology of thoracic aortic dissection. Nat. Rev. Cardiol. 8, 103–113 (2011).

    Article  PubMed  Google Scholar 

  133. 133

    Donati, T., Wilson, J., Kolbel, T. & Clough, R. E. Modern diagnostics for type B aortic dissection. Gefasschirurgie 20, 420–427 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. 134

    Baldwin, A. K., Simpson, A., Steer, R., Cain, S. A. & Kielty, C. M. Elastic fibres in health and disease. Expert Rev. Mol. Med. 15, e8 (2013).

    Article  CAS  PubMed  Google Scholar 

  135. 135

    Shalhub, S., Dua, A. & Brooks, J. Biomarkers in descending thoracic aortic dissection. Semin. Vasc. Surg. 27, 196–199 (2014).

    Article  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Contributions

Introduction (C.A.N. and J.S.M.Y.); Epidemiology (F.M. and J.S.M.Y.); Mechanisms/pathophysiology (T.S. and J.S.M.Y.); Diagnosis, screening and prevention (C.A.N., R.E.C., A.E. and J.S.M.Y.); Management (C.A.N., N.S., R.G., M.P.J., M.M.T., J.S.M.Y. and J.P.); Quality of life (J.S.M.Y. and U.R.); Outlook (C.A.N., R.E.C., J.S.M.Y. and N.C.); Overview of Primer (C.A.N.).

Corresponding author

Correspondence to Christoph A. Nienaber.

Ethics declarations

Competing interests

The authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nienaber, C., Clough, R., Sakalihasan, N. et al. Aortic dissection. Nat Rev Dis Primers 2, 16053 (2016). https://doi.org/10.1038/nrdp.2016.53

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing