Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Brain arteriovenous malformations

Abstract

An arteriovenous malformation is a tangle of dysplastic vessels (nidus) fed by arteries and drained by veins without intervening capillaries, forming a high-flow, low-resistance shunt between the arterial and venous systems. Arteriovenous malformations in the brain have a low estimated prevalence but are an important cause of intracerebral haemorrhage in young adults. For previously unruptured malformations, bleeding rates are approximately 1% per year. Once ruptured, the subsequent risk increases fivefold, depending on associated aneurysms, deep locations, deep drainage and increasing age. Recent findings from novel animal models and genetic studies suggest that arteriovenous malformations, which were long considered congenital, arise from aberrant vasculogenesis, genetic mutations and/or angiogenesis after injury. The phenotypical characteristics of arteriovenous malformations differ among age groups, with fistulous lesions in children and nidal lesions in adults. Diagnosis mainly involves imaging techniques, including CT, MRI and angiography. Management includes observation, microsurgical resection, endovascular embolization and stereotactic radiosurgery, alone or in any combination. There is little consensus on how to manage patients with unruptured malformations; recent studies have shown that patients managed medically fared better than those with intervention at short-term follow-up. By contrast, interventional treatment is preferred following a ruptured malformation to prevent rehaemorrhage. Management continues to evolve as new mechanistic discoveries and reliable animal models raise the possibility of developing drugs that might prevent the formation of arteriovenous malformations, induce obliteration and/or stabilize vessels to reduce rupture risk. For an illustrated summary of this Primer, visit: http://go.nature.com/TMoAdn

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Schematic representation of normal vasculature and an arteriovenous malformation.
Figure 2: Molecular mechanism of artery and vein differentiation in homeostasis and pathology.
Figure 3: Hypotheses of arteriovenous malformation pathogenesis and the role of ALK1.
Figure 4: Prenatal and postnatal diagnosis of an intracranial pial arteriovenous fistula.
Figure 5: Imaging of a feeding artery pseudoaneurysm with haemorrhage.
Figure 6: Resection strategy of arteriovenous malformations.
Figure 7: Arteriovenous malformation occlusion through radiosurgery and transarterial glue embolization.
Figure 8: Tectal arteriovenous malformations treated with Gamma Knife stereotactic radiosurgery.
Figure 9: Hypothetical cumulative risk of rupture in patients with arteriovenous malformations.

References

  1. 1

    Morris, Z. et al. Incidental findings on brain magnetic resonance imaging: systematic review and meta-analysis. BMJ 339, b3016 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  2. 2

    Stapf, C. et al. The New York Islands AVM Study: design, study progress, and initial results. Stroke 34, e29–e33 (2003).

    CAS  PubMed  Google Scholar 

  3. 3

    Stapf, C. et al. Incidence of adult brain arteriovenous malformation hemorrhage in a prospective population-based stroke survey. Cerebrovasc. Dis. 13, 43–46 (2002).

    Article  PubMed  Google Scholar 

  4. 4

    Al-Shahi, R. et al. Prospective, population-based detection of intracranial vascular malformations in adults: the Scottish Intracranial Vascular Malformation Study (SIVMS). Stroke 34, 1163–1169 (2003).

    Article  PubMed  Google Scholar 

  5. 5

    Gabriel, R. A. et al. Ten-year detection rate of brain arteriovenous malformations in a large, multiethnic, defined population. Stroke 41, 21–26 (2010).

    Article  PubMed  Google Scholar 

  6. 6

    Hofmeister, C. et al. Demographic, morphological, and clinical characteristics of 1289 patients with brain arteriovenous malformation. Stroke 31, 1307–1310 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. 7

    ApSimon, H. T., Reef, H., Phadke, R. V. & Popovic, E. A. A population-based study of brain arteriovenous malformation: long-term treatment outcomes. Stroke 33, 2794–2800 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. 8

    Crawford, P. M., West, C. R., Chadwick, D. W. & Shaw, M. D. Arteriovenous malformations of the brain: natural history in unoperated patients. J. Neurol. Neurosurg. Psychiatry 49, 1–10 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. 9

    Ondra, S. L., Troupp, H., George, E. D. & Schwab, K. The natural history of symptomatic arteriovenous malformations of the brain: a 24-year follow-up assessment. J. Neurosurg. 73, 387–391 (1990). A study of haemorrhage rates associated with untreated arteriovenous malformations in a controlled population in Finland, establishing some of the best natural history data on this condition.

    Article  CAS  PubMed  Google Scholar 

  10. 10

    Englot, D. J. et al. Seizure predictors and control after microsurgical resection of supratentorial arteriovenous malformations in 440 patients. Neurosurgery 71, 572–580; discussion 580 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  11. 11

    Fults, D. & Kelly, D. L. Jr. Natural history of arteriovenous malformations of the brain: a clinical study. Neurosurgery 15, 658–662 (1984).

    Article  CAS  PubMed  Google Scholar 

  12. 12

    Kim, H., Al- Shahi Salman, R., McCulloch, C. E., Stapf, C. & Young, W. L. Untreated brain arteriovenous malformation: patient-level meta-analysis of hemorrhage predictors. Neurology 83, 590–597 (2014). This paper combined four separate cohorts to show that increasing age and presentation with bleeding were predictors of arteriovenous malformation haemorrhage.

    Article  PubMed  PubMed Central  Google Scholar 

  13. 13

    Mohr, J. P. et al. Medical management with or without interventional therapy for unruptured brain arteriovenous malformations (ARUBA): a multicentre, non-blinded, randomised trial. Lancet 383, 614–621 (2014). This randomized clinical trial compared various therapeutic interventions to medical management and its results have stirred worldwide debate about arteriovenous malformation management.

    Article  CAS  PubMed  Google Scholar 

  14. 14

    Halim, A. X. et al. Longitudinal risk of intracranial hemorrhage in patients with arteriovenous malformation of the brain within a defined population. Stroke 35, 1697–1702 (2004).

    Article  PubMed  Google Scholar 

  15. 15

    Hernesniemi, J. A. et al. Natural history of brain arteriovenous malformations: a long-term follow-up study of risk of hemorrhage in 238 patients. Neurosurgery 63, 823–829; discussion 829–831 (2008).

    Article  PubMed  Google Scholar 

  16. 16

    Kim, H. et al. Racial/ethnic differences in longitudinal risk of intracranial hemorrhage in brain arteriovenous malformation patients. Stroke 38, 2430–2437 (2007).

    Article  PubMed  Google Scholar 

  17. 17

    Stapf, C. et al. Predictors of hemorrhage in patients with untreated brain arteriovenous malformation. Neurology 66, 1350–1355 (2006). This study showed that arteriovenous malformations in deep locations, with deep venous drainage and presenting with previous haemorrhage could have rupture rates as high as 35% per year.

    Article  CAS  PubMed  Google Scholar 

  18. 18

    Guo, Y. et al. Silent intralesional microhemorrhage as a risk factor for brain arteriovenous malformation rupture. Stroke 43, 1240–1246 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  19. 19

    Liu, X. J. et al. Risk of cerebral arteriovenous malformation rupture during pregnancy and puerperium. Neurology 82, 1798–1803 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  20. 20

    van Beijnum, J. et al. Prevalence of brain arteriovenous malformations in first-degree relatives of patients with a brain arteriovenous malformation. Stroke 45, 3231–3235 (2014).

    Article  PubMed  Google Scholar 

  21. 21

    van Beijnum, J. et al. Outcome after spontaneous and arteriovenous malformation-related intracerebral haemorrhage: population-based studies. Brain 132, 537–543 (2009).

    Article  PubMed  Google Scholar 

  22. 22

    Laakso, A. et al. Long-term excess mortality in 623 patients with brain arteriovenous malformations. Neurosurgery 63, 244–253; discussion 253–255 (2008).

    Article  PubMed  Google Scholar 

  23. 23

    Wedderburn, C. J. et al. Outcome after interventional or conservative management of unruptured brain arteriovenous malformations: a prospective, population-based cohort study. Lancet Neurol. 7, 223–230 (2008).

    Article  PubMed  Google Scholar 

  24. 24

    Al-Shahi Salman, R. et al. Outcome after conservative management or intervention for unruptured brain arteriovenous malformations. JAMA 311, 1661–1669 (2014). This study of a cohort in Scotland corroborated findings from the ARUBA trial, adding to the controversy relating to the management of arteriovenous malformation.

    Article  CAS  PubMed  Google Scholar 

  25. 25

    Josephson, C. B. et al. Seizure risk with AVM treatment or conservative management: prospective, population-based study. Neurology 79, 500–507 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. 26

    Lawton, M. T., Jacobowitz, R. & Spetzler, R. F. Redefined role of angiogenesis in the pathogenesis of dural arteriovenous malformations. J. Neurosurg. 87, 267–274 (1997).

    Article  CAS  PubMed  Google Scholar 

  27. 27

    Risau, W. Mechanisms of angiogenesis. Nature 386, 671–674 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. 28

    Kume, T. Specification of arterial, venous, and lymphatic endothelial cells during embryonic development. Histol. Histopathol. 25, 637–646 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29

    Gerety, S. S. & Anderson, D. J. Cardiovascular ephrinB2 function is essential for embryonic angiogenesis. Development 129, 1397–1410 (2002).

    CAS  PubMed  Google Scholar 

  30. 30

    Swift, M. R. & Weinstein, B. M. Arterial-venous specification during development. Circ. Res. 104, 576–588 (2009).

    Article  CAS  PubMed  Google Scholar 

  31. 31

    Mukouyama, Y. S., Shin, D., Britsch, S., Taniguchi, M. & Anderson, D. J. Sensory nerves determine the pattern of arterial differentiation and blood vessel branching in the skin. Cell 109, 693–705 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. 32

    Moyon, D., Pardanaud, L., Yuan, L., Breant, C. & Eichmann, A. Plasticity of endothelial cells during arterial-venous differentiation in the avian embryo. Development 128, 3359–3370 (2001).

    CAS  PubMed  Google Scholar 

  33. 33

    Sorensen, I., Adams, R. H. & Gossler, A. DLL1-mediated Notch activation regulates endothelial identity in mouse fetal arteries. Blood 113, 5680–5688 (2009).

    Article  CAS  PubMed  Google Scholar 

  34. 34

    Lawson, N. D., Vogel, A. M. & Weinstein, B. M. sonic hedgehog and vascular endothelial growth factor act upstream of the Notch pathway during arterial endothelial differentiation. Dev. Cell 3, 127–136 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. 35

    Hayashi, H. & Kume, T. Foxc transcription factors directly regulate Dll4 and Hey2 expression by interacting with the VEGF–Notch signaling pathways in endothelial cells. PLoS ONE 3, e2401 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. 36

    Shoemaker, L. D. et al. Human brain arteriovenous malformations express lymphatic-associated genes. Ann. Clin. Transl. Neurol. 1, 982–995 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. 37

    You, L. R. et al. Suppression of Notch signalling by the COUP-TFII transcription factor regulates vein identity. Nature 435, 98–104 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. 38

    Faughnan, M. E. et al. International guidelines for the diagnosis and management of hereditary haemorrhagic telangiectasia. J. Med. Genet. 48, 73–87 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. 39

    McAllister, K. A. et al. Endoglin, a TGF-β bindinG protein of endothelial cells, is the gene for hereditary haemorrhagic telangiectasia type 1. Nat. Genet. 8, 345–351 (1994). This paper describes the genetic basis of arteriovenous malformations in hereditary haemorrhagic telangiectasia.

    Article  CAS  PubMed  Google Scholar 

  40. 40

    Johnson, D. W. et al. Mutations in the activin receptor-like kinase 1 gene in hereditary haemorrhagic telangiectasia type 2. Nat. Genet. 13, 189–195 (1996). This manuscript established the genetic basis for arteriovenous malformations in hereditary haemorrhagic telangiectasia and guided the development of animal models.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. 41

    Govani, F. S. & Shovlin, C. L. Hereditary haemorrhagic telangiectasia: a clinical and scientific review. Eur. J. Hum. Genet. 17, 860–871 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. 42

    Gallione, C. J. et al. A combined syndrome of juvenile polyposis and hereditary haemorrhagic telangiectasia associated with mutations in MADH4 (SMAD4). Lancet 363, 852–859 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. 43

    David, L., Mallet, C., Mazerbourg, S., Feige, J. J. & Bailly, S. Identification of BMP9 and BMP10 as functional activators of the orphan activin receptor-like kinase 1 (ALK1) in endothelial cells. Blood 109, 1953–1961 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. 44

    David, L. et al. Bone morphogenetic protein-9 is a circulating vascular quiescence factor. Circ. Res. 102, 914–922 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. 45

    Wooderchak-Donahue, W. L. et al. BMP9 mutations cause a vascular-anomaly syndrome with phenotypic overlap with hereditary hemorrhagic telangiectasia. Am. J. Hum. Genet. 93, 530–537 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. 46

    Dupuis-Girod, S. et al. Bevacizumab in patients with hereditary hemorrhagic telangiectasia and severe hepatic vascular malformations and high cardiac output. JAMA 307, 948–955 (2012).

    Article  CAS  PubMed  Google Scholar 

  47. 47

    Flieger, D., Hainke, S. & Fischbach, W. Dramatic improvement in hereditary hemorrhagic telangiectasia after treatment with the vascular endothelial growth factor (VEGF) antagonist bevacizumab. Ann. Hematol. 85, 631–632 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  48. 48

    Sorensen, L. K., Brooke, B. S., Li, D. Y. & Urness, L. D. Loss of distinct arterial and venous boundaries in mice lacking endoglin, a vascular-specific TGFβ coreceptor. Dev. Biol. 261, 235–250 (2003).

    CAS  Article  Google Scholar 

  49. 49

    Urness, L. D., Sorensen, L. K. & Li, D. Y. Arteriovenous malformations in mice lacking activin receptor-like kinase-1. Nat. Genet. 26, 328–331 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. 50

    Park, S. O. et al. Real-time imaging of de novo arteriovenous malformation in a mouse model of hereditary hemorrhagic telangiectasia. J. Clin. Invest. 119, 3487–3496 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51

    Garrido-Martin, E. M. et al. Common and distinctive pathogenetic features of arteriovenous malformations in hereditary hemorrhagic telangiectasia 1 and hereditary hemorrhagic telangiectasia 2 animal models — brief report. Arterioscler. Thromb. Vasc. Biol. 34, 2232–2236 (2014).

    Article  CAS  PubMed  Google Scholar 

  52. 52

    Boon, L. M., Mulliken, J. B. & Vikkula, M. RASA1: variable phenotype with capillary and arteriovenous malformations. Curr. Opin. Genet. Dev. 15, 265–269 (2005).

    Article  CAS  PubMed  Google Scholar 

  53. 53

    Kawasaki, J. et al. RASA1 functions in EPHB4 signaling pathway to suppress endothelial mTORC1 activity. J. Clin. Invest. 124, 2774–2784 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. 54

    Shirley, M. D. et al. Sturge–Weber syndrome and port-wine stains caused by somatic mutation in GNAQ. N. Engl. J. Med. 368, 1971–1979 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. 55

    Hong, C. C., Peterson, Q. P., Hong, J. Y. & Peterson, R. T. Artery/vein specification is governed by opposing phosphatidylinositol-3 kinase and MAP kinase/ERK signaling. Curr. Biol. 16, 1366–1372 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. 56

    Pawlikowska, L. et al. Polymorphisms in transforming growth factor-B-related genes ALK1 and ENG are associated with sporadic brain arteriovenous malformations. Stroke 36, 2278–2280 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. 57

    Young, W. L. et al. Arteriovenous malformation. J. Neurosurg. 106, 731–732 (2007).

    Article  PubMed  Google Scholar 

  58. 58

    Simon, M. et al. Association of a polymorphism of the ACVRL1 gene with sporadic arteriovenous malformations of the central nervous system. J. Neurosurg. 104, 945–949 (2006).

    Article  CAS  PubMed  Google Scholar 

  59. 59

    Su, H. et al. Reduced expression of integrin αvβ8 is associated with brain arteriovenous malformation pathogenesis. Am. J. Pathol. 176, 1018–1027 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. 60

    Kim, H. et al. Common variants in interleukin-1-β gene are associated with intracranial hemorrhage and susceptibility to brain arteriovenous malformation. Cerebrovasc. Dis. 27, 176–182 (2009).

    Article  CAS  PubMed  Google Scholar 

  61. 61

    Mikhak, B. et al. Angiopoietin-like 4 (ANGPTL4) gene polymorphisms and risk of brain arteriovenous malformations. Cerebrovasc. Dis. 31, 338–345 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. 62

    Weinsheimer, S. et al. G protein-coupled receptor 124 (GPR124) gene polymorphisms and risk of brain arteriovenous malformation. Transl. Stroke Res. 3, 418–427 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. 63

    Chen, H. et al. Polymorphisms of the vascular endothelial growth factor A gene and susceptibility to sporadic brain arteriovenous malformation in a Chinese population. J. Clin. Neurosci. 18, 549–553 (2011).

    Article  CAS  PubMed  Google Scholar 

  64. 64

    Zhao, Y. et al. The rs522616 polymorphism in the matrix metalloproteinase-3 (MMP-3) gene is associated with sporadic brain arteriovenous malformation in a Chinese population. J. Clin. Neurosci. 17, 1568–1572 (2010).

    Article  CAS  PubMed  Google Scholar 

  65. 65

    Weinsheimer, S. et al. Genome-wide association study of brain arteriovenous malformation patients. Stroke 42, abstr. #W MP85 (2011).

  66. 66

    Weinsheimer, S. et al. Common polymorphisms in familial vascular malformation genes do not show association with sporadic brain arteriovenous malformation. Stroke 43, abstr. A3666 (2012).

  67. 67

    Sturiale, C. L. et al. Association between the rs1333040 polymorphism on the chromosomal 9p21 locus and sporadic brain arteriovenous malformations. J. Neurol. Neurosurg. Psychiatry 84, 1059–1062 (2013).

    Article  PubMed  Google Scholar 

  68. 68

    Holdt, L. M. & Teupser, D. Recent studies of the human chromosome 9p21 locus, which is associated with atherosclerosis in human populations. Arterioscler. Thromb. Vasc. Biol. 32, 196–206 (2012).

    Article  CAS  PubMed  Google Scholar 

  69. 69

    Helgadottir, A. et al. The same sequence variant on 9p21 associates with myocardial infarction, abdominal aortic aneurysm and intracranial aneurysm. Nat. Genet. 40, 217–224 (2008).

    Article  CAS  PubMed  Google Scholar 

  70. 70

    Bendjilali, N. et al. Genetic variants on 9p21.3 are associated with brain arteriovenous malformations with associated arterial aneurysms. Stroke 44, abstr. TMP30 (2013).

  71. 71

    Emond, M. J. et al. Exome sequencing of extreme phenotypes identifies DCTN4 as a modifier of chronic Pseudomonas aeruginosa infection in cystic fibrosis. Nat. Genet. 44, 886–889 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. 72

    Wright, F. A. et al. Genome-wide association and linkage identify modifier loci of lung disease severity in cystic fibrosis at 11p13 and 20q13.2. Nat. Genet. 43, 539–546 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. 73

    Drumm, M. L. et al. Genetic modifiers of lung disease in cystic fibrosis. N. Engl. J. Med. 353, 1443–1453 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. 74

    Pawlikowska, L. et al. Polymorphisms in genes involved in inflammatory and angiogenic pathways and the risk of hemorrhagic presentation of brain arteriovenous malformations. Stroke 35, 2294–2300 (2004).

    Article  CAS  PubMed  Google Scholar 

  75. 75

    Weinsheimer, S. et al. EPHB4 gene polymorphisms and risk of intracranial hemorrhage in patients with brain arteriovenous malformations. Circ. Cardiovasc. Genet. 2, 476–482 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. 76

    Pawlikowska, L. et al. Apoliprotein E epsilon2 is associated with new hemorrhage risk in brain arteriovenous malformation. Neurosurgery 58, 838–843; discussion 838–843 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  77. 77

    Achrol, A. S. et al. TNFα-238G>A promoter polymorphism is associated with increased risk of new hemorrhage in the natural course of patients with brain arteriovenous malformations. J. Neurosurg. Anesthesiol. 17, 217–218 (2005).

    Google Scholar 

  78. 78

    Sturiale, C. L. et al. Single nucleotide polymorphisms associated with sporadic brain arteriovenous malformations: where do we stand? Brain 136, 665–681 (2013).

    Article  PubMed  Google Scholar 

  79. 79

    Achrol, A. S. et al. Association of tumor necrosis factor-α-238G>A and Apolipoprotein E2 polymorphisms with intracranial hemorrhage after brain arteriovenous malformation treatment. Neurosurgery 61, 731–739; discussion 740 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  80. 80

    McAllister, T. et al. Polymorphisms in the brain derived neurotrophic factor (BDNF) gene influence memory and processing speed one month after brain injury. J. Neurotrauma 29, 1111–1118 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  81. 81

    Qin, L., Kim, E., Ratan, R., Lee, F. S. & Cho, S. Genetic variant of BDNF (Val66Met) polymorphism attenuates stroke-induced angiogenic responses by enhancing anti-angiogenic mediator CD36 expression. J. Neurosci. 31, 775–783 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. 82

    Siironen, J. et al. The Met allele of the BDNF Val66Met polymorphism predicts poor outcome among survivors of aneurysmal subarachnoid hemorrhage. Stroke 38, 2858–2860 (2007).

    Article  CAS  PubMed  Google Scholar 

  83. 83

    Westbroek, E. M. et al. Brain-derived neurotrophic factor Val66Met polymorphism predicts worse functional outcome after surgery patients with unruptured brain arteriovenous malformation. Stroke 43, 2255–2257 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. 84

    Sato, S., Kodama, N., Sasaki, T., Matsumoto, M. & Ishikawa, T. Perinidal dilated capillary networks in cerebral arteriovenous malformations. Neurosurgery 54, 163–168; discussion 168–170 (2004).

    Article  PubMed  Google Scholar 

  85. 85

    Shankar, J. J. et al. Angioarchitecture of brain AVM determines the presentation with seizures: proposed scoring system. AJNR Am. J. Neuroradiol. 34, 1028–1034 (2013).

    Article  CAS  PubMed  Google Scholar 

  86. 86

    Geibprasert, S. et al. Hydrocephalus in unruptured brain arteriovenous malformations: pathomechanical considerations, therapeutic implications, and clinical course. J. Neurosurg. 110, 500–507 (2009).

    Article  PubMed  Google Scholar 

  87. 87

    Lasjaunias, P. L. et al. Cerebral proliferative angiopathy: clinical and angiographic description of an entity different from cerebral AVMs. Stroke 39, 878–885 (2008).

    Article  PubMed  Google Scholar 

  88. 88

    Krings, T., Geibprasert, S. & Terbrugge, K. Classification and endovascular management of pediatric cerebral vascular malformations. Neurosurg. Clin. N. Am. 21, 463–482 (2010).

    Article  PubMed  Google Scholar 

  89. 89

    Bharatha, A. et al. Brain arteriovenous malformation multiplicity predicts the diagnosis of hereditary hemorrhagic telangiectasia: quantitative assessment. Stroke 43, 72–78 (2012).

    Article  PubMed  Google Scholar 

  90. 90

    Geibprasert, S. et al. Radiologic assessment of brain arteriovenous malformations: what clinicians need to know. Radiographics 30, 483–501 (2010). This article summarizes the imaging features of brain arteriovenous malformations.

    Article  PubMed  Google Scholar 

  91. 91

    Kim, D. J. & Krings, T. Whole-brain perfusion CT patterns of brain arteriovenous malformations: a pilot study in 18 patients. AJNR Am. J. Neuroradiol. 32, 2061–2066 (2011).

    Article  CAS  PubMed  Google Scholar 

  92. 92

    Redekop, G., TerBrugge, K., Montanera, W. & Willinsky, R. Arterial aneurysms associated with cerebral arteriovenous malformations: classification, incidence, and risk of hemorrhage. J. Neurosurg. 89, 539–546 (1998).

    Article  CAS  PubMed  Google Scholar 

  93. 93

    Krings, T., Hans, F. J., Geibprasert, S. & Terbrugge, K. Partial “targeted” embolisation of brain arteriovenous malformations. Eur. Radiol. 20, 2723–2731 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  94. 94

    Abla, A. A. et al. Silent arteriovenous malformation hemorrhage and the recognition of “unruptured” arteriovenous malformation patients who benefit from surgical intervention. Neurosurgery 76, 592–600 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  95. 95

    Spetzler, R. F. & Martin, N. A. A proposed grading system for arteriovenous malformations. J. Neurosurg. 65, 476–483 (1986). The grading system proposed in this paper has become an established predictor of risk associated with brain surgery to eliminate arteriovenous malformations. The paper also describes the anatomy of brain arteriovenous malformations.

    Article  CAS  PubMed  Google Scholar 

  96. 96

    Kim, H. et al. Evaluating performance of the Spetzler–Martin supplemented model in selecting patients with brain arteriovenous malformation for surgery. Stroke 43, 2497–2499 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  97. 97

    Lawton, M. T., Kim, H., McCulloch, C. E., Mikhak, B. & Young, W. L. A supplementary grading scale for selecting patients with brain arteriovenous malformations for surgery. Neurosurgery 66, 702–713; discussion 713 (2010). The grading system proposed in this paper increased the predictive accuracy of the Spetzler–Martin grading system and has become an important tool for selecting patients for surgery.

  98. 98

    Kim, H. et al. Validation of the supplemented Spetzler–Martin grading system for brain arteriovenous malformations in a multicenter cohort of 1009 surgical patients. Neurosurgery 76, 25–33 (2015). This study validated the Lawton–Young grading system in a multicentre cohort of more than 1,000 patients, demonstrating that methods to select patients for surgery are evolving and improving.

  99. 99

    Lawton, M. Seven AVMs: Tenets and Techniques for Resection. xiii–xiv (Thieme Medical Publishers, 2014).

    Google Scholar 

  100. 100

    Davidson, A. S. & Morgan, M. K. How safe is arteriovenous malformation surgery? A prospective, observational study of surgery as first-line treatment for brain arteriovenous malformations. Neurosurgery 66, 498–504; discussion 504–505 (2010).

    Article  PubMed  Google Scholar 

  101. 101

    Hamilton, M. G. & Spetzler, R. F. The prospective application of a grading system for arteriovenous malformations. Neurosurgery 34, 2–6; discussion 6–7 (1994).

    Article  CAS  PubMed  Google Scholar 

  102. 102

    Hartmann, A. et al. Determinants of neurological outcome after surgery for brain arteriovenous malformation. Stroke 31, 2361–2364 (2000).

    Article  CAS  PubMed  Google Scholar 

  103. 103

    Heros, R. C., Korosue, K. & Diebold, P. M. Surgical excision of cerebral arteriovenous malformations: late results. Neurosurgery 26, 570–577; discussion 577–578 (1990).

    Article  CAS  PubMed  Google Scholar 

  104. 104

    Morgan, M. K., Rochford, A. M., Tsahtsarlis, A., Little, N. & Faulder, K. C. Surgical risks associated with the management of grade I and II brain arteriovenous malformations. Neurosurgery 54, 832–837; discussion 837–839 (2004).

    Article  PubMed  Google Scholar 

  105. 105

    Pikus, H. J., Beach, M. L. & Harbaugh, R. E. Microsurgical treatment of arteriovenous malformations: analysis and comparison with stereotactic radiosurgery. J. Neurosurg. 88, 641–646 (1998).

    Article  CAS  PubMed  Google Scholar 

  106. 106

    Schaller, C. & Schramm, J. Microsurgical results for small arteriovenous malformations accessible for radiosurgical or embolization treatment. Neurosurgery 40, 664–672; discussion 672–674 (1997).

    Article  CAS  PubMed  Google Scholar 

  107. 107

    Schaller, C., Schramm, J. & Haun, D. Significance of factors contributing to surgical complications and to late outcome after elective surgery of cerebral arteriovenous malformations. J. Neurol. Neurosurg. Psychiatry 65, 547–554 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. 108

    Sisti, M. B., Kader, A. & Stein, B. M. Microsurgery for 67 intracranial arteriovenous malformations less than 3 cm in diameter. J. Neurosurg. 79, 653–660 (1993).

    Article  CAS  PubMed  Google Scholar 

  109. 109

    Sundt, T. M. Jr, Piepgras, D. G. & Stevens, L. N. Surgery for supratentorial arteriovenous malformations. Clin. Neurosurg. 37, 49–115 (1991).

    PubMed  Google Scholar 

  110. 110

    Potts, M. B. et al. Current surgical results with low-grade brain arteriovenous malformations. J. Neurosurg. 122, 912–920 (2015). This article summarizes current opinion on the role of surgery in the treatment of brain arteriovenous malformations.

    Article  PubMed  PubMed Central  Google Scholar 

  111. 111

    Valavanis, A. & Yasargil, M. G. The endovascular treatment of brain arteriovenous malformations. Adv. Tech. Stand. Neurosurg. 24, 131–214 (1998).

    Article  CAS  PubMed  Google Scholar 

  112. 112

    Yu, S. C., Chan, M. S., Lam, J. M., Tam, P. H. & Poon, W. S. Complete obliteration of intracranial arteriovenous malformation with endovascular cyanoacrylate embolization: initial success and rate of permanent cure. AJNR Am. J. Neuroradiol. 25, 1139–1143 (2004).

    PubMed  Google Scholar 

  113. 113

    Katsaridis, V., Papagiannaki, C. & Aimar, E. Curative embolization of cerebral arteriovenous malformations (AVMs) with Onyx in 101 patients. Neuroradiology 50, 589–597 (2008).

    Article  PubMed  Google Scholar 

  114. 114

    Taylor, C. L. et al. Complications of preoperative embolization of cerebral arteriovenous malformations. J. Neurosurg. 100, 810–812 (2004).

    Article  PubMed  Google Scholar 

  115. 115

    Meisel, H. J. et al. Effect of partial targeted N-butyl-cyano-acrylate embolization in brain AVM. Acta Neurochir. 144, 879–887; discussion 888 (2002).

    Article  CAS  PubMed  Google Scholar 

  116. 116

    da Costa, L. et al. The natural history and predictive features of hemorrhage from brain arteriovenous malformations. Stroke 40, 100–105 (2009).

    Article  PubMed  Google Scholar 

  117. 117

    Karlsson, B., Lindquist, C. & Steiner, L. Prediction of obliteration after Gamma Knife surgery for cerebral arteriovenous malformations. Neurosurgery 40, 425–430; discussion 430–431 (1997).

    CAS  PubMed  Google Scholar 

  118. 118

    Kemeny, A. A., Dias, P. S. & Forster, D. M. Results of stereotactic radiosurgery of arteriovenous malformations: an analysis of 52 cases. J. Neurol. Neurosurg. Psychiatry 52, 554–558 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. 119

    Lunsford, L. D. et al. Stereotactic radiosurgery for arteriovenous malformations of the brain. J. Neurosurg. 75, 512–524 (1991).

    Article  CAS  PubMed  Google Scholar 

  120. 120

    Dwenger, A., Funck, M., Lueken, B., Schweitzer, G. & Lehmann, U. Effect of ascorbic acid on neutrophil functions and hypoxanthine/xanthine oxidase-generated, oxygen-derived radicals. Eur. J. Clin. Chem. Clin. Biochem. 30, 187–191 (1992).

    CAS  PubMed  Google Scholar 

  121. 121

    Steiner, L. et al. Clinical outcome of radiosurgery for cerebral arteriovenous malformations. J. Neurosurg. 77, 1–8 (1992).

    Article  CAS  PubMed  Google Scholar 

  122. 122

    Yamamoto, M., Jimbo, M., Hara, M., Saito, I. & Mori, K. Gamma Knife radiosurgery for arteriovenous malformations: long-term follow-up results focusing on complications occurring more than 5 years after irradiation. Neurosurgery 38, 906–914 (1996).

    Article  CAS  PubMed  Google Scholar 

  123. 123

    Yamamoto, M. et al. Long-term follow-up of radiosurgically treated arteriovenous malformations in children: report of nine cases. Surg. Neurol. 38, 95–100 (1992).

    Article  CAS  PubMed  Google Scholar 

  124. 124

    Yamamoto, M. et al. Long-term results of radiosurgery for arteriovenous malformation: neurodiagnostic imaging and histological studies of angiographically confirmed nidus obliteration. Surg. Neurol. 37, 219–230 (1992).

    Article  CAS  PubMed  Google Scholar 

  125. 125

    Monaco, E. A. et al. Management of adverse radiation effects after radiosurgery for arteriovenous malformations. Prog. Neurol. Surg. 27, 107–118 (2013).

    Article  PubMed  Google Scholar 

  126. 126

    Kano, H. et al. Stereotactic radiosurgery for arteriovenous malformations, Part 3: outcome predictors and risks after repeat radiosurgery. J. Neurosurg. 116, 21–32 (2012).

    Article  PubMed  Google Scholar 

  127. 127

    Kano, H. et al. Stereotactic radiosurgery for arteriovenous malformations, Part 1: management of Spetzler–Martin grade I and II arteriovenous malformations. J. Neurosurg. 116, 11–20 (2012).

    Article  PubMed  Google Scholar 

  128. 128

    Plasencia, A. R. & Santillan, A. Embolization and radiosurgery for arteriovenous malformations. Surg. Neurol. Int. 3, S90–S104 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  129. 129

    Pollock, B. E., Flickinger, J. C., Lunsford, L. D., Maitz, A. & Kondziolka, D. Factors associated with successful arteriovenous malformation radiosurgery. Neurosurgery 42, 1239–1244; discussion 1244–1247 (1998). This article demonstrates that analyses of radiosurgical results lead to predictors of outcome and grading systems that guide clinical decision-making.

    Article  CAS  PubMed  Google Scholar 

  130. 130

    Shin, M. et al. Analysis of nidus obliteration rates after Gamma Knife surgery for arteriovenous malformations based on long-term follow-up data: the University of Tokyo experience. J. Neurosurg. 101, 18–24 (2004).

    Article  PubMed  Google Scholar 

  131. 131

    Aoyama, H. et al. Treatment outcome of single or hypofractionated single-isocentric stereotactic irradiation (STI) using a linear accelerator for intracranial arteriovenous malformation. Radiother. Oncol. 59, 323–328 (2001).

    Article  CAS  PubMed  Google Scholar 

  132. 132

    Hadjipanayis, C. G. et al. Stereotactic radiosurgery for motor cortex region arteriovenous malformations. Neurosurgery 48, 70–76; discussion 76–77 (2001).

    CAS  PubMed  Google Scholar 

  133. 133

    Nakamura, J. L. et al. Dose conformity of Gamma Knife radiosurgery and risk factors for complications. Int. J. Radiat. Oncol. Biol. Phys. 51, 1313–1319 (2001).

    Article  CAS  PubMed  Google Scholar 

  134. 134

    Levegrun, S., Hof, H., Essig, M., Schlegel, W. & Debus, J. Radiation-induced changes of brain tissue after radiosurgery in patients with arteriovenous malformations: dose/volume-response relations. Strahlenther. Onkol. 180, 758–767 (2004).

    Article  PubMed  Google Scholar 

  135. 135

    Pollock, B. E., Gorman, D. A. & Brown, P. D. Radiosurgery for arteriovenous malformations of the basal ganglia, thalamus, and brainstem. J. Neurosurg. 100, 210–214 (2004).

    Article  PubMed  Google Scholar 

  136. 136

    Inoue, H. K. Long-term results of gamma knife surgery for arteriovenous malformations: 10- to 15-year follow up in patients treated with lower doses. J. Neurosurg. 105 (Suppl.), 64–68 (2006).

    Article  PubMed  Google Scholar 

  137. 137

    Sirin, S. et al. Prospective staged volume radiosurgery for large arteriovenous malformations: indications and outcomes in otherwise untreatable patients. Neurosurgery 58, 17–27; discussion 17–27 (2006).

    Article  PubMed  Google Scholar 

  138. 138

    Liscak, R. et al. Arteriovenous malformations after Leksell Gamma Knife radiosurgery: rate of obliteration and complications. Neurosurgery 60, 1005–1014; discussion 1015–1016 (2007).

    Article  PubMed  Google Scholar 

  139. 139

    Ganz, J. C., Reda, W. A. & Abdelkarim, K. Adverse radiation effects after Gamma Knife surgery in relation to dose and volume. Acta Neurochir. 151, 9–19 (2009).

    Article  CAS  PubMed  Google Scholar 

  140. 140

    Lunsford, L. D., Niranjan, A., Kano, H. & Kondziolka, D. The technical evolution of Gamma Knife radiosurgery for arteriovenous malformations. Prog. Neurol. Surg. 27, 22–34 (2013).

    Article  PubMed  Google Scholar 

  141. 141

    Huang, P. P. et al. Long-term outcomes after staged-volume stereotactic radiosurgery for large arteriovenous malformations. Neurosurgery 71, 632–643; discussion 643–644 (2012).

    Article  PubMed  Google Scholar 

  142. 142

    Barker, F. G. et al. Dose-volume prediction of radiation-related complications after proton beam radiosurgery for cerebral arteriovenous malformations. J. Neurosurg. 99, 254–263 (2003).

    Article  PubMed  Google Scholar 

  143. 143

    Kjellberg, R. N., Hanamura, T., Davis, K. R., Lyons, S. L. & Adams, R. D. Bragg-peak proton-beam therapy for arteriovenous malformations of the brain. N. Engl. J. Med. 309, 269–274 (1983).

    Article  CAS  PubMed  Google Scholar 

  144. 144

    Pollock, B. E., Kondziolka, D., Lunsford, L. D., Bissonette, D. & Flickinger, J. C. Repeat stereotactic radiosurgery of arteriovenous malformations: factors associated with incomplete obliteration. Neurosurgery 38, 318–324 (1996).

    Article  CAS  PubMed  Google Scholar 

  145. 145

    Flickinger, J. C. An integrated logistic formula for prediction of complications from radiosurgery. Int. J. Radiat. Oncol. Biol. Phys. 17, 879–885 (1989).

    Article  CAS  PubMed  Google Scholar 

  146. 146

    Kano, H. et al. Stereotactic radiosurgery for arteriovenous malformations, Part 6: multistaged volumetric management of large arteriovenous malformations. J. Neurosurg. 116, 54–65 (2012).

    Article  PubMed  Google Scholar 

  147. 147

    Zhang, X. Q. et al. Clinical significance of 3D reconstruction of arteriovenous malformation using digital subtraction angiography and its modification with CT information in stereotactic radiosurgery. Int. J. Radiat. Oncol. Biol. Phys. 57, 1392–1399 (2003).

    Article  PubMed  Google Scholar 

  148. 148

    Maitz, A. H. et al. Tube angulation improves angiographic targeting of arteriovenous malformations during stereotactic radiosurgery. Comput. Aided Surg. 6, 225–229 (2001).

    Article  CAS  PubMed  Google Scholar 

  149. 149

    Bednarz, G., Downes, B., Werner-Wasik, M. & Rosenwasser, R. H. Combining stereotactic angiography and 3D time-of-flight magnetic resonance angiography in treatment planning for arteriovenous malformation radiosurgery. Int. J. Radiat. Oncol. Biol. Phys. 46, 1149–1154 (2000).

    Article  CAS  PubMed  Google Scholar 

  150. 150

    Colombo, F. et al. Three-dimensional angiography for radiosurgical treatment planning for arteriovenous malformations. J. Neurosurg. 98, 536–543 (2003).

    Article  PubMed  Google Scholar 

  151. 151

    Hamm, K. D. et al. Special aspects of diagnostic imaging for radiosurgery of arteriovenous malformations. Neurosurgery 62, A44–A52; discussion A52 (2008).

    Article  PubMed  Google Scholar 

  152. 152

    Flickinger, J. C., Kano, H., Niranjan, A., Kondziolka, D. & Lunsford, L. D. Dose selection in stereotactic radiosurgery. Prog. Neurol. Surg. 27, 49–57 (2013).

    Article  PubMed  Google Scholar 

  153. 153

    Boothe, D. et al. Bevacizumab as a treatment for radiation necrosis of brain metastases post stereotactic radiosurgery. Neuro Oncol. 15, 1257–1263 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. 154

    Alexander, M. J. & Tolbert, M. E. Targeting cerebral arteriovenous malformations for minimally invasive therapy. Neurosurgery 59, S178–183; discussion S3–S13 (2006).

    Article  PubMed  Google Scholar 

  155. 155

    Bollet, M. A. et al. Efficacy and morbidity of arc-therapy radiosurgery for cerebral arteriovenous malformations: a comparison with the natural history. Int. J. Radiat. Oncol. Biol. Phys. 58, 1353–1363 (2004).

    Article  PubMed  Google Scholar 

  156. 156

    Chang, S. D. et al. Multimodality treatment of giant intracranial arteriovenous malformations. Neurosurgery 53, 1–11; discussion 11–13 (2003).

    Article  PubMed  Google Scholar 

  157. 157

    Dawson, R. C. et al. Treatment of arteriovenous malformations of the brain with combined embolization and stereotactic radiosurgery: results after 1 and 2 years. AJNR Am. J. Neuroradiol. 11, 857–864 (1990).

    PubMed  Google Scholar 

  158. 158

    Deruty, R., Pelissou-Guyotat, I., Morel, C., Bascoulergue, Y. & Turjman, F. Reflections on the management of cerebral arteriovenous malformations. Surg. Neurol. 50, 245–255; discussion 255–256 (1998).

    Article  CAS  PubMed  Google Scholar 

  159. 159

    Deruty, R., Pelissou-Guyotat, I., Mottolese, C., Bascoulergue, Y. & Amat, D. The combined management of cerebral arteriovenous malformations. Experience with 100 cases and review of the literature. Acta Neurochir. 123, 101–112 (1993).

    Article  CAS  PubMed  Google Scholar 

  160. 160

    Fiorella, D., Albuquerque, F. C., Woo, H. H., McDougall, C. G. & Rasmussen, P. A. The role of neuroendovascular therapy for the treatment of brain arteriovenous malformations. Neurosurgery 59, S163–S177; discussion S3–13 (2006).

    PubMed  Google Scholar 

  161. 161

    Gobin, Y. P. et al. Treatment of brain arteriovenous malformations by embolization and radiosurgery. J. Neurosurg. 85, 19–28 (1996).

    Article  CAS  PubMed  Google Scholar 

  162. 162

    Guo, W. Y. et al. Combined embolization and Gamma Knife radiosurgery for cerebral arteriovenous malformations. Acta Radiol. 34, 600–606 (1993).

    Article  CAS  PubMed  Google Scholar 

  163. 163

    Haw, C. S., terBrugge, K., Willinsky, R. & Tomlinson, G. Complications of embolization of arteriovenous malformations of the brain. J. Neurosurg. 104, 226–232 (2006).

    Article  PubMed  Google Scholar 

  164. 164

    Henkes, H. et al. Endovascular therapy of brain AVMs prior to radiosurgery. Neurol. Res. 20, 479–492 (1998).

    Article  CAS  PubMed  Google Scholar 

  165. 165

    Killer, M. et al. Radiosurgery following embolisation and/or surgery of brain AVM's. Interv. Neuroradiol. 2, 27–33 (1996).

    Article  CAS  PubMed  Google Scholar 

  166. 166

    Mathis, J. A. et al. The efficacy of particulate embolization combined with stereotactic radiosurgery for treatment of large arteriovenous malformations of the brain. AJNR Am. J. Neuroradiol. 16, 299–306 (1995).

    CAS  PubMed  Google Scholar 

  167. 167

    Miyachi, S. et al. Embolization of arteriovenous malformations prior to radiosurgery. Interv. Neuroradiol. 6 (Suppl. 1), 131–137 (2000).

    Article  PubMed  Google Scholar 

  168. 168

    Mizoi, K. et al. Multimodality treatment for large and critically located arteriovenous malformations. Neurol. Med. Chir. 38 (Suppl.), 186–192 (1998).

    Article  Google Scholar 

  169. 169

    Soderman, M., Andersson, T., Karlsson, B., Wallace, M. C. & Edner, G. Management of patients with brain arteriovenous malformations. Eur. J. Radiol. 46, 195–205 (2003).

    Article  PubMed  Google Scholar 

  170. 170

    Soderman, M., Rodesch, G., Karlsson, B., Lax, I. & Lasjaunias, P. Gamma Knife outcome models as a reference standard in the embolisation of cerebral arteriovenous malformations. Acta Neurochir. 143, 801–810 (2001).

    Article  CAS  PubMed  Google Scholar 

  171. 171

    Wikholm, G., Lundqvist, C. & Svendsen, P. The Goteborg cohort of embolized cerebral arteriovenous malformations: a 6-year follow-up. Neurosurgery 49, 799–805; discussion 805–806 (2001).

    Article  CAS  PubMed  Google Scholar 

  172. 172

    Andrade-Souza, Y. M. et al. Embolization before radiosurgery reduces the obliteration rate of arteriovenous malformations. Neurosurgery 60, 443–451; discussion 451–452 (2007).

    Article  PubMed  Google Scholar 

  173. 173

    Back, A. G., Vollmer, D., Zeck, O., Shkedy, C. & Shedden, P. M. Retrospective analysis of unstaged and staged Gamma Knife surgery with and without preceding embolization for the treatment of arteriovenous malformations. J. Neurosurg. 109 (Suppl.), 57–64 (2008).

    Article  PubMed  Google Scholar 

  174. 174

    Kano, H. et al. Stereotactic radiosurgery for arteriovenous malformations after embolization: a case–control study. J. Neurosurg. 117, 265–275 (2012).

    Article  PubMed  Google Scholar 

  175. 175

    Miyawaki, L. et al. Five year results of LINAC radiosurgery for arteriovenous malformations: outcome for large AVMS. Int. J. Radiat. Oncol. Biol. Phys. 44, 1089–1106 (1999).

    Article  CAS  PubMed  Google Scholar 

  176. 176

    Ogilvy, C. S. et al. AHA Scientific Statement: recommendations for the management of intracranial arteriovenous malformations: a statement for healthcare professionals from a special writing group of the Stroke Council, American Stroke Association. Stroke 32, 1458–1471 (2001). This article summarizes management recommendations for brain arteriovenous malformations from a panel of experts.

    Article  CAS  PubMed  Google Scholar 

  177. 177

    Pan, H. C., Sheehan, J., Stroila, M., Steiner, M. & Steiner, L. Late cyst formation following Gamma Knife surgery of arteriovenous malformations. J. Neurosurg. 102 (Suppl.), 124–127 (2005).

    Article  PubMed  Google Scholar 

  178. 178

    Paulsen, R. D., Steinberg, G. K., Norbash, A. M., Marcellus, M. L. & Marks, M. P. Embolization of basal ganglia and thalamic arteriovenous malformations. Neurosurgery 44, 991–996; discussion 996–997 (1999).

    Article  CAS  PubMed  Google Scholar 

  179. 179

    Sinclair, J., Kelly, M. E. & Steinberg, G. K. Surgical management of posterior fossa arteriovenous malformations. Neurosurgery 58 (Suppl. 2), ONS-189–201; discussion ONS–201 (2006).

    Google Scholar 

  180. 180

    Andrade-Souza, Y. M. et al. Liquid embolisation material reduces the delivered radiation dose: a physical experiment. Acta Neurochir. 150, 161–164; discussion 164 (2008).

    Article  CAS  PubMed  Google Scholar 

  181. 181

    Miyamoto, S. et al. Posttreatment sequelae of palliatively treated cerebral arteriovenous malformations. Neurosurgery 46, 589–594; discussion 594–595 (2000).

    Article  CAS  PubMed  Google Scholar 

  182. 182

    Morgan, M. K., Patel, N. J., Simons, M., Ritson, E. A. & Heller, G. Z. Influence of the combination of patient age and deep venous drainage on brain arteriovenous malformation recurrence after surgery. J. Neurosurg. 117, 934–941 (2012).

    Article  PubMed  Google Scholar 

  183. 183

    Abla, A. A. et al. A treatment paradigm for high-grade brain arteriovenous malformations: volume-staged radiosurgical downgrading followed by microsurgical resection. J. Neurosurg. 122, 419–432 (2015).

    Article  PubMed  Google Scholar 

  184. 184

    Rutledge, W. C. et al. Treatment and outcomes of ARUBA-eligible patients with unruptured brain arteriovenous malformations at a single institution. Neurosurg. Focus 37, E8 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  185. 185

    Stapf, C., Parides, M. K., Moskowitz, A. J. & Mohr, J. P. Management of brain arteriovenous malformations — authors’ reply. Lancet 383, 1635–1636 (2014).

    Article  PubMed  Google Scholar 

  186. 186

    Han, P. P., Ponce, F. A. & Spetzler, R. F. Intention-to-treat analysis of Spetzler–Martin grades IV and V arteriovenous malformations: natural history and treatment paradigm. J. Neurosurg. 98, 3–7 (2003).

    Article  PubMed  Google Scholar 

  187. 187

    Dorman, P. J., Slattery, J., Farrell, B., Dennis, M. S. & Sandercock, P. A. A randomised comparison of the EuroQol and Short Form-36 after stroke. United Kingdom Collaborators in the International Stroke Trial. BMJ 315, 461 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. 188

    Marshall, G. A., Jonker, B. P., Morgan, M. K. & Taylor, A. J. Prospective study of neuropsychological and psychosocial outcome following surgical excision of intracerebral arteriovenous malformations. J. Clin. Neurosci. 10, 42–47 (2003).

    Article  PubMed  Google Scholar 

  189. 189

    Brown, R. D. Jr et al. The natural history of unruptured intracranial arteriovenous malformations. J. Neurosurg. 68, 352–357 (1988).

    Article  PubMed  Google Scholar 

  190. 190

    Gross, B. A. & Du, R. Natural history of cerebral arteriovenous malformations: a meta-analysis. J. Neurosurg. 118, 437–443 (2013). References 189 and 190 provide reviews of the natural history of brain arteriovenous malformations.

    Article  PubMed  Google Scholar 

  191. 191

    Bervini, D., Morgan, M. K., Ritson, E. A. & Heller, G. Surgery for unruptured arteriovenous malformations of the brain is better than conservative management for selected cases: a prospective cohort study. J. Neurosurg. 121, 878–890 (2014).

    Article  PubMed  Google Scholar 

  192. 192

    Choi, J. H. et al. Clinical outcome after first and recurrent hemorrhage in patients with untreated brain arteriovenous malformation. Stroke 37, 1243–1247 (2006).

    Article  PubMed  Google Scholar 

  193. 193

    Baranoski, J. F. et al. Seizure control for intracranial arteriovenous malformations is directly related to treatment modality: a meta-analysis. J. Neurointerv. Surg. 6, 684–690 (2014).

    Article  PubMed  Google Scholar 

  194. 194

    Thorpe, M. L., Cordato, D. J., Morgan, M. K. & Herkes, G. K. Postoperative seizure outcome in a series of 114 patients with supratentorial arteriovenous malformations. J. Clin. Neurosci. 7, 107–111 (2000).

    Article  CAS  PubMed  Google Scholar 

  195. 195

    van Beijnum, J. et al. Treatment of brain arteriovenous malformations: a systematic review and meta-analysis. JAMA 306, 2011–2019 (2011). This meta-analysis compiled data comparing the morbidity, mortality and efficacy of surgery, radiosurgery and endovascular embolization in more than 13,000 patients.

    Article  CAS  PubMed  Google Scholar 

  196. 196

    Gross, B. A. & Du, R. Hemorrhage from arteriovenous malformations during pregnancy. Neurosurgery 71, 349–355; discussion 355–356 (2012).

    Article  PubMed  Google Scholar 

  197. 197

    Bateman, B. T. et al. Intracerebral hemorrhage in pregnancy: frequency, risk factors, and outcome. Neurology 67, 424–429 (2006).

    Article  CAS  PubMed  Google Scholar 

  198. 198

    Horton, J. C., Chambers, W. A., Lyons, S. L., Adams, R. D. & Kjellberg, R. N. Pregnancy and the risk of hemorrhage from cerebral arteriovenous malformations. Neurosurgery 27, 867–871; discussion 871–872 (1990).

    Article  CAS  PubMed  Google Scholar 

  199. 199

    Lawton, M. T. et al. Radiation arteriopathy in the transgenic arteriovenous fistula model. Neurosurgery 62, 1129–1138; discussion 138–139 (2008).

    Article  PubMed  Google Scholar 

  200. 200

    Walker, E. J. et al. Arteriovenous malformation in the adult mouse brain resembling the human disease. Ann. Neurol. 69, 954–962 (2011). This experimental model for brain arteriovenous malformations was the first of its kind and provided a method for the pathogenesis and regression of this condition.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. 201

    Han, C. et al. VEGF neutralization can prevent and normalize arteriovenous malformations in an animal model for hereditary hemorrhagic telangiectasia 2. Angiogenesis 14, 823–830 (2014).

    Article  CAS  Google Scholar 

  202. 202

    Frenzel, T. et al. Feasibility of minocycline and doxycycline use as potential vasculostatic therapy for brain vascular malformations: pilot study of adverse events and tolerance. Cerebrovasc. Dis. 25, 157–163 (2008). This study demonstrated that brain arteriovenous malformations might be stabilized and haemorrhage rates reduced with medical therapy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. 203

    Hashimoto, T., Matsumoto, M. M., Li, J. F., Lawton, M. T. & Young, W. L. Suppression of MMP-9 by doxycycline in brain arteriovenous malformations. BMC Neurol. 5, 1 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. 204

    Feliciano, C. E. et al. Provocative test with propofol: experience in patients with cerebral arteriovenous malformations who underwent neuroendovascular procedures. AJNR Am. J. Neuroradiol. 31, 470–475 (2010).

    Article  CAS  PubMed  Google Scholar 

  205. 205

    Starke, R. M. et al. Adjuvant embolization with N-butyl cyanoacrylate in the treatment of cerebral arteriovenous malformations: outcomes, complications, and predictors of neurologic deficits. Stroke 40, 2783–2790 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. 206

    Mann, K. M. et al. Sleeping Beauty mutagenesis reveals cooperating mutations and pathways in pancreatic adenocarcinoma. Proc. Natl Acad. Sci. USA 109, 5934–5941 (2012).

    Article  CAS  PubMed  Google Scholar 

  207. 207

    O'Hayre, M. et al. The emerging mutational landscape of G proteins and G-protein-coupled receptors in cancer. Nat. Rev. Cancer 13, 412–424 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. 208

    Forbes, S. A. et al. COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer. Nucleic Acids Res. 39, D945–D950 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. 209

    Lawton, M. T. The role of AVM microsurgery in the aftermath of a randomized trial of unruptured brain arteriovenous malformations. AJNR Am. J. Neuroradiol. 36, 617–619 (2015).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This primer cites research that was supported in part by US National Institutes of Health grants: R01 NS034949 (H.K.) and U54 NS065075 (M.T.L.). The Brain Vascular Malformation Consortium (U54NS065075) is part of the Rare Diseases Clinical Research Network (RDCRN), an initiative of the Office of Rare Diseases Research (ORDR) that is funded through collaboration between National Center for Advancing Translational Sciences (NCATS) and the National Institute of Neurological Disorders and Stroke (NINDS).

Author information

Affiliations

Authors

Contributions

Introduction (M.T.L.); Epidemiology (W.C.R., H.K. and C.S.); Mechanisms/pathophysiology (K.J.W., D.Y.L. and H.K.); Diagnosis, screening and prevention (T.K. and K.T.B.); Management (M.T.L., T.K., K.T.B. and D.K.); Quality of life (M.K.M.); Outlook (K.M., R.F.S., M.T.L. and H.K.); overview of Primer (M.T.L.).

Corresponding author

Correspondence to Michael T. Lawton.

Ethics declarations

Competing interests

The authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lawton, M., Rutledge, W., Kim, H. et al. Brain arteriovenous malformations. Nat Rev Dis Primers 1, 15008 (2015). https://doi.org/10.1038/nrdp.2015.8

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing