Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Isothermal titration calorimetry

Abstract

Isothermal titration calorimetry (ITC) has become the gold standard for studying molecular interactions in solution. Although it is increasingly being used in the soft matter and synthetic chemistry fields, ITC is most widely used for characterizing molecular interactions between ligands and macromolecules. This Primer starts by presenting the technique’s foundations and instrumentation, including a brief description of the standard assay, followed by a review of common applications. Further extensions and modifications of the technique are explored. These adaptations enable key features to be studied, such as cooperative effects associated with complex biological interactions and their regulation, alongside applications to other fields, including partition to membranes, kinetics and soft matter. Advantages and caveats in ITC are discussed, with a focus on best practices, instrument calibration, experimental design, data analysis and data reporting, as well as recent and future developments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Simplified scheme of an ITC instrument.
Fig. 2: Thermogram and binding isotherm.
Fig. 3: Determination of the heat capacity change and number of protons exchanged upon binding.
Fig. 4: Experimental output in current calorimeter software.
Fig. 5: Representations of ITC data.
Fig. 6: Interaction of lipid membranes with a peptide.

Similar content being viewed by others

References

  1. Christensen, J. J., Johnston, H. D. & Izatt, R. M. An isothermal titration calorimeter. Rev. Sci. Instrum. 39, 1356–1359 (1968).

    Article  ADS  Google Scholar 

  2. Freire, E., Mayorga, O. L. & Straume, M. Isothermal titration calorimetry. Anal. Chem. 62, 950A–959A (1990).

    Article  Google Scholar 

  3. Spolar, R. S., Ha, J. H. & Record, M. T. Jr Hydrophobic effect in protein folding and other noncovalent processes involving proteins. Proc. Natl Acad. Sci. USA 86, 8382–8385 (1989).

    Article  ADS  Google Scholar 

  4. Ortiz-Salmerón, E. et al. Thermodynamic analysis of the binding of glutathione to glutathione S-transferase over a range of temperatures. Eur. J. Biochem. 268, 4307–4314 (2001).

    Article  Google Scholar 

  5. Jelesarov, I. & Bosshard, H. R. Isothermal titration calorimetry and differential scanning calorimetry as complementary tools to investigate the energetics of biomolecular recognition. J. Mol. Recognit. 12, 3–18 (1999).

    Article  Google Scholar 

  6. Perozzo, R., Folkers, G. & Scapozza, L. Thermodynamics of protein–ligand interactions: history, presence, and future aspects. J. Recept. Signal. Transduct. Res. 24, 1–52 (2004).

    Article  Google Scholar 

  7. Claveria-Gimeno, R., Vega, S., Abian, O. & Velazquez-Campoy, A. A look at ligand binding thermodynamics in drug discovery. Expert. Opin. Drug Discov. 12, 363–377 (2017).

    Article  Google Scholar 

  8. Johnson, C. M. Isothermal titration calorimetry. Meth. Mol. Biol. 2263, 135–159 (2021).

    Article  Google Scholar 

  9. Holdgate, G. A. Making cool drugs hot: isothermal titration calorimetry as a tool to study binding energetics. Biotechniques 31, 164–166 (2001).

    Google Scholar 

  10. Geschwindner, S., Ulander, J. & Johansson, P. Ligand binding thermodynamics in drug discovery: still a hot tip? J. Med. Chem. 58, 6321–6335 (2015).

    Article  Google Scholar 

  11. Klebe, G. Broad-scale analysis of thermodynamic signatures in medicinal chemistry: are enthalpy-favored binders the better development option? Drug Discov. Today. 24, 943–948 (2019).

    Article  Google Scholar 

  12. Franco, R. et al. Porphyrin-substrate binding to murine ferrochelatase: effect on the thermal stability of the enzyme. Biochem. J. 386, 599–605 (2005).

    Article  Google Scholar 

  13. Velazquez-Campoy, A., Todd, M. J. & Freire, E. HIV-1 protease inhibitors: enthalpic versus entropic optimization of the binding affinity. Biochemistry 39, 2201–2207 (2000).

    Article  Google Scholar 

  14. Velazquez-Campoy, A., Kiso, Y. & Freire, E. The binding energetics of first- and second-generation HIV-1 protease inhibitors: implications for drug design. Arch. Biochem. Biophys. 390, 169–175 (2001).

    Article  Google Scholar 

  15. Todd, M. J., Luque, I., Velazquez-Campoy, A. & Freire, E. Thermodynamic basis of resistance to HIV-1 protease inhibition: calorimetric analysis of the V82F/I84V active site resistant mutant. Biochemistry 39, 11876–11883 (2000).

    Article  Google Scholar 

  16. Vega, S. et al. A structural and thermodynamic escape mechanism from a drug resistant mutation of the HIV-1 protease. Proteins 55, 594–602 (2004).

    Article  Google Scholar 

  17. Chaires, J. B. Calorimetry and thermodynamics in drug design. Annu. Rev. Biophys. 37, 135–151 (2008).

    Article  Google Scholar 

  18. Privalov, P. L. et al. What drives proteins into the major or minor grooves of DNA? J. Mol. Biol. 365, 1–9 (2007).

    Article  Google Scholar 

  19. Freire, E. A thermodynamic approach to the affinity optimization of drug candidates. Chem. Biol. Drug Des. 74, 468–472 (2009).

    Article  Google Scholar 

  20. Ladbury, J. E., Klebe, G. & Freire, E. Adding calorimetric data to decision making in lead discovery: a hot tip. Nat. Rev. Drug Discov. 9, 23–27 (2010). This paper reviews how thermodynamic information (enthalpy and affinity) provided by ITC can help in lead discovery and optimization.

    Article  Google Scholar 

  21. Kawasaki, Y. & Freire, E. Finding a better path to drug selectivity. Drug Discov. Today 16, 985–990 (2011).

    Article  Google Scholar 

  22. Klebe, G. Applying thermodynamic profiling in lead finding and optimization. Nat. Rev. Drug Discov. 14, 95–110 (2015).

    Article  Google Scholar 

  23. Tarcsay, A. & Keseru, G. M. Is there a link between selectivity and binding thermodynamics profiles? Drug Discov. Today 20, 86–94 (2015).

    Article  Google Scholar 

  24. Freire, E. in Thermodynamics and Kinetics of Drug Binding (eds Keserü, G. M. & Swinney, D. C.) 1–13 (Wiley-VCH, 2015).

  25. Tellinghuisen, J. Calibration in isothermal titration calorimetry: heat and cell volume from heat of dilution of NaCl(aq). Anal. Biochem. 360, 47–55 (2007).

    Article  Google Scholar 

  26. Demarse, N. A., Quinn, C. F., Eggett, D. L., Russell, D. J. & Hansen, L. D. Calibration of nanowatt isothermal titration calorimeters with overflow reaction vessels. Anal. Biochem. 417, 247–255 (2011).

    Article  Google Scholar 

  27. Hansen, L. D. & Quinn, C. Obtaining precise and accurate results by ITC. Eur. Biophys. J. 48, 825–835 (2019). This paper discusses precision and accuracy levels in binding parameters achievable by ITC, emphasizing the problem associated with the background injection heat effect.

    Article  Google Scholar 

  28. Bastos, M. & Velazquez-Campoy, A. Isothermal titration calorimetry (ITC): a standard operating procedure (SOP). Eur. Biophys. J. 50, 363–371 (2021).

    Article  Google Scholar 

  29. Tellinghuisen, J. Optimizing experimental parameters in isothermal titration calorimetry. J. Phys. Chem. B 109, 20027–20035 (2005).

    Article  Google Scholar 

  30. Tellinghuisen, J. Designing isothermal titration calorimetry experiments for the study of 1:1 binding: problems with the “standard protocol”. Anal. Biochem. 424, 211–220 (2012).

    Article  Google Scholar 

  31. Kantonen, S. A., Henriksen, N. M. & Gilson, M. K. Evaluation and minimization of uncertainty in ITC binding measurements: heat error, concentration error, saturation, and stoichiometry. Biochim. Biophys. Acta Gen. Subj. 1861, 485–498 (2017).

    Article  Google Scholar 

  32. Velazquez-Campoy, A. Geometric features of the Wiseman isotherm in isothermal titration calorimetry. J. Therm. Anal. Calorim. 122, 1477–1483 (2015).

    Article  Google Scholar 

  33. Turnbull, W. B. & Daranas, A. H. On the value of c: can low affinity systems be studied by isothermal titration calorimetry? J. Am. Chem. Soc. 125, 14859–14866 (2003).

    Article  Google Scholar 

  34. Tellinghuisen, J. Isothermal titration calorimetry at very low c. Anal. Biochem. 373, 395–397 (2008). This paper shows that affinity estimates in ITC may be reliable at low c values.

    Article  Google Scholar 

  35. Wiseman, T., Williston, S., Brandts, J. F. & Lin, L.-N. Rapid measurement of binding constants and heats of binding using a new titration calorimeter. Anal. Biochem. 179, 131–137 (1989). This paper presents the first commercially available ITC instrument, together with the most widely employed data representation, the Wiseman isotherm.

    Article  Google Scholar 

  36. Christensen, J. J., Hansen, L. D. & Izatt, R. M. Handbook of Proton Ionization Heats (Wiley-Interscience, 1976).

  37. Goldberg, R. N., Kishore, N. & Lennen, R. M. Thermodynamic quantities for the ionization reactions of buffers. J. Phys. Chem. Ref. Data 31, 231–370 (2002). This paper contains thermodynamic parameters for the aqueous ionization of the most common biological buffers, being of paramount importance for ITC experimental design and data analysis.

    Article  ADS  Google Scholar 

  38. Hinz, H. J., Shiao, D. D. F. & Sturtevant, J. M. Calorimetric investigation of inhibitor binding to rabbit muscle aldolase. Biochemistry 10, 1347–1352 (1971).

    Article  Google Scholar 

  39. Eftink, M. & Biltonen, R. in Biological Calorimetry (ed. Beezer, A. E.) 343–412 (Academic, 1981).

  40. Armstrong, K. M. & Baker, B. M. A comprehensive calorimetric investigation of an entropically driven T cell receptor–peptide/major histocompatibility complex interaction. Biophys. J. 93, 597–609 (2007).

    Article  ADS  Google Scholar 

  41. Xie, D. et al. Dissection of the pH dependence of inhibitor binding energetics for an aspartic protease: direct measurement of the protonation states of the catalytic aspartic acid residues. Biochemistry 36, 16166–16172 (1997).

    Article  Google Scholar 

  42. Baker, B. M. & Murphy, K. P. Evaluation of linked protonation effects in protein binding using isothermal titration calorimetry. Biophys. J. 71, 2049–2055 (1996).

    Article  ADS  Google Scholar 

  43. Velazquez-Campoy, A. et al. Thermodynamic dissection of the binding energetics of KNI-272, a potent HIV-1 protease inhibitor. Protein Sci. 9, 1801–1809 (2000).

    Article  Google Scholar 

  44. Grimsley, G. R. & Pace, C. N. Spectrophotometric determination of protein concentration. Curr. Protoc. Protein Sci. 33, 3.1.1 (2003).

    Article  Google Scholar 

  45. Gill, S. C. & von Hippel, P. H. Calculation of protein extinction coefficients from amino acid sequence data. Anal. Biochem. 182, 319–326 (1989).

    Article  Google Scholar 

  46. Pace, C. N., Vajdos, F., Fee, L., Grimsley, G. & Gray, T. How to measure and predict the molar absorption coefficient of a protein. Protein Sci. 11, 2411–2423 (1995).

    Article  Google Scholar 

  47. Velazquez-Campoy, A., Lopez-Mayorga, O. & Cabrerizo-Vilchez, M. A. Determination of the rigorous transfer function of an isothermal titration microcalorimeter with Peltier compensation. J. Therm. Anal. Calorim. 57, 343–359 (1999).

    Article  Google Scholar 

  48. Wädso, I. Needs for standards in isothermal microcalorimetry. Thermochim. Acta. 347, 73–77 (2000).

    Article  Google Scholar 

  49. Wädso, I. Standards in titration microcalorimetry. Netsu Sokutei 28, 63–67 (2001).

    Google Scholar 

  50. Baranauskiene, L., Petrikaite, V., Matuliene, J. & Matulis, D. Titration calorimetry standards and the precision of isothermal titration calorimetry data. Int. J. Mol. Sci. 10, 2752–2762 (2009).

    Article  Google Scholar 

  51. Griko, Y. V. Energetics of Ca2+–EDTA interactions: calorimetric study. Biophys. Chem. 79, 117–127 (1999).

    Article  Google Scholar 

  52. Rafols, C., Bosch, E., Barbas, R. & Prohens, R. The Ca2+–EDTA chelation as standard reaction to validate isothermal titration calorimeter measurements (ITC). Talanta 154, 354–359 (2016).

    Article  Google Scholar 

  53. Velazquez-Campoy, A. et al. A multi-laboratory benchmark study of isothermal titration calorimetry (ITC) using Ca2+ and Mg2+ binding to EDTA. Eur. Biophys. J. 50, 429–451 (2021).

    Article  Google Scholar 

  54. Hansen, L. D., Transtrum, M. K. & Quinn, C. F. Titration Calorimetry from Concept to Application (Spring International, 2018).

  55. Nguyen, T. H. et al. Bayesian analysis of isothermal titration calorimetry for binding thermodynamics. PLoS ONE 13, e0203224 (2018).

    Article  Google Scholar 

  56. Tellinghuisen, J. & Chodera, J. D. Systematic errors in isothermal titration calorimetry: concentrations and baselines. Anal. Biochem. 414, 297–299 (2011).

    Article  Google Scholar 

  57. Wadsö, I. & Wadsö, L. Systematic errors in isothermal micro- and nanocalorimetry. J. Therm. Anal. Calorim. 82, 553–558 (2005).

    Article  Google Scholar 

  58. Tellinghuisen, J. Volume errors in isothermal titration calorimetry. Anal. Biochem. 333, 405–406 (2004).

    Article  Google Scholar 

  59. Paketurytė, V. et al. Uncertainty in protein–ligand binding constants: asymmetric confidence intervals versus standard errors. Eur. Biophys. J. 50, 661–670 (2021).

    Article  Google Scholar 

  60. Keller, S. et al. High-precision isothermal titration calorimetry with automated peak-shape analysis. Anal. Chem. 84, 5066–5073 (2012).

    Article  Google Scholar 

  61. Zhao, H., Piszczek, G. & Schuck, P. SEDPHAT — a platform for global ITC analysis and global multi-method analysis of molecular interactions. Methods 76, 137–148 (2015).

    Article  Google Scholar 

  62. Brautigam, C. A., Zhao, H., Vargas, C., Keller, S. & Schuck, P. Integration and global analysis of isothermal titration calorimetry data for studying macromolecular interactions. Nat. Protoc. 11, 882–894 (2016).

    Article  Google Scholar 

  63. Piñeiro, A. et al. AFFINImeter: a software to analyze molecular recognition processes from experimental data. Anal. Biochem. 577, 117–134 (2019).

    Article  Google Scholar 

  64. Claveria-Gimeno, R. et al. The intervening domain from MeCP2 enhances the DNA affinity of the methyl binding domain and provides an independent DNA interaction site. Sci. Rep. 7, 41635 (2017).

    Article  ADS  Google Scholar 

  65. Freire, E., Schön, A. & Velazquez-Campoy, A. Isothermal titration calorimetry: general formalism using binding polynomials. Methods Enzymol. 455, 127–155 (2009).

    Article  Google Scholar 

  66. Boudker, O. & Oh, S. Isothermal titration calorimetry of ion-coupled membrane transporters. Methods 76, 171–182 (2015).

    Article  Google Scholar 

  67. Vega, S., Abian, O. & Velazquez-Campoy, A. Handling complexity in biological interactions. J. Therm. Anal. Calorim. 138, 3229–3248 (2019).

    Article  Google Scholar 

  68. Rajarathnam, K. & Rösgen, J. Isothermal titration calorimetry of membrane proteins — progress and challenges. Biochim. Biophys. Acta. 1838, 69–77 (2014).

    Article  Google Scholar 

  69. Arias-Moreno, X., Velazquez-Campoy, A., Rodriguez, J. C., Pocovi, M. & Sancho, J. Mechanism of low density lipoprotein (LDL) release in the endosome: implications of the stability and Ca2+ affinity of the fifth binding module of the LDL receptor. J. Biol. Chem. 283, 22670–22679 (2008).

    Article  Google Scholar 

  70. Arias-Moreno, X., Cuesta-Lopez, S., Millet, O., Sancho, J. & Velazquez-Campoy, A. Thermodynamics of protein–cation interaction: Ca+2 and Mg+2 binding to the fifth binding module of the LDL receptor. Proteins 78, 950–961 (2010).

    Article  Google Scholar 

  71. Pulido, N. O. et al. Energetic effects of magnesium in the recognition of adenosine nucleotides by the F(1)-ATPase β subunit. Biochemistry 49, 5258–5268 (2010).

    Article  Google Scholar 

  72. Salcedo, G., Cano-Sanchez, P., de Gomez-Puyou, M. T., Velazquez-Campoy, A. & Garcia-Hernandez, E. Isolated noncatalytic and catalytic subunits of F1-ATPase exhibit similar, albeit not identical, energetic strategies for recognizing adenosine nucleotides. Biochim. Biophys. Acta. 1837, 44–50 (2014).

    Article  Google Scholar 

  73. Wyman, J. & Gill, S. J. Binding and Linkage: Functional Chemistry of Biological Macromolecules (University Science Books, 1990). This book presents the foundations of physical chemistry of macromolecules and represents basic reading for any researcher in structural and functional aspects of biological macromolecules.

  74. Monod, J., Wyman, J. & Changeux, J.-P. On the nature of allosteric transitions — a plausible model. J. Mol. Biol. 12, 88–118 (1965).

    Article  Google Scholar 

  75. Felix, J. et al. Mechanism of the allosteric activation of the ClpP protease machinery by substrates and active-site inhibitors. Sci. Adv. 5, eaaw3818 (2019).

    Article  ADS  Google Scholar 

  76. Koshland, D. E. Jr, Némethy, G. & Filmer, D. Comparison of experimental binding data and theoretical models in proteins containing subunits. Biochemistry 5, 365–385 (1966).

    Article  Google Scholar 

  77. Claveria-Gimeno, R., Velazquez-Campoy, A. & Pey, A. L. Thermodynamics of cooperative binding of FAD to human NQO1: implications to understanding cofactor-dependent function and stability of the flavoproteome. Arch. Biochem. Biophys. 636, 17–27 (2017).

    Article  Google Scholar 

  78. Taneva, S. G. et al. A mechanism for histone chaperoning activity of nucleoplasmin: thermodynamic and structural models. J. Mol. Biol. 393, 448–463 (2009).

    Article  Google Scholar 

  79. Ruiz-Ramos, A., Velazquez-Campoy, A., Grande-Garcia, A., Moreno-Morcillo, M. & Ramon-Maiques, S. Structure and functional characterization of human aspartate transcarbamoylase, the target of the anti-tumoral drug PALA. Structure 24, 1081–1094 (2016).

    Article  Google Scholar 

  80. Freiburger, L. A. et al. Competing allosteric mechanisms modulate substrate binding in a dimeric enzyme. Nat. Struct. Mol. Biol. 18, 288–294 (2011).

    Article  Google Scholar 

  81. Velazquez-Campoy, A. & Freire, E. Incorporating target heterogeneity in drug design. J. Cell Biochem. 84 (Suppl. 37), 82–88 (2001).

    Article  Google Scholar 

  82. Velazquez-Campoy, A. et al. Structural and thermodynamic basis of resistance to HIV-1 protease inhibition: implications for inhibitor design. Curr. Drug Targets Infect. Disord. 3, 311–328 (2003).

    Article  Google Scholar 

  83. Ohtaka, H. et al. Thermodynamic rules for the design of high affinity HIV-1 protease inhibitors with adaptability to mutations and high selectivity towards unwanted targets. Int. J. Biochem. Cell Biol. 36, 1787–1799 (2004).

    Article  Google Scholar 

  84. Krimmer, S. G. & Klebe, G. Thermodynamics of protein–ligand interactions as a reference for computational analysis: how to assess accuracy, reliability and relevance of experimental data. J. Comput. Aided Mol. Des. 29, 867–883 (2015).

    Article  ADS  Google Scholar 

  85. Heerklotz, H. & Seelig, J. Titration calorimetry of surfactant–membrane partitioning and membrane solubilization. Biochim. Biophys. Acta 1508, 69–85 (2000).

    Article  Google Scholar 

  86. Heerklotz, H. Membrane stress and permeabilization induced by asymmetric incorporation of compounds. Biophys. J. 81, 184–195 (2001).

    Article  ADS  Google Scholar 

  87. Keller, S., Heerklotz, H. & Blume, A. Monitoring lipid membrane translocation of sodium dodecyl sulfate by isothermal titration calorimetry. J. Am. Chem. Soc. 128, 1279–1286 (2006).

    Article  Google Scholar 

  88. Keller, S., Heerklotz, H., Jahnke, N. & Blume, A. Thermodynamics of lipid membrane solubilization by sodium dodecyl sulfate. Biophys. J. 90, 4509–4521 (2006).

    Article  ADS  Google Scholar 

  89. Heerklotz, H. & Seelig, J. Leakage and lysis of lipid membranes induced by the lipopeptide surfactin. Eur. Biophys. J. Biophys. Lett. 36, 305–314 (2007).

    Article  Google Scholar 

  90. Heerklotz, H., Tsamaloukas, A. D. & Keller, S. Monitoring detergent-mediated solubilization and reconstitution of lipid membranes by isothermal titration calorimetry. Nat. Protoc. 4, 686–697 (2009).

    Article  Google Scholar 

  91. Moreno, M. J., Bastos, M. & Velazquez-Campoy, A. Partition of amphiphilic molecules to lipid bilayers by isothermal titration calorimetry. Anal. Biochem. 399, 44–47 (2010). This paper reports the adequate methodology to estimate intrinsic parameters for membrane interaction with ionic/non-ionic solutes, providing a spreadsheet for data analysis.

    Article  Google Scholar 

  92. Vargas, C., Klingler, J. & Keller, S. Membrane partitioning and translocation studied by isothermal titration calorimetry. Methods Mol. Biol. 1033, 253–271 (2013).

    Article  Google Scholar 

  93. Connelly, P. in Biocalorimetry. Foundations and Contemporary Approaches (ed. Bastos, M.) 323–344 (CRC, 2016).

  94. McGhee, J. D. & von Hippel, P. H. Theoretical aspects of DNA–protein interactions: co-operative and non-co-operative binding of large ligands to a one-dimensional homogeneous lattice. J. Mol. Biol. 86, 469–489 (1974).

    Article  Google Scholar 

  95. Velazquez-Campoy, A. Ligand binding to one-dimensional lattice-like macromolecules: analysis of the McGhee–von Hippel theory implemented in isothermal titration calorimetry. Anal. Biochem. 348, 94–104 (2006).

    Article  Google Scholar 

  96. Kasimova, M. R., Velazquez-Campoy, A. & Nielsen, H. M. On the temperature dependence of complex formation between chitosan and proteins. Biomacromolecules 12, 2534–2543 (2011).

    Article  Google Scholar 

  97. Water, J. J. et al. Complex coacervates of hyaluronic acid and lysozyme: effect on protein structure and physical stability. Eur. J. Pharm. Biopharm. 88, 325–331 (2014).

    Article  Google Scholar 

  98. Westh, P. & Borsh, K. in Biocalorimetry. Foundations and Contemporary Approaches (ed. Bastos, M.) 381–394 (CRC, 2016).

  99. Krell, T. Microcalorimetry: a response to challenges in modern biotechnology. Microb. Biotechnol. 1, 126–136 (2008).

    Article  Google Scholar 

  100. Schön, A. & Velazquez-Campoy, A. in Methods for Structural Analysis of Protein Pharmaceuticals Vol. 3 (eds Crommelin, D. J. A. & Jiskoot, W.) 573–589 (AAPS, 2005).

  101. Baranauskiene, L., Kuo, T. C., Chen, W. Y. & Matulis, D. Isothermal titration calorimetry for characterization of recombinant proteins. Curr. Opin. Biotechnol. 55, 9–15 (2019).

    Article  Google Scholar 

  102. Zihlmann, P. et al. KinITC-One method supports both thermodynamic and kinetic SARs as exemplified on FimH antagonists. Chemistry 24, 13049–13057 (2018).

    Article  Google Scholar 

  103. Egawa, T., Tsuneshige, A., Suematsu, M. & Yonetani, T. Method for determination of association and dissociation rate constants of reversible bimolecular reactions by isothermal titration calorimeters. Anal. Chem. 79, 2972 (2007).

    Article  Google Scholar 

  104. Burnouf, D. et al. kinITC: a new method for obtaining joint thermodynamic and kinetic data by isothermal titration calorimetry. J. Am. Chem. Soc. 134, 559–565 (2012). This paper presents the most current methodology to extract thermodynamic and kinetic interaction parameters from a single ITC experiment.

    Article  Google Scholar 

  105. Dumas, P. et al. Extending ITC to kinetics with kinITC. Methods Enzymol. 567, 157–180 (2016).

    Article  Google Scholar 

  106. Tso, S.-C., Jowitt, T. A. & Brautigam, C. A. The feasibility of determining kinetic constants from isothermal titration calorimetry data. Biophys. J. 121, 2474–2484 (2022).

    Article  ADS  Google Scholar 

  107. Bello, M., Portillo-Tellez, M., del, C. & Garcia-Hernandez, E. Energetics of ligand recognition and self-association of bovine β-lactoglobulin: differences between variants A and B. Biochemistry 50, 151–161 (2011).

    Article  Google Scholar 

  108. Gutierrez-Magdaleno, G., Bello, M., Portillo-Tellez, M. C., Rodriguez-Romero, A. & Garcia-Hernandez, E. Ligand binding and self-association cooperativity of β-lactoglobulin. J. Mol. Recognit. 26, 67–75 (2013).

    Article  Google Scholar 

  109. Saeed, I. Q. & Buurma, N. J. Analysis of isothermal titration calorimetry data for complex interactions using I2CITC. Methods Mol. Biol. 1964, 169–183 (2019).

    Article  Google Scholar 

  110. Garrido, P. F., Bastos, M., Velazquez-Campoy, A., Dumas, P. & Piñeiro, A. Fluid interface calorimetry. J. Colloid Interface Sci. 596, 119–129 (2021).

    Article  ADS  Google Scholar 

  111. Garrido, P. F. et al. Unsupervised bubble calorimetry analysis: surface tension from isothermal titration calorimetry. J. Colloid Interface Sci. 606, 1823–1832 (2022).

    Article  ADS  Google Scholar 

  112. Utsuno, K. & Uludağ, H. Thermodynamics of polyethylenimine–DNA binding and DNA condensation. Biophys. J. 99, 201–207 (2010).

    Article  ADS  Google Scholar 

  113. Kim, W., Yamasaki, Y., Jang, W.-D. & Kataoka, K. Thermodynamics of DNA condensation induced by poly(ethylene glycol)-block-polylysine through polyion complex micelle formation. Biomacromolecules 11, 1180–1186 (2010).

    Article  Google Scholar 

  114. Basak Kayitmazer, A. Thermodynamics of complex coacervation. Adv. Colloid Interface Sci. 239, 169–177 (2017).

    Article  Google Scholar 

  115. Akers, D. L. & Goldberg, R. N. BioEqCalc: a package for performing equilibrium calculations on biochemical reactions. Math. J. 8, 86–113 (2001).

    Google Scholar 

  116. Freedman, L. P., Cockburn, I. M. & Simcoe, T. S. The economics of reproducibility in preclinical research. PLoS Biol. 13, e1002165 (2015).

    Article  Google Scholar 

  117. Baker, M. 1,500 scientists lift the lid on reproducibility. Nature 533, 452–454 (2016).

    Article  ADS  Google Scholar 

  118. Cremades, N., Velazquez-Campoy, A., Freire, E. & Sancho, J. The flavodoxin from Helicobacter pylori: structural determinants of thermostability and FMN cofactor binding. Biochemistry 47, 627–639 (2008).

    Article  Google Scholar 

  119. Bollen, Y. J., Westphal, A. H., Lindhoud, S., van Berkel, W. J. & van Mierlo, C. P. Distant residues mediate picomolar binding affinity of a protein cofactor. Nat. Commun. 3, 1010 (2012).

    Article  ADS  Google Scholar 

  120. Briggner, L.-E. & Wadsö, I. Test and calibration processes for microcalorimeters, with special reference to heat conduction instruments used with aqueous systems. J. Biochem. Biophys. Meth. 22, 101–118 (1991).

    Article  Google Scholar 

  121. Adão, R., Bai, G., Loh, W. & Bastos, M. Chemical calibration of isothermal titration calorimeters: an evaluation of the dilution of propan-1-ol into water as a test reaction using different calorimeters, concentrations, and temperatures. J. Chem. Thermodyn. 52, 57–63 (2012).

    Article  Google Scholar 

  122. Sgarlata, C., Zito, V. & Arena, G. Conditions for calibration of an isothermal titration calorimeter using chemical reactions. Anal. Bioanal. Chem. 405, 1085–1094 (2013).

    Article  Google Scholar 

  123. Vaz, I. C. M., Torres, M. C., Silva, F. M. T., Carpinteiro, F. S. & Santos, L. M. N. B. F. μFlowCal — high-resolution differential flow microcalorimeter for the measurement of heats of mixing. Chem. Methods 2, e202100099 (2022).

    Article  Google Scholar 

  124. Di Trani, J. M., Moitessier, N. & Mittermaier, A. K. Measuring rapid time-scale reaction kinetics using isothermal titration calorimetry. Anal. Chem. 89, 7022–7030 (2017).

    Article  Google Scholar 

  125. Glöckner, S. & Klebe, G. Simultaneous determination of thermodynamic and kinetic data by isothermal titration calorimetry. Biochim. Biophys. Acta Gen. Subj. 1865, 129772 (2021).

    Article  Google Scholar 

  126. Broecker, J., Vargas, C. & Keller, S. Revisiting the optimal c value for isothermal titration calorimetry. Anal. Biochem. 418, 307–309 (2011).

    Article  Google Scholar 

  127. Sigurskjold, B. W. Exact analysis of competition ligand binding by displacement isothermal titration calorimetry. Anal. Biochem. 277, 260–266 (2000). This paper presents the exact application of ternary equilibrium for ITC displacement experiments, which allow extending the practical range for affinity determination (Kd values below nanomolar or above millimolar).

    Article  Google Scholar 

  128. Wyman, J. Linked functions and reciprocal effects in hemoglobin — a second look. Adv. Protein Chem. 19, 223–286 (1964).

    Article  Google Scholar 

  129. Wyman, J. The binding potential, a neglected linkage concept. J. Mol. Biol. 1965, 631–644 (1965).

    Article  Google Scholar 

  130. Schellman, J. A. Macromolecular binding. Biopolymers 14, 999–1018 (1975).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the key role of ARBRE (Association of Resources for Research in Biophysics in Europe) and COST MOBIEU Action (CA15126, Between Atom and Cell: Integrating Molecular Biophysics Approaches for Biology and Healthcare, supported by COST - European Cooperation in Science and Technology) in fostering collaborations and promoting the exchange of knowledge and experience. The authors also acknowledge M. Brandts (MicroCal/Malvern-Panalytical) and C. Quinn (CSC/TA Instruments) for clarifying some technical details of their respective instruments, as well as L. Hansen (Brigham Young University, Provo, UT, USA) for reading critically the parts of the text dealing with CSC/TA Instruments and for many fruitful discussions with M.B. on calorimeter design and function during the preparation of this Primer. Finally, the authors acknowledge pioneering technical work developing microcalorimeters and early studies showing the application of these instruments to biological systems from J. J. Christensen, R. M. Izatt, L. D. Hansen, S. J. Gill, R. L. Biltonen, E. Freire, J. F. Brandts, V. V. Plotnikov, P. L. Privalov, G. I. Makhatadze, J. M. Sturtevant, I. Wadsö, G. Waksman and R. N. Goldberg — without these key scientists the whole area of biocalorimetry would not be the established and widely used technique that it is today.

Author information

Authors and Affiliations

Authors

Contributions

Introduction (M.B., O.A. and A.V.-C.); Experimentation (M.B., C.M.J. and A.V.-C.); Results (M.B., C.M.J. and A.V.-C.); Applications (O.A., S.V. and A.V.-C.); Reproducibility and data deposition (M.B., F.F.d.S., A.J.-A. and A.V.-C.); Limitations and optimizations (O.A., C.M.J., D.O.-A. and A.V.-C.); Outlook (F.S. and A.V.-C.); Overview of the Primer (A.V.-C.).

Corresponding author

Correspondence to Adrian Velazquez-Campoy.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Methods Primers thanks Carmelo Sgarlata and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

AlphaFold: https://alphafold.ebi.ac.uk/

BindingDB: https://www.bindingdb.org/bind/index.jsp

Expasy: https://www.expasy.org

NIST reference database: https://randr.nist.gov/Default.aspx

Supplementary information

Glossary

Binding isotherm

Calorimetric processed data plotting the heats from peak integration as a function of the reaction progress.

Desolvation

The release of some, or all, of the surface-associated solvent molecules to the bulk solution.

Enthalpy

The sum of the internal energy and the product of pressure and volume. Enthalpy is equal to the heat transferred during a process at constant pressure and zero non-expansion work in a closed system. In a biological interaction, it reflects the net energetic balance due to non-covalent bonds rupture (with solvent) and formation (between binding partners).

Entropy

The contribution to the Gibbs energy that amounts to the dissipated energy that cannot be used to generate work. Entropy is associated with order/disorder and the configurational arrangements for energy distribution over an ensemble of states. In a biological interaction, it reflects the changes in degrees of freedom along intermolecular interactions, for example desolvation, ion/solute exchange, and conformational and vibrational changes.

Gibbs energy

The maximum amount of non-expansion work that can be extracted from a process in a closed system. The Gibbs energy is a quantitative measure of the spontaneity of a chemical reaction. In a biological interaction, it reflects the binding affinity or strength of a given intermolecular interaction, the stability of the complex.

Heat capacity

The amount of heat to be provided to a system to increase its temperature a certain quantity. Thermal inertia to change temperature or capability to store thermal energy in a system.

Isobaric

Describes any process performed under constant pressure.

Isothermal

Describes any process performed under constant temperature.

Microcalorimetry

An experimental technique that uses calorimeters able to detect very small amounts of heat, at microjoule level.

Proton ionization

(Also known as deprotonation). The removal or transfer of a proton from an acid form in an acid–base reaction. Ionization of buffer molecules has an associated ionization enthalpy or proton dissociation enthalpy, which needs to be taken into account if proton ionization occurs upon binding.

Reverse titrations

The study of the same reactions exchanging the position of the reactants between cell and syringe.

Thermogram

Calorimetric raw data plotting thermal power as a function of time.

Titration

The step-wise addition of a reactant to another reactant. Etymologically, quantitative chemical analysis to determine the concentration (titre) of a solution using another reagent solution of known concentration.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bastos, M., Abian, O., Johnson, C.M. et al. Isothermal titration calorimetry. Nat Rev Methods Primers 3, 17 (2023). https://doi.org/10.1038/s43586-023-00199-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s43586-023-00199-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing