Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Innovation
  • Published:

Adding calorimetric data to decision making in lead discovery: a hot tip

Abstract

Recognition of the limitations of high-throughput screening approaches in the discovery of candidate drugs has reawakened interest in structure-based and other rational design methods. Here, we describe how isothermal titration calorimetry can be used to obtain thermodynamic data on the binding of compounds to protein targets. We propose that these data — particularly the change in enthalpy — could provide a valuable, complementary addition to established tools for selecting compounds in lead discovery and for aiding lead optimization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Examples of enthalpic optimization towards best-in-class compounds.
Figure 2: Effect of inclusion of a water molecule on thermodynamic parameters.

Similar content being viewed by others

References

  1. Ladbury, J. E. Counting the calories to stay in the groove. Structure 3, 635–639 (1995).

    Article  CAS  PubMed  Google Scholar 

  2. Ladbury, J. E. & Chowdhry, B. Z. Sensing the heat: the application of isothermal titration calorimetry to thermodynamic studies of biomolecular interactions. Chem. Biol. 3, 791–801 (1996).

    Article  CAS  PubMed  Google Scholar 

  3. Ladbury, J. E. Isothermal titration calorimetry: application to structure-based drug design. Thermochim. Acta 380, 209–215 (2001).

    Article  CAS  Google Scholar 

  4. Velazquez-Campoy, A. & Freire, E. ITC in the post-genomic era...? Priceless. Biophys. Chem. 115, 115–124 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Freire, E. in Proteomics and Protein–Protein Interactions: Biology, Chemistry, Bioinformatics, and Drug Design. Vol. 3 (ed. Waksman, G.) 291–307 (Springer, New York, 2005).

    Book  Google Scholar 

  6. Ohtaka, H. & Freire, E. Adaptive inhibitors of the HIV-1 protease. Prog. Biophys. Mol. Biol. 88, 193–208 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Spolar, R. & Record, M. T. Coupling of local folding to site-specific binding of proteins to DNA. Science 263, 777–784 (1994).

    Article  CAS  PubMed  Google Scholar 

  8. Robertson, A. D. & Murphy, K. P. Protein structure and the energetics of protein stability. Chem. Rev. 97, 1251–1267 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. Luque, I. & Freire, E. Structural parameterization of the binding enthalpy of small ligands. Proteins 49, 181–190 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Hilser, V. J., Gomez, J. & Freire, E. The enthalpy change in protein folding and binding. Refinement of parameters for structure based calculations. Proteins 26, 123–133 (1996).

    Article  CAS  PubMed  Google Scholar 

  11. Olsson, T. S. G., Williams, M. A., Pitt, W. R. & Ladbury, J. E. The thermodynamics of protein-ligand interaction and solvation: insights for ligand design. J. Mol. Biol. 384, 1002–1017 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Freire, E. Do enthalpy and entropy distinguish first in class from best in class? Drug Discov. Today 13, 869–874 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Davies, A. M., Teague, S. J. & Kleywegt, G. J. Application and limitations of X-ray crystallographic data in structure-based ligand and drug design. Angew. Chem. Int. Ed. 42, 2718–2736 (2003).

    Article  Google Scholar 

  14. Lafont, V. et al. Compensating enthalpic and entropic changes hinder binding affinity optimization. Chem. Biol. Drug. Design 69, 413–422 (2007).

    Article  CAS  Google Scholar 

  15. Ruben, A. J., Kiso, Y. & Freire, E. Overcoming roadblocks in lead optimization: a thermodynamic perspective. Chem. Biol. Drug. Des. 67, 2–4 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Hopkins, A. L., Groom, C. R. & Alex, A. Ligand efficiency: a useful metric for lead selection. Drug Discov. Today 9, 430–431 (2004).

    Article  Google Scholar 

  17. Rees, D. C. Congreve, M., Murray, C. W. & Carr, R. Fragment-based lead discovery. Nature Rev. Drug Discov. 3, 660–672 (2004).

    Article  CAS  Google Scholar 

  18. Abad-Zapatero, C. & Metz, J. T. Ligand efficiency indices as guideposts for drug discovery. Drug Discov. Today 10, 464–469 (2005).

    Article  PubMed  Google Scholar 

  19. Lipinski, C. A. Drug-like properties and the causes of poor solubility and poor permeability. J. Pharmacol. Toxicol. Methods 44, 235–249 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Ladbury, J. E. Enthalpic efficiency and the role of thermodynamic data in drug development: possibility or a pipeline dream. Euro. Pharmaceut. Rev. 12, 59–62 (2007).

    Google Scholar 

  21. Hahn, M. M., Leach, A. R. & Harper, G. Molecular complexity and its impact on the probability of finding leads for drug discovery. J. Chem. Inf. Comput. Sci. 41, 856–864 (2001).

    Article  Google Scholar 

  22. Rees, D. C., Congreve, M., Murray, C. W. & Carr, R. Fragment-based lead discovery. Nature Rev. Drug Discov. 3, 660–672 (2004).

    Article  CAS  Google Scholar 

  23. Shuker, S. B., Hajduk, P. J., Meadows, R. P. & Fesik, S. W. Discovering high-affinity ligands for proteins: SAR by NMR. Science 274, 1531–1534 (1996).

    Article  CAS  Google Scholar 

  24. Hartshorn, M. J. et al. Fragment-based lead discovery using X-ray crystallography. J. Med. Chem. 48, 403–413 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Taylor, J. D., Gilbert, P. J., Williams, M. A., Pitt, W. R. & Ladbury, J. E. Identification of novel fragment compounds targeted against the pY pocket of v-Src SH2 by computational and NMR screening and thermodynamic evaluation. Proteins 67, 981–990 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Ladbury, J. E. Just add water: the effect of water on the specificity of protein-ligand binding sites with applications to drug design. Chem. Biol. 3, 973–980 (1996).

    Article  CAS  PubMed  Google Scholar 

  27. Steuber, H., Heine, A. & Klebe, G. Structural and thermodynamic study on aldose reductase: nitro-substituted inhibitors with strong enthalpic binding contribution. J. Mol. Biol. 368, 618–638 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Baker, B. & Murphy, K. P. Evaluation of linked protonation effects in protein binding reactions using isothermal titration calorimetry. Biophys. J. 71, 2049–2055 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Czodrowski, P., Sotriffer, C. A. & Klebe, G. Protonation changes upon ligand binding to trypsin and thrombin: structural interpretation based on pKa calculations and ITC experiments. J. Mol. Biol. 367, 1347–1356 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Dullweber, F., Stubbs, M. T., Stürzebecher, J., Musil, D. & Klebe, G. Factorising ligand affinity: a combined thermodynamic and crystallographic study of trypsin and thrombin inhibition. J. Mol. Biol. 313, 593–614 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Gerlach, C. et al. Thermodynamic inhibition profile of a cyclopentyl- and a cyclohexyl derivative towards thrombin: the same, but for deviating reasons. Angew. Chem. Int. Ed. 46, 8511–8514 (2007).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John E. Ladbury.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

John E. Ladbury's homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ladbury, J., Klebe, G. & Freire, E. Adding calorimetric data to decision making in lead discovery: a hot tip. Nat Rev Drug Discov 9, 23–27 (2010). https://doi.org/10.1038/nrd3054

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd3054

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing