Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Peroxynitrite: biochemistry, pathophysiology and development of therapeutics

Key Points

  • The first goal of the current article is to give an overview of the biochemistry and the pathophysiological actions of peroxynitrite (ONOO), a short-lived oxidant species formed by the diffusion-controlled reaction of nitric oxide (NO) with a superoxide radical (O2•−). The second goal of the article is to outline the therapeutic implications of peroxynitrite, and to give an overview of the various pharmacological classes of peroxynitrite scavengers and peroxynitrite decomposition catalysts.

  • Peroxynitrite induces cell death, and can influence signal-transduction processes, mitochondrial function and signalling of apoptosis. The formation and reactions of peroxynitrite play a significant role in various diseases. Products of peroxynitrite reactions with macromolecules have been detected in several pathophysiological conditions, including vascular diseases, ischaemia–reperfusion injury, circulatory shock, inflammation, pain and neurodegeneration. In these conditions, pharmacological inhibition of the formation or action of peroxynitrite was shown to be of benefit.

  • The biological chemistry of peroxynitrite is highly pH-dependent and is dictated primarily by reactions with thiols, carbon dioxide and transition-metal centres. Reaction of peroxynitrite and/or peroxynitrite-derived radicals (for example, carbonate and nitrogen dioxide radicals) with targets results in one- and two-electron oxidations and nitration. Diffusion of peroxynitrite through biomembranes can cause oxidative damage at one to two cell diameters from its site of formation.

  • The most advanced pharmacological strategies to attenuate the toxic effects of peroxynitrite involve its fast (k>1 × 106 M−1s−1) catalytic reduction to nitrite (NO2) or its isomerization to nitrate (NO3) by metalloporphyrins. Manganese and iron metalloporphyrinic compounds have been shown to rapidly react with peroxynitrite and promote its decomposition in a catalytic fashion. Such compounds — including manganese (III) meso-tetrakis((N-ethyl) pyridynium-2-yl) l porphyrin (MnTE-2-PyP), manganese (III) tetrakis(N-N′-diethylimidazolium-2-yl)porphyrin (AEOL-10150) and FeCl tetrakis-2-(triethylene glycol monomethyl ether) pyridyl porphyrin (FP15) — attenuate peroxynitrite-dependent toxicity in vitro and in vivo, and emerge as candidates for drug development for the therapy of cardiovascular, inflammatory and neurodegenerative diseases.

Abstract

Peroxynitrite — the product of the diffusion-controlled reaction of nitric oxide with superoxide radical — is a short-lived oxidant species that is a potent inducer of cell death. Conditions in which the reaction products of peroxynitrite have been detected and in which pharmacological inhibition of its formation or its decomposition have been shown to be of benefit include vascular diseases, ischaemia–reperfusion injury, circulatory shock, inflammation, pain and neurodegeneration. In this Review, we first discuss the biochemistry and pathophysiology of peroxynitrite and then focus on pharmacological strategies to attenuate the toxic effects of peroxynitrite. These include its catalytic reduction to nitrite and its isomerization to nitrate by metalloporphyrins, which have led to potential candidates for drug development for cardiovascular, inflammatory and neurodegenerative diseases.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Biochemistry of peroxynitrite: reaction targets and fate.
Figure 2: Mechanisms of cell death induced by peroxynitrite.
Figure 3: Structures of metalloporphyrins.
Figure 4: Metalloporphyrins as catalysts of the decomposition of peroxynitrite.

References

  1. 1

    Beckman, J. S. et al. Apparent hydroxyl radical production by peroxynitrite: implication for endothelial injury from NO and superoxide. Proc. Natl Acad. Sci. USA 87, 1620–1624 (1990). The first report implicating the biological formation and pathophysiological potential of peroxynitrite.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2

    Gryglewski, R. J., Palmer, R. M. & Moncada, S. Superoxide anion is involved in the breakdown of endothelium-derived vascular relaxing factor. Nature 320, 454–456 (1986).

    CAS  PubMed  Google Scholar 

  3. 3

    Radi, R. et al. Unraveling peroxynitrite formation in biological systems. Free Radic. Biol. Med. 30, 463–488 (2001).

    CAS  PubMed  Google Scholar 

  4. 4

    Alvarez, M. N., Piacenza, L., Irigoin, F., Peluffo, G. & Radi, R. Macrophage-derived peroxynitrite diffusion and toxicity to Trypanosoma cruzi. Arch. Biochem. Biophys. 432, 222–232 (2004).

    CAS  PubMed  Google Scholar 

  5. 5

    Nalwaya, N. & Deen, W. M. NO, oxygen, and superoxide formation and consumption in macrophage cultures. Chem. Res. Toxicol. 18, 486–493 (2005).

    CAS  PubMed  Google Scholar 

  6. 6

    Quijano, C., Romero, N. & Radi, R. Tyrosine nitration by superoxide and NO fluxes in biological systems: modeling the impact of superoxide dismutase and NO diffusion. Free Radic. Biol. Med. 39, 728–741 (2005).

    CAS  PubMed  Google Scholar 

  7. 7

    Marla, S. S., Lee, J. & Groves, J. T. Peroxynitrite rapidly permeates phospholipid membranes. Proc. Natl Acad. Sci. USA 94, 14243–14248 (1997).

    CAS  PubMed  Google Scholar 

  8. 8

    Denicola, A., Souza, J. M. & Radi, R. Diffusion of peroxynitrite across erythrocyte membranes. Proc. Natl Acad. Sci. USA 95, 3566–3571 (1998).

    CAS  PubMed  Google Scholar 

  9. 9

    Radi, R., Beckman, J. S., Bush, K. M. & Freeman, B. A. Peroxynitrite oxidation of sulfhydryls: the cytotoxic potential of superoxide and nitric oxide. J. Biol. Chem. 266, 4244–4250 (1991). The first demonstration that peroxynitrite can oxidize sulphydryls, and the application of stopped-flow spectrophotometry for rate constant determination.

    CAS  PubMed  Google Scholar 

  10. 10

    Bartesaghi, S. et al. Mechanistic studies of peroxynitrite-mediated tyrosine nitration in membranes using the hydrophobic probe N-t-BOC-L-tyrosine tert-butyl ester. Biochemistry 45, 6813–6825 (2006).

    CAS  PubMed  Google Scholar 

  11. 11

    Quijano, C., Alvarez, B., Gatti, R., Augusto, O. & Radi, R. Pathways of peroxynitrite oxidation of thiol groups. Biochem. J. 322, 167–173 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12

    Carballal, S. et al. Sulfenic acid formation in human serum albumin. Biochemistry 42, 9906–9914 (2003).

    CAS  PubMed  Google Scholar 

  13. 13

    Lymar, S. V. & Hurst, J. K. Radical nature of peroxynitrite reactivity. Chem. Res. Toxicol. 11, 714–715 (1998).

    CAS  PubMed  Google Scholar 

  14. 14

    Goldstein, S., Lind, J. & Merenyi, G. Chemistry of peroxynitrites as compared to peroxynitrates. Chem. Rev. 105, 2457–2470 (2005).

    CAS  PubMed  Google Scholar 

  15. 15

    Romero, N. et al. Reaction of human hemoglobin with peroxynitrite: isomerization to nitrate and secondary formation of protein radicals. J. Biol. Chem. 278, 44049–44057 (2003).

    CAS  PubMed  Google Scholar 

  16. 16

    Radi, R. NO, oxidants, and protein tyrosine nitration. Proc. Natl Acad. Sci. USA 101, 4003–4008 (2004).

    CAS  PubMed  Google Scholar 

  17. 17

    Bonini, M. G. & Augusto, O. Carbon dioxide stimulates the production of thiyl, sulfinyl, and disulfide radical anion from thiol oxidation by peroxynitrite. J. Biol. Chem. 276, 9749–54 (2001).

    CAS  PubMed  Google Scholar 

  18. 18

    Salgo, M. G., Bermudez, E., Squadrito, G. L. & Pryor, W. A. Peroxynitrite causes DNA damage and oxidation of thiols in rat thymocytes. Arch. Biochem. Biophys. 322, 500–505 (1995).

    CAS  PubMed  Google Scholar 

  19. 19

    Szabó, C. & Ohshima, H. DNA damage induced by peroxynitrite: subsequent biological effects. Nitric Oxide 1, 373–385 (1997).

    PubMed  Google Scholar 

  20. 20

    Burney, S., Niles, J. C., Dedon, P. C. & Tannenbaum, S. R. DNA damage in deoxynucleosides and oligonucleotides treated with peroxynitrite. Chem. Res. Toxicol. 12, 513–520 (1999).

    CAS  PubMed  Google Scholar 

  21. 21

    Niles, J. C., Wishnok, J. S. & Tannenbaum, S. R. Peroxynitrite-induced oxidation and nitration products of guanine and 8-oxoguanine: structures and mechanisms of product formation. Nitric Oxide 14, 109–121 (2006).

    CAS  PubMed  Google Scholar 

  22. 22

    Kennedy, L. J., Moore, K. Jr, Caulfield, J. L., Tannenbaum, S. R. & Dedon, P. C. Quantitation of 8-oxoguanine and strand breaks produced by four oxidizing agents. Chem. Res. Toxicol. 10, 386–392 (1997).

    CAS  PubMed  Google Scholar 

  23. 23

    Villa, L. M., Salas, E., Darley-Usmar, V. M., Radomski, M. W. & Moncada, S. Peroxynitrite induces both vasodilatation and impaired vascular relaxation in the isolated perfused rat heart. Proc. Natl Acad. Sci. USA 91, 12383–12387 (1994).

    CAS  PubMed  Google Scholar 

  24. 24

    Rubbo, H. et al. NO regulation of superoxide and peroxynitrite-dependent lipid peroxidation. Formation of novel nitrogen-containing oxidized lipid derivatives. J. Biol. Chem. 269, 26066–26075 (1994).

    CAS  PubMed  Google Scholar 

  25. 25

    Violi, F., Marino, R., Milite, M. T. & Loffredo, L. NO and its role in lipid peroxidation. Diabetes Metab. Res. Rev. 15, 283–288 (1999).

    CAS  PubMed  Google Scholar 

  26. 26

    Moore, K. P., Darley-Usmar, V., Morrow, J. & Roberts, L. J. Formation of F2-isoprostanes during oxidation of human low-density lipoprotein and plasma by peroxynitrite. Circ. Res. 77, 335–341 (1995).

    CAS  PubMed  Google Scholar 

  27. 27

    Batthyany, C. et al. Reversible post-translational modification of proteins by nitrated fatty acids in vivo. J. Biol. Chem. 281, 20450–20463 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28

    Wright, M. M. et al. Fatty acid transduction of NO signaling: nitrolinoleic acid potently activates endothelial heme oxygenase 1 expression. Proc. Natl Acad. Sci. USA 103, 4299–4304 (2006).

    CAS  PubMed  Google Scholar 

  29. 29

    Milstien, S. & Katusic, Z. Oxidation of tetrahydrobiopterin by peroxynitrite: implications for vascular endothelial function. Biochem. Biophys. Res. Commun. 263, 681–684 (1999).

    CAS  PubMed  Google Scholar 

  30. 30

    Kuzkaya, N., Weissmann, N., Harrison, D. G. & Dikalov, S. Interactions of peroxynitrite, tetrahydrobiopterin, ascorbic acid, and thiols: implications for uncoupling endothelial nitric-oxide synthase. J. Biol. Chem. 278, 22546–22554 (2003).

    CAS  PubMed  Google Scholar 

  31. 31

    Forstermann, U. & Munzel, T. Endothelial NO synthase in vascular disease: from marvel to menace. Circulation 113, 1708–1714 (2006).

    PubMed  PubMed Central  Google Scholar 

  32. 32

    Kirsch, M. & de Groot, H. Reaction of peroxynitrite with reduced nicotinamide nucleotides, the formation of hydrogen peroxide. J. Biol. Chem. 274, 24664–24670 (1999).

    CAS  PubMed  Google Scholar 

  33. 33

    Goldstein, S. & Czapski, G. Reactivity of peroxynitrite versus simultaneous generation of (*)NO and O(2)(*)(−) toward NADH. Chem. Res. Toxicol. 13, 736–741 (2000).

    CAS  PubMed  Google Scholar 

  34. 34

    Ischiropoulos, H. et al. Peroxynitrite-mediated tyrosine nitration catalyzed by superoxide dismutase. Arch. Biochem. Biophys. 298, 431–437 (1992). The first article on peroxynitrite-induced tyrosine nitration.

    CAS  PubMed  Google Scholar 

  35. 35

    MacMillan-Crow, L. A., Crow, J. P. & Thompson, J. A. Peroxynitrite-mediated inactivation of manganese superoxide dismutase involves nitration and oxidation of critical tyrosine residues. Biochemistry 37, 1613–1622 (1998).

    CAS  PubMed  Google Scholar 

  36. 36

    Alvarez, B. et al. Inactivation of human Cu, Zn superoxide dismutase by peroxynitrite and formation of histidinyl radical. Free Radic. Biol. Med. 37, 813–822 (2004).

    CAS  PubMed  Google Scholar 

  37. 37

    Beckman, J. S., Estevez, A. G., Crow, J. P. & Barbeito, L. Superoxide dismutase and the death of motoneurons in ALS. Trends Neurosci. 24 (Suppl. 11), 15–20 (2001).

    Google Scholar 

  38. 38

    Savvides, S. N. et al. Crystal structure of the antioxidant enzyme glutathione reductase inactivated by peroxynitrite. J. Biol. Chem. 277, 2779–2784 (2002).

    CAS  PubMed  Google Scholar 

  39. 39

    Aykac-Toker, G., Bulgurcuoglu, S. & Kocak-Toker, N. Effect of peroxynitrite on glutaredoxin. Hum. Exp. Toxicol. 20, 373–376 (2001).

    CAS  PubMed  Google Scholar 

  40. 40

    Hogg, N., Darley-Usmar, V. M., Wilson, M. T. & Moncada, S. The oxidation of α-tocopherol in human low-density lipoprotein by the simultaneous generation of superoxide and NO. FEBS Lett. 326, 199–203 (1993).

    CAS  PubMed  Google Scholar 

  41. 41

    Van der Vliet, A. et al. Interactions of peroxynitrite with human plasma and its constituents: oxidative damage and antioxidant depletion. Biochem. J. 303, 295–301 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42

    Vatassery, G. T., Lai, J. C., DeMaster, E. G., Smith, W. E. & Quach, H. T. Oxidation of vitamin E and vitamin C and inhibition of brain mitochondrial oxidative phosphorylation by peroxynitrite. J. Neurosci. Res. 75, 845–853 (2004).

    CAS  PubMed  Google Scholar 

  43. 43

    Hausladen, A. & Fridovich, I. Superoxide and peroxynitrite inactivate aconitases, but NO does not. J. Biol. Chem. 269, 29405–29408 (1994).

    CAS  PubMed  Google Scholar 

  44. 44

    Crow, J. P., Beckman, J. S. & McCord, J. M. Sensitivity of the essential zinc-thiolate moiety of yeast alcohol dehydrogenase to hypochlorite and peroxynitrite. Biochemistry 34, 3544–3552 (1995).

    CAS  PubMed  Google Scholar 

  45. 45

    Mohr, S, Stamler, J. S. & Brune, B. Mechanism of covalent modification of glyceraldehyde-3-phosphate dehydrogenase at its active site thiol by NO, peroxynitrite and related nitrosating agents. FEBS Lett. 348, 223–227 (1994).

    CAS  PubMed  Google Scholar 

  46. 46

    Konorev, E. A., Hogg, N. & Kalyanaraman, B. Rapid and irreversible inhibition of creatine kinase by peroxynitrite. FEBS Lett. 427, 171–174 (1998).

    CAS  PubMed  Google Scholar 

  47. 47

    Mihm, M. J. et al. Peroxynitrite induced nitration and inactivation of myofibrillar creatine kinase in experimental heart failure. Cardiovasc. Res. 49, 798–807 (2001).

    CAS  PubMed  Google Scholar 

  48. 48

    Blanchard-Fillion, B. et al. Nitration and inactivation of tyrosine hydroxylase by peroxynitrite. J. Biol. Chem. 276, 46017–46023 (2001).

    CAS  PubMed  Google Scholar 

  49. 49

    Paxinou, E. et al. Induction of α-synuclein aggregation by intracellular nitrative insult. J. Neurosci. 21, 8053–8061 (2001).

    CAS  PubMed  Google Scholar 

  50. 50

    Reynolds, M. R., Lukas, T. J., Berry, R. W. & Binder, L. I. Peroxynitrite-mediated tau modifications stabilize preformed filaments and destabilize microtubules through distinct mechanisms. Biochemistry 45, 4314–4326 (2006).

    CAS  PubMed  Google Scholar 

  51. 51

    Okamoto, T. et al. Activation of matrix metalloproteinases by peroxynitrite-induced protein S-glutathiolation via disulfide S-oxide formation. J. Biol. Chem. 276, 29596–29602 (2001).

    CAS  PubMed  Google Scholar 

  52. 52

    Migita, K. et al. Peroxynitrite-mediated matrix metalloproteinase-2 activation in human hepatic stellate cells. FEBS Lett. 579, 3119–3125 (2005).

    CAS  PubMed  Google Scholar 

  53. 53

    Ji, Y., Neverova, I., Van Eyk, J. E. & Bennett, B. M. Nitration of tyrosine 92 mediates the activation of rat microsomal glutathione S-transferase by peroxynitrite. J. Biol. Chem. 281, 986–991 (2006).

    Google Scholar 

  54. 54

    Xie, Z. et al. Activation of protein kinase C zeta by peroxynitrite regulates LKB1-dependent AMP-activated protein kinase in cultured endothelial cells. J. Biol. Chem. 281, 6366–6375 (2005).

    Google Scholar 

  55. 55

    Jang, B. & Han, S. Biochemical properties of cytochrome c nitrated by peroxynitrite. Biochimie 88, 53–58 (2006).

    CAS  PubMed  Google Scholar 

  56. 56

    Bauer, M. L., Beckman, J. S., Bridges, R. J., Fuller, C. M. & Matalon, S. Peroxynitrite inhibits sodium uptake in rat colonic membrane vesicles. Biochim. Biophys. Acta 1104, 87–94 (1992).

    CAS  PubMed  Google Scholar 

  57. 57

    Hu, P., Ischiropoulos, H., Beckman, J. S. & Matalon, S. Peroxynitrite inhibition of oxygen consumption and sodium transport in alveolar type II cells. Am. J. Physiol. 266, L628–L634 (1994).

    CAS  PubMed  Google Scholar 

  58. 58

    Klebl, B. M., Ayoub, A. T. & Pette, D. Protein oxidation, tyrosine nitration, and inactivation of sarcoplasmic reticulum Ca2+-ATPase in low-frequency stimulated rabbit muscle. FEBS Lett. 422, 381–384 (1998).

    CAS  PubMed  Google Scholar 

  59. 59

    Viner, R. I., Williams, T. D., Schoneich, C. NO-dependent modification of the sarcoplasmic reticulum Ca-ATPase: localization of cysteine target sites. Free Radic. Biol. Med. 29, 489–496 (2000).

    CAS  PubMed  Google Scholar 

  60. 60

    Grover, A. K., Kwan, C. Y. & Samson, S. E. Effects of peroxynitrite on sarco/endoplasmic reticulum Ca2+ pump isoforms SERCA2b and SERCA3a. Am. J. Physiol. Cell Physiol. 285, C1537–C1543 (2003).

    CAS  PubMed  Google Scholar 

  61. 61

    Chakraborti, S., Mandal, A., Das, S. & Chakraborti, T. Inhibition of Na+/Ca2+ exchanger by peroxynitrite in microsomes of pulmonary smooth muscle: role of matrix metalloproteinase-2. Biochim. Biophys. Acta 1671, 70–78 (2004).

    CAS  PubMed  Google Scholar 

  62. 62

    Gutierrez-Martin, Y. et al. Alteration of cytosolic free calcium homeostasis by SIN-1: high sensitivity of L-type Ca2+ channels to extracellular oxidative/nitrosative stress in cerebellar granule cells. J. Neurochem. 92, 973–989 (2005).

    CAS  PubMed  Google Scholar 

  63. 63

    Zou, M., Yesilkaya, A. & Ullrich, V. Peroxynitrite inactivates prostacyclin synthase by heme-thiolate-catalyzed tyrosine nitration. Drug Metab. Rev. 31, 343–349 (1999).

    CAS  PubMed  Google Scholar 

  64. 64

    Bagnasco, P. et al. Peroxynitrite modulates acidic fibroblast growth factor (FGF-1) activity. Arch. Biochem. Biophys. 419, 178–189 (2003).

    CAS  PubMed  Google Scholar 

  65. 65

    Freels, J. L. et al. Enhanced activity of human IL-10 after nitration in reducing human IL-1 production by stimulated peripheral blood mononuclear cells. J. Immunol. 169, 4568–4571 (2002).

    CAS  PubMed  Google Scholar 

  66. 66

    van der Vliet, A, Hristova, M., Cross, C. E., Eiserich, J. P. & Goldkorn, T. Peroxynitrite induces covalent dimerization of epidermal growth factor receptors in A431 epidermoid carcinoma cells. J. Biol. Chem. 273, 31860–31866 (1998).

    CAS  PubMed  Google Scholar 

  67. 67

    Lewis, S. J., Hoque, A., Walton, T. M. & Kooy, N. W. Potential role of nitration and oxidation reactions in the effects of peroxynitrite on the function of β-adrenoceptor sub-types in the rat. Eur. J. Pharmacol. 518, 187–194 (2005).

    CAS  PubMed  Google Scholar 

  68. 68

    Shibuya, A. et al. Nitration of PPARγ inhibits ligand-dependent translocation into the nucleus in a macrophage-like cell line, RAW 264. FEBS Lett. 525, 43–47 (2002).

    CAS  PubMed  Google Scholar 

  69. 69

    Giuntini, J., Giusti, L., Lucacchini, A. & Mazzoni, M. R. Modulation of A1 adenosine receptor signaling by peroxynitrite. Biochem. Pharmacol. 67, 375–383 (2004).

    CAS  PubMed  Google Scholar 

  70. 70

    Nomiyama, T. et al. Reduction of insulin-stimulated glucose uptake by peroxynitrite is concurrent with tyrosine nitration of insulin receptor substrate-1. Biochem. Biophys. Res. Commun. 320, 639–647 (2004).

    CAS  PubMed  Google Scholar 

  71. 71

    Clavreul, N. et al. S-glutathiolation by peroxynitrite of p21ras at cysteine-118 mediates its direct activation and downstream signaling in endothelial cells. FASEB J. 20, 518–520 (2006).

    CAS  PubMed  Google Scholar 

  72. 72

    Newman, D. K. et al. Nitration of PECAM-1 ITIM tyrosines abrogates phosphorylation and SHP-2 binding. Biochem. Biophys. Res. Commun. 296, 1171–1179 (2002).

    CAS  PubMed  Google Scholar 

  73. 73

    Bar-Shai, M. & Reznick, A. Z. Peroxynitrite induces an alternative NF-κB activation pathway in l8 rat myoblasts. Antioxid. Redox Signal. 8, 639–652 (2006).

    CAS  PubMed  Google Scholar 

  74. 74

    Zouki, C., Jozsef, L., Ouellet, S., Paquette, Y. & Filep, J. G. Peroxynitrite mediates cytokine-induced IL-8 gene expression and production by human leukocytes. J. Leukoc. Biol. 69, 815–824 (2001).

    CAS  PubMed  Google Scholar 

  75. 75

    Matata, B. M. & Galinanes, M. Peroxynitrite is an essential component of cytokine production mechanism in human monocytes through modulation of NFκB DNA-binding activity. J. Biol. Chem. 277, 2330–2335 (2001).

    PubMed  Google Scholar 

  76. 76

    Levrand, S. et al. Peroxynitrite is a potent inhibitor of NFκB activation triggered by inflammatory stimuli in cardiac and endothelial cell lines. J. Biol. Chem. 280, 4878–4887 (2005).

    Google Scholar 

  77. 77

    Knapp, L. T., Kanterewicz, B. I., Hayes, E. L. & Klann, E. Peroxynitrite-induced tyrosine nitration and inhibition of protein kinase C. Biochem. Biophys. Res. Commun. 286, 764–770 (2001).

    CAS  PubMed  Google Scholar 

  78. 78

    Bapat, S., Verkleij, A. & Post, J. A. Peroxynitrite activates mitogen-activated protein kinase (MAPK) via a MEK-independent pathway: a role for protein kinase C. FEBS Lett. 499, 21–26 (2001).

    CAS  PubMed  Google Scholar 

  79. 79

    Mallozzi, C., Di Stasi, A. M. & Minetti, M. Nitrotyrosine mimics phosphotyrosine binding to the SH2 domain of the src family tyrosine kinase lyn. FEBS Lett. 503, 189–195 (2001).

    CAS  PubMed  Google Scholar 

  80. 80

    Mallozzi, C., Di Stasi, M. A & Minetti, M. Peroxynitrite-dependent activation of src tyrosine kinases lyn and hck in erythrocytes is under mechanistically different pathways of redox control. Free Radic. Biol. Med. 30, 1108–1117 (2001).

    CAS  PubMed  Google Scholar 

  81. 81

    Yuen, E. C., Gunther, E. C. & Bothwell, M. NO activation of TrkB through peroxynitrite. Neuroreport 11, 3593–3597 (2000).

    CAS  PubMed  Google Scholar 

  82. 82

    Platt, D. H. et al. Peroxynitrite increases VEGF expression in vascular endothelial cells via STAT3. Free Radic. Biol. Med. 39, 1353–1361 (2005).

    CAS  PubMed  Google Scholar 

  83. 83

    Klotz, L. O., Schieke, S. M., Sies, H. & Holbrook, N. J. Peroxynitrite activates the phosphoinositide 3-kinase/Akt pathway in human skin primary fibroblasts. Biochem. J. 352, 219–225 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. 84

    Shacka, J. J. et al. Two distinct signaling pathways regulate peroxynitrite-induced apoptosis in PC12 cells. Cell Death Differ. 13, 1506–1514 (2006).

    CAS  PubMed  Google Scholar 

  85. 85

    Zingarelli, B., Salzman, A. L. & Szabó, C. Genetic disruption of poly (ADP-ribose) synthetase inhibits the expression of P-selectin and intercellular adhesion molecule-1 in myocardial ischemia/reperfusion injury. Circ. Res. 83, 85–94 (1998).

    CAS  PubMed  Google Scholar 

  86. 86

    Haddad, I. Y. et al. Concurrent generation of NO and superoxide damages surfactant protein Am. J. Physiol. 267, L242–L249 (1994).

    CAS  PubMed  Google Scholar 

  87. 87

    Radi, R., Beckman, J. S., Bush, K. M. & Freeman, B. A. Peroxynitrite-induced membrane lipid peroxidation: the cytotoxic potential of superoxide and NO. Arch. Biochem. Biophys. 288, 481–487 (1991). This is the first paper supporting the reactions of peroxynitrite-derived radicals in hydrophobic compartments.

    CAS  PubMed  Google Scholar 

  88. 88

    Botti, H., Trostchansky, A., Batthyany, C. & Rubbo, H. Reactivity of peroxynitrite and NO with LDL. IUBMB Life 57, 407–412 (2005).

    CAS  PubMed  Google Scholar 

  89. 89

    Szabó, C., Zingarelli, B., O'Connor, M. & Salzman, A. L. DNA strand breakage, activation of poly-ADP ribosyl synthetase, and cellular energy depletion are involved in the cytotoxicity in macrophages and smooth muscle cells exposed to peroxynitrite. Proc. Natl Acad. Sci. USA 93, 1753–1758 (1996). The first report linking peroxynitrite to the activation of the nuclear enzyme PARP and subsequent cell death.

    PubMed  Google Scholar 

  90. 90

    Brown, G. C. & Borutaite, V. Inhibition of mitochondrial respiratory complex I by NO, peroxynitrite and S-nitrosothiols. Biochim. Biophys. Acta 1658, 44–49 (2004).

    CAS  PubMed  Google Scholar 

  91. 91

    Shiva, S. et al. Nitroxia: the pathological consequence of dysfunction in the NO-cytochrome c oxidase signaling pathway. Free Radic. Biol. Med. 38, 297–306 (2005).

    CAS  PubMed  Google Scholar 

  92. 92

    Szabó C. Multiple pathways of peroxynitrite cytotoxicity. Toxicol. Lett. 140141, 105–112 (2003).

    PubMed  Google Scholar 

  93. 93

    Radi, R., Cassina, A., Hodara, R., Quijano, C. & Castro, L. Peroxynitrite reactions and formation in mitochondria. Free Radic. Biol. Med. 33, 1451–1464 (2002).

    CAS  PubMed  Google Scholar 

  94. 94

    Quijano, C., Cassina, A., Castro, L., Rodriguez, M. & Radi, R. in Nitric Oxide, Cell Signaling and Gene Expression (eds Lamas, S. & Cadenas, E.) (CRC, Boca Raton, 2005).

    Google Scholar 

  95. 95

    Ghafourifar, P. & Cadenas, E. Mitochondrial NO synthase. Trends Pharmacol. Sci. 26, 190–195 (2005).

    CAS  PubMed  Google Scholar 

  96. 96

    Lacza, Z. et al. Mitochondrial NO and reactive nitrogen species production: does mtNOS exist? Nitric Oxide 14, 162–168 (2006).

    CAS  PubMed  Google Scholar 

  97. 97

    Lacza, Z. et al. Mitochondria produce reactive nitrogen species via an arginine-independent pathway. Free Radic. Res. 40, 369–378 (2006).

    CAS  PubMed  Google Scholar 

  98. 98

    Radi, R., Rodriguez, M., Castro, L. & Telleri, R. Inhibition of mitochondrial electron transport by peroxynitrite. Arch. Biochem. Biophys. 308, 89–95 (1994). An early report demonstrating the ability of peroxynitrite to promote mitochondrial dysfunction.

    CAS  PubMed  Google Scholar 

  99. 99

    Riobo, N. A. et al. NO inhibits mitochondrial NADH:ubiquinone reductase activity through peroxynitrite formation. Biochem. J. 359, 139–145 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. 100

    Boczkowski, J. et al. Peroxynitrite-mediated mitochondrial dysfunction. Biol. Signals Recept. 10, 66–80 (2001).

    CAS  PubMed  Google Scholar 

  101. 101

    Cassina, A. M. et al. Cytochrome c nitration by peroxynitrite. J. Biol. Chem. 275, 21409–21415 (2000).

    CAS  PubMed  Google Scholar 

  102. 102

    Batthyany, C. et al. Time course and site(s) of cytochrome c tyrosine nitration by peroxynitrite. Biochemistry 44, 8038–8046 (2005).

    CAS  PubMed  Google Scholar 

  103. 103

    Giulivi, C., Poderoso, J. J. & Boveris, A. Production of nitric oxide by mitochondria. J. Biol. Chem. 273, 11038–11043 (1998).

    CAS  PubMed  Google Scholar 

  104. 104

    MacMillan-Crow, L. A. et al. Nitration and inactivation of manganese superoxide dismutase in chronic rejection of human renal allografts. Proc. Natl Acad. Sci. USA 93, 11853–11858 (1996).

    CAS  PubMed  Google Scholar 

  105. 105

    Yamakura, F., Taka, H., Fujimura, T. & Murayama, K. Inactivation of human manganese-superoxide dismutase by peroxynitrite is caused by exclusive nitration of tyrosine 34 to 3-nitrotyrosine. J. Biol. Chem. 273, 14085–14089 (1998).

    CAS  PubMed  Google Scholar 

  106. 106

    Quijano, C. et al. Reaction of peroxynitrite with Mn-superoxide dismutase. Role of the metal center in decomposition kinetics and nitration. J. Biol. Chem. 276, 11631–11638 (2001).

    CAS  PubMed  Google Scholar 

  107. 107

    Virag, L. & Szabó, C. The therapeutic potential of poly(ADP-ribose) polymerase inhibitors. Pharmacol. Rev. 54, 375–429 (2002).

    CAS  PubMed  Google Scholar 

  108. 108

    Jagtap, P. & Szabó, C. Poly(ADP-ribose) polymerase and the therapeutic effects of its inhibitors. Nature Rev. Drug Discov. 4, 421–440 (2005).

    CAS  Google Scholar 

  109. 109

    Bolanos, J. P., Heales, S. J., Land, J. M. & Clark, J. B. Effect of peroxynitrite on the mitochondrial respiratory chain: differential susceptibility of neurones and astrocytes in primary culture. J. Neurochem. 64, 1965–1972 (1995).

    CAS  PubMed  Google Scholar 

  110. 110

    Szabó, C. & Salzman, A. L. Endogenous peroxynitrite is involved in the inhibition of cellular respiration in immuno-stimulated J774.2 macrophages. Biochem. Biophys. Res. Comm. 209, 739–743 (1995). An early report implying the role of endogenously produced peroxynitrite in inflammatory- and immune-mediated cell injury.

    PubMed  Google Scholar 

  111. 111

    Szabó, C., Zingarelli, B. & Salzman, A. L. Role of poly-ADP ribosyltransferase activation in the vascular contractile and energetic failure elicited by exogenous and endogenous NO and peroxynitrite. Circ. Res. 78, 1051–1063 (1996).

    PubMed  Google Scholar 

  112. 112

    Suzuki, Y. et al. Na+, K+-ATPase activity is inhibited in cultured intestinal epithelial cells by endotoxin or NO. Int. J. Mol. Med. 15, 871–877 (2005).

    CAS  PubMed  Google Scholar 

  113. 113

    Sacksteder C. A. et al. Endogenously nitrated proteins in mouse brain: links to neurodegenerative disease. Biochemistry 45, 8009–8022 (2006).

    CAS  PubMed  Google Scholar 

  114. 114

    Nin, N. et al. Septic diaphragmatic dysfunction is prevented by Mn(III)porphyrin therapy and inducible NO synthase inhibition. Int. Care Med. 30, 2271–2278 (2004).

    Google Scholar 

  115. 115

    Pacher, P., Beckman, J. S. & Liaudet, L. Nitric oxide and peroxynitrite in health and disease. Physiol. Rev. 87, 315–424 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. 116

    Balafanova, Z. et al. Nitric oxide (NO) induces nitration of protein kinase C epsilon (PKCε), facilitating PKCε translocation via enhanced PKCε-RACK2 interactions: a novel mechanism of no-triggered activation of PKCε. J Biol. Chem. 277, 15021–15027 (2002).

    CAS  PubMed  Google Scholar 

  117. 117

    Pehar, M. et al. Peroxynitrite transforms nerve growth factor into an apoptotic factor for motor neurons. Free Radic. Biol. Med. 41, 1632–1644 (2006).

    CAS  PubMed  Google Scholar 

  118. 118

    Lanone, S. et al. Inducible NO synthase (NOS2) expressed in septic patients is nitrated on selected tyrosine residues: implications for enzymic activity. Biochem. J. 366, 399–404 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. 119

    Zouki, C., Zhang, S. L., Chan, J. S. & Filep, J. G. Peroxynitrite induces integrin-dependent adhesion of human neutrophils to endothelial cells via activation of the Raf-1/MEK/Erk pathway. FASEB J. 15, 25–27 (2001).

    CAS  PubMed  Google Scholar 

  120. 120

    Landino, L. M., Crews, B. C., Timmons, M. D., Morrow, J. D. & Marnett, L. J. Peroxynitrite, the coupling product of nitric oxide and superoxide, activates prostaglandin biosynthesis. Proc. Natl Acad. Sci. USA 93, 15069–15074 (1996).

    CAS  PubMed  Google Scholar 

  121. 121

    Trostchansky, A. et al. Interactions between nitric oxide and peroxynitrite during prostaglandin endoperoxide H synthase-1 catalysis: a free radical mechanism of inactivation. Free Radic. Biol. Med. 42, 1029–1038 (2007).

    CAS  PubMed  Google Scholar 

  122. 122

    Ito, K., Hanazawa, T., Tomita, K., Barnes, P. J. & Adcock, I. M. Oxidative stress reduces histone deacetylase 2 activity and enhances IL-8 gene expression: role of tyrosine nitration. Biochem. Biophys. Res. Commun. 315, 240–245 (2004).

    CAS  PubMed  Google Scholar 

  123. 123

    Levonen, A. L. et al. Mechanisms of cell signaling by NO and peroxynitrite: from mitochondria to MAP kinases. Antioxid. Redox Signal. 3, 215–229 (2001).

    CAS  PubMed  Google Scholar 

  124. 124

    Sohn, H. Y. et al. Crucial role of local peroxynitrite formation in neutrophil-induced endothelial cell activation. Cardiovasc. Res. 57, 804–815 (2003).

    CAS  PubMed  Google Scholar 

  125. 125

    Kerry, N. & Rice-Evans, C. Peroxynitrite oxidises catechols to o-quinones. FEBS Lett. 437, 167–171 (1998).

    CAS  PubMed  Google Scholar 

  126. 126

    Macarthur, H., Westfall, T. C., Riley, D. P., Misko, T. P. & Salvemini, D. Inactivation of catecholamines by superoxide gives new insights on the pathogenesis of septic shock. Proc. Natl Acad. Sci. USA 97, 9753–9758 (2000).

    CAS  PubMed  Google Scholar 

  127. 127

    Heijnen, H. F. G. et al. Subcellular localization of tyrosine-nitrated proteins is dictated by reactive oxygen species generating enzymes and by proximity to nitric oxide synthase. Free Radic. Biol. Med. 40, 1903–1913 (2006).

    CAS  PubMed  Google Scholar 

  128. 128

    Fries, D. M. et al. Expression of inducible nitric oxide synthase and intracellular protein tyrosine nitration in vascular smooth muscle cells: role of reactive oxygen species. J. Biol. Chem. 278, 22901–22907 (2003).

    CAS  PubMed  Google Scholar 

  129. 129

    Giasson, B. I. et al., Oxidative damage linked to neurodegeneration by selective α-synuclein nitration in synucleinopathy lesions. Science 290, 985–989 (2000).

    CAS  PubMed  Google Scholar 

  130. 130

    Birnboim, H. C., Lemay, A. M., Lam, D. K., Goldstein, R. & Webb, J. R. MHC class II-restricted peptides containing the inflammation-associated marker 3-nitrotyrosine evade central tolerance and elicit a robust cell-mediated immune response. J. Immunol. 171, 528–532 (2003).

    CAS  PubMed  Google Scholar 

  131. 131

    Herzog, J., Maekawa, Y., Cirrito, T. P., Illian, B. S. & Unanue, E. R. Activated antigen-presenting cells select and present chemically modified peptides recognized by unique CD4 T cells. Proc. Natl Acad. Sci. USA 102, 7928–7933 (2005).

    CAS  PubMed  Google Scholar 

  132. 132

    Salvemini, D., Doyle, T. M. & Cuzzocrea, S. Superoxide, peroxynitrite and oxidative/nitrative stress in inflammation. Biochem. Soc. Trans. 34, 965–970 (2006).

    CAS  PubMed  Google Scholar 

  133. 133

    Altug, S. et al. Biological time-dependent difference in effect of peroxynitrite demonstrated by the mouse hot plate pain model. Chronobiol. Int. 23, 583–591 (2006).

    CAS  PubMed  Google Scholar 

  134. 134

    Khattab, M. M. Tempol, a membrane-permeable radical scavenger, attenuates peroxynitrite- and superoxide anion-enhanced carrageenan-induced paw edema and hyperalgesia: a key role for superoxide anion. Eur. J. Pharmacol. 548, 167–173 (2006).

    CAS  PubMed  Google Scholar 

  135. 135

    Bezerra, M. M. et al. Neutrophils-derived peroxynitrite contributes to acute hyperalgesia and cell influx in zymosan arthritis. Naunyn Schmiedebergs Arch. Pharmacol. 374, 265–273 (2007).

    CAS  PubMed  Google Scholar 

  136. 136

    Wang, Z. Q. et al. A newly identified role for superoxide in inflammatory pain. J. Pharmacol. Exp. Ther. 309, 869–878 (2004).

    CAS  PubMed  Google Scholar 

  137. 137

    Hooper, D. C. et al. The central nervous system inflammatory response to neurotropic virus infection is peroxynitrite dependent. J. Immunol. 167, 3470–3477 (2001).

    CAS  PubMed  Google Scholar 

  138. 138

    Padalko, E. Peroxynitrite inhibition of Coxsackievirus infection by prevention of viral RNA entry. Proc. Natl Acad. Sci. USA 101, 11731–11736 (2004).

    CAS  PubMed  Google Scholar 

  139. 139

    Virag, L., Szabó, E., Gergely, P. & Szabó, C. Peroxynitrite-induced cytotoxicity: mechanism and opportunities for intervention. Toxicol. Lett. 140141, 113–124 (2003).

    PubMed  Google Scholar 

  140. 140

    Virag, L., Marmer, D. J. & Szabó, C. Crucial role of apopain in the peroxynitrite-induced apoptotic DNA fragmentation. Free Radic. Biol. Med. 25, 1075–1082 (1998).

    CAS  PubMed  Google Scholar 

  141. 141

    Zhuang, S. & Simon, G. Peroxynitrite-induced apoptosis involves activation of multiple caspases in HL-60 cells. Am. J. Physiol. Cell Physiol. 279, C341–C351 (2000).

    CAS  PubMed  Google Scholar 

  142. 142

    Vicente, S. et al. NO and peroxynitrite induce cellular death in bovine chromaffin cells: evidence for a mixed necrotic and apoptotic mechanism with caspases activation. J. Neurosci. Res. 84, 78–96 (2006).

    CAS  PubMed  Google Scholar 

  143. 143

    Borutaite, V., Morkuniene, R. & Brown, G. C. Release of cytochrome c from heart mitochondria is induced by high Ca2+ and peroxynitrite and is responsible for Ca(2+)-induced inhibition of substrate oxidation. Biochim. Biophys. Acta 1453, 41–48 (1999).

    CAS  PubMed  Google Scholar 

  144. 144

    Richter, C., Schweizer, M. & Ghafourifar P. Mitochondria, NO, and peroxynitrite. Methods Enzymol. 301, 381–393 (1999).

    CAS  PubMed  Google Scholar 

  145. 145

    Estevez, E. et al. Nitric oxide and superoxide contribute to motor neuron apoptosis induced by trophic factor deprivation. J. Neurosci. 18, 923–931 (1998).

    CAS  PubMed  Google Scholar 

  146. 146

    Virag, L. et al. Requirement of intracellular calcium mobilization for peroxynitrite-induced poly(ADP-ribose) synthetase activation and cytotoxicity. Mol. Pharmacol. 56, 824–833 (1999).

    CAS  PubMed  Google Scholar 

  147. 147

    Dickhout, J. G. et al. Peroxynitrite causes endoplasmic reticulum stress and apoptosis in human vascular endothelium: implications in atherogenesis. Arterioscler. Thromb. Vasc. Biol. 25, 2623–2629 (2005).

    CAS  PubMed  Google Scholar 

  148. 148

    Redondo, P. C. et al. Hydrogen peroxide and peroxynitrite enhance Ca2+ mobilization and aggregation in platelets from type 2 diabetic patients. Biochem. Biophys. Res. Commun. 333, 794–802 (2005).

    CAS  PubMed  Google Scholar 

  149. 149

    Whiteman, M. et al. Peroxynitrite mediates calcium-dependent mitochondrial dysfunction and cell death via activation of calpains. FASEB J. 18, 1395–1397 (2004).

    CAS  PubMed  Google Scholar 

  150. 150

    Cantoni, O. et al. Survival pathways triggered by peroxynitrite in cells belonging to the monocyte/macrophage lineage. Comp. Biochem. Physiol. A. Mol. Integr. Physiol. 14, 118–123 (2005).

    Google Scholar 

  151. 151

    Zhang, X. et al. Intranuclear localization of apoptosis-inducing factor (AIF) and large scale DNA fragmentation after traumatic brain injury in rats and in neuronal cultures exposed to peroxynitrite. J. Neurochem. 82, 181–191 (2002).

    CAS  PubMed  Google Scholar 

  152. 152

    Dawson, V. L. & Dawson, T. M. Deadly conversations: nuclear-mitochondrial cross-talk. J. Bioenerg. Biomembr. 36, 287–294 (2004).

    CAS  PubMed  Google Scholar 

  153. 153

    Beller, C. J. et al. Activation of the peroxynitrite-poly(adenosine diphosphate-ribose) polymerase pathway during neointima proliferation: a new target to prevent restenosis after endarterectomy. J. Vasc. Surg. 43, 824–830 (2006).

    PubMed  Google Scholar 

  154. 154

    Tao, L. et al. Nitrative inactivation of thioredoxin-1 and its role in postischemic myocardial apoptosis. Circulation 114, 1395–1402 (2006).

    CAS  PubMed  Google Scholar 

  155. 155

    Sappington, P. L. et al. HMGB1 B box increases the permeability of Caco-2 enterocytic monolayers and impairs intestinal barrier function in mice. Gastroenterology 123, 790–802 (2002).

    CAS  PubMed  Google Scholar 

  156. 156

    Ulloa, L. & Messmer, D. High-mobility group box 1 (HMGB1) protein: friend and foe. Cytokine Growth Factor Rev. 17, 189–201 (2006).

    CAS  PubMed  Google Scholar 

  157. 157

    Dixit, K. & Moinuddin, A. A. Immunological studies on peroxynitrite modified human DNA. Life Sci. 77, 2626–2642 (2005).

    CAS  PubMed  Google Scholar 

  158. 158

    Ohmori, H. & Kanayama, N. Immunogenicity of an inflammation-associated product, tyrosine nitrated self-proteins. Autoimmun. Rev. 4, 224–229 (2005).

    CAS  PubMed  Google Scholar 

  159. 159

    Radi, R., Denicola, A., Alvarez, B., Ferrer-Sueta, G. & Rubbo, H. in Nitric Oxide: Biology and Pathobiology Ch.4 (ed. Ignarro, L. J.) 57–82 (Academic Press, San Diego, 2000).

    Google Scholar 

  160. 160

    Bryk, R., Griffin, P. & Nathan, C. Peroxynitrite reductase activity of bacterial peroxiredoxins. Nature 407, 211–215 (2000).

    CAS  PubMed  Google Scholar 

  161. 161

    Trujillo, M. et al. Trypanosoma brucei and Trypanosoma cruzi tryparedoxin peroxidases catalytically detoxify peroxynitrite via oxidation of fast reacting thiols. J. Biol. Chem. 279, 34175–34182 (2004).

    CAS  PubMed  Google Scholar 

  162. 162

    Dubuisson, M. et al. Human peroxiredoxin 5 is a peroxynitrite reductase. FEBS Lett. 571, 161–165 (2004).

    CAS  PubMed  Google Scholar 

  163. 163

    Rhee, S. G., Chae, H. Z. & Kim, K. Peroxiredoxins: a historical overview and speculative preview of novel mechanisms and emerging concepts in cell signaling. Free Radic. Biol. Med. 38, 1543–1552 (2005).

    CAS  PubMed  Google Scholar 

  164. 164

    Kooy, N. W., Royall, J. A., Ischiropoulos, H. & Beckman, J. S. Peroxynitrite-mediated oxidation of dihydrorhodamine 123. Free Radic. Biol. Med. 16, 149–156 (1994). The first article describing the ability of urate to attenuate peroxynitrite-induced oxidative reactions in vitro.

    CAS  PubMed  Google Scholar 

  165. 165

    Whiteman, M., Ketsawatsakul, U. & Halliwell, B. A reassessment of the peroxynitrite scavenging activity of uric acid. Ann. N. Y. Acad. Sci. 962, 242–259 (2002).

    CAS  PubMed  Google Scholar 

  166. 166

    Scott, G. S. et al. Therapeutic intervention in experimental allergic encephalomyelitis by administration of uric acid precursors. Proc. Natl Acad. Sci. USA. 99 16303–16308 (2002).

    CAS  PubMed  Google Scholar 

  167. 167

    Robinson, K. M., Morre, J. T. & Beckman, J. S. Triuret: a novel product of peroxynitrite-mediated oxidation of urate. Arch. Biochem. Biophys. 423, 213–217 (2004).

    CAS  PubMed  Google Scholar 

  168. 168

    Scott, G. S. et al. Uric acid protects against secondary damage after spinal cord injury. Proc. Natl Acad. Sci. USA 102, 3483–3488 (2005).

    CAS  PubMed  Google Scholar 

  169. 169

    Szabó, C. et al. Mercaptoethylguanidine and guanidine inhibitors of nitric-oxide synthase react with peroxynitrite and protect against peroxynitrite-induced oxidative damage. J. Biol. Chem. 272, 9030–9036 (1997). The characterization of mercaptoalkylguanidines as compounds of mixed pharmacological action: iNOS inhibition and peroxynitrite scavenging.

    PubMed  Google Scholar 

  170. 170

    Zingarelli, B., Ischiropoulos, H., Salzman, A. L. & Szabó, C. Amelioration by mercaptoethylguanidine of the vascular and energetic failure in haemorrhagic shock in the anesthetised rat. Eur. J. Pharmacol. 338, 55–65 (1997).

    CAS  PubMed  Google Scholar 

  171. 171

    Moochhala, S. M. et al. Mercaptoethylguanidine inhibition of inducible NO synthase and cyclooxygenase-2 expressions induced in rats after fluid-percussion brain injury. J. Trauma 59, 450–457 (2005).

    PubMed  Google Scholar 

  172. 172

    Ploner, F. et al. Effects of combined selective iNOS inhibition and peroxynitrite blockade during endotoxemia in pigs. Shock 16, 130–136 (2001).

    CAS  PubMed  Google Scholar 

  173. 173

    Lancel, S. et al. Peroxynitrite decomposition catalysts prevent myocardial dysfunction and inflammation in endotoxemic rats. J. Am. Coll. Cardiol. 43, 2348–2358 (2004).

    CAS  PubMed  Google Scholar 

  174. 174

    Klotz, L. O. & Sies, H. Defenses against peroxynitrite: selenocompounds and flavonoids. Toxicol. Lett. 140141, 125–132 (2003).

    PubMed  Google Scholar 

  175. 175

    Sugiura, H. et al. Role of peroxynitrite in airway microvascular hyperpermeability during late allergic phase in guinea pigs. Am. J. Respir. Crit. Care Med. 160, 663–671 (1999).

    CAS  PubMed  Google Scholar 

  176. 176

    Daiber, A., Zou, M. H., Bachschmid, M. & Ullrich, V. Ebselen as a peroxynitrite scavenger in vitro and ex vivo. Biochem. Pharmacol. 59, 153–160 (2000).

    CAS  PubMed  Google Scholar 

  177. 177

    Noiri, E. et al. Oxidative and nitrosative stress in acute renal ischemia. Am. J. Physiol. Renal Physiol. 281, F948–F957 (2001).

    CAS  PubMed  Google Scholar 

  178. 178

    Gealekman, O. et al. Endothelial dysfunction as a modifier of angiogenic response in Zucker diabetic fat rat: amelioration with ebselen. Kidney Int. 66, 2337–2347 (2004).

    CAS  PubMed  Google Scholar 

  179. 179

    Arteel, G. E., Briviba, K. & Sies, H. Protection against peroxynitrite. FEBS Lett. 445, 226–230 (1999).

    CAS  PubMed  Google Scholar 

  180. 180

    Parnham, M. & Sies, H. Ebselen: prospective therapy for cerebral ischaemia. Expert Opin. Investig. Drugs. 9, 607–619 (2000).

    CAS  PubMed  Google Scholar 

  181. 181

    Sies, H., Sharov, V. S., Klotz, L. O. & Briviba, K. Glutathione peroxidase protects against peroxynitrite-mediated oxidations. A new function for selenoproteins as peroxynitrite reductase. J. Biol. Chem. 272, 27812–24817 (1997).

    CAS  PubMed  Google Scholar 

  182. 182

    Arteel, G. E., Mostert, V., Oubrahim, H., Briviba, K., Abel, J. & Sies, H. Protection by selenoprotein P in human plasma against peroxynitrite-mediated oxidation and nitration. Biol. Chem. 379, 1201–1205 (1998).

    CAS  PubMed  Google Scholar 

  183. 183

    Briviba, K., Roussyn, I., Sharov, V. S. & Sies, H. Attenuation of oxidation and nitration reactions of peroxynitrite by selenomethionine, selenocystine and ebselen. Biochem. J. 319, 13–15 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. 184

    Jacob, C., Arteel, G. E., Kanda, T., Engman, L. & Sies, H. Sulfur, selenium, tellurium: protection by organotellurium compounds against peroxynitrite-mediated oxidation and nitration reactions. Biochem. Pharmacol. 55, 817–823 (1998).

    Google Scholar 

  185. 185

    Fernandes, D. C., Medinas, D. B., Alves, M. J. & Augusto, O. Tempol diverts peroxynitrite/carbon dioxide reactivity toward albumin and cells from protein-tyrosine nitration to protein-cysteine nitrosation. Free Radic. Biol. Med. 38, 189–200 (2005).

    CAS  PubMed  Google Scholar 

  186. 186

    Bonini, M. G., Mason, R. P. & Augusto, O. The mechanism by which 4-hydroxy-2,2,6,6-tetramethylpiperidene-1-oxyl (tempol) diverts peroxynitrite decomposition from nitrating to nitrosating species. Chem. Res. Toxicol. 15, 506–511 (2002).

    CAS  PubMed  Google Scholar 

  187. 187

    Thiemermann, C., McDonald, M. C. & Cuzzocrea, S. The stable nitroxide, tempol, attenuates the effects of peroxynitrite and oxygen-derived free radicals. Crit. Care Med. 29, 223–224 (2001).

    CAS  PubMed  Google Scholar 

  188. 188

    Cuzzocrea, S. et al. Effects of tempol, a membrane-permeable radical scavenger, in a gerbil model of brain injury. Brain Res. 875, 96–106 (2000).

    CAS  PubMed  Google Scholar 

  189. 189

    Sepodes, B. et al. Tempol, an intracelullar free radical scavenger, reduces liver injury in hepatic ischemia-reperfusion in the rat. Transplant Proc. 36, 849–853 (2004).

    CAS  PubMed  Google Scholar 

  190. 190

    Isobe, C. et al. Cabergoline scavenges peroxynitrite enhanced by L-DOPA therapy in patients with Parkinson's disease. Eur. J. Neurol. 13, 346–350 (2006).

    CAS  PubMed  Google Scholar 

  191. 191

    Rork, T. H., Hadzimichalis, N. M., Kappil, M. A. & Merrill, G. F. Acetaminophen attenuates peroxynitrite-activated matrix metalloproteinase-2-mediated troponin I cleavage in the isolated guinea pig myocardium. J. Mol. Cell. Cardiol. 40, 553–561 (2006).

    CAS  PubMed  Google Scholar 

  192. 192

    Mason, R. P., Kalinowski, L., Jacob, R. F., Jacoby, A. M. & Malinski, T. Nebivolol reduces nitroxidative stress and restores NO bioavailability in endothelium of black Americans. Circulation 112, 3795–3801 (2005).

    CAS  PubMed  Google Scholar 

  193. 193

    Daiber, A. et al. Hydralazine is a powerful inhibitor of peroxynitrite formation as a possible explanation for its beneficial effects on prognosis in patients with congestive heart failure. Biochem. Biophys. Res. Commun. 338, 1865–1874 (2005).

    CAS  PubMed  Google Scholar 

  194. 194

    Fernandes, E., Gomes, A., Costa, D. & Lima, J. L. Pindolol is a potent scavenger of reactive nitrogen species. Life Sci. 77, 1983–1992 (2005).

    CAS  PubMed  Google Scholar 

  195. 195

    Coffey, M. J., Phare, S. M. & Peters-Golden, M. Peroxynitrite-induced nitrotyrosination of proteins is blocked by direct 5-lipoxygenase inhibitor zileuton. J. Pharmacol. Exp. Ther. 299, 198–203 (2001).

    CAS  PubMed  Google Scholar 

  196. 196

    Cabassi, A. et al. Effects of chronic N-acetylcysteine treatment on the actions of peroxynitrite on aortic vascular reactivity in hypertensive rats. J. Hypertens. 19, 1233–1244 (2001).

    CAS  PubMed  Google Scholar 

  197. 197

    Althaus, J. S. et al. Structure activity relationships of peroxynitrite scavengers an approach to NO neurotoxicity. Res. Commun. Chem. Pathol. Pharmacol. 83, 243–254 (1994).

    CAS  PubMed  Google Scholar 

  198. 198

    Selley, M. L. Simvastatin prevents 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced striatal dopamine depletion and protein tyrosine nitration in mice. Brain Res. 1037, 1–6 (2005).

    CAS  PubMed  Google Scholar 

  199. 199

    Banno, M. et al. The radical scavenger edaravone prevents oxidative neurotoxicity induced by peroxynitrite and activated microglia. Neuropharmacology 48, 283–290 (2005).

    CAS  PubMed  Google Scholar 

  200. 200

    Acquaviva, R. et al. Propofol attenuates peroxynitrite-mediated DNA damage and apoptosis in cultured astrocytes: an alternative protective mechanism. Anesthesiology 101, 1363–1371 (2004).

    CAS  PubMed  Google Scholar 

  201. 201

    Trujillo, M. et al. Peroxynitrite-derived carbonate and nitrogen dioxide radicals readily react with lipoic and dihydrolipoic acid. Free Radic. Biol. Med. 39, 279–288 (2005).

    CAS  PubMed  Google Scholar 

  202. 202

    Lee, C. S. et al. Effect of R-(-)-deprenyl and harmaline on dopamine- and peroxynitrite-induced membrane permeability transition in brain mitochondria. Neurochem. Res. 27, 215–224 (2002).

    CAS  PubMed  Google Scholar 

  203. 203

    Maruyama, W., Takahashi, T., Youdim, M. & Naoi, M. The anti-Parkinson drug, rasagiline, prevents apoptotic DNA damage induced by peroxynitrite in human dopaminergic neuroblastoma SH-SY5Y cells. J. Neural Transm. 109, 467–481 (2002).

    CAS  PubMed  Google Scholar 

  204. 204

    Lopez-Alarcon, C. et al. Reactivity of 1,4-dihydropyridines toward SIN-1-derived peroxynitrite. Pharm. Res. 21, 1750–1757 (2004).

    CAS  PubMed  Google Scholar 

  205. 205

    Bartesaghi, S. et al. Reactions of desferrioxamine with peroxynitrite-derived carbonate and nitrogen dioxide radicals. Free Radic. Biol. Med. 36, 471–483 (2004).

    CAS  PubMed  Google Scholar 

  206. 206

    Oury, T. D. et al., Cold-induced brain edema in mice. Involvement of extracellular superoxide dismutase and NO. J. Biol. Chem. 268, 15394–15398 (1993).

    CAS  PubMed  Google Scholar 

  207. 207

    Ye, Y. et al. Prevention of peroxynitrite-induced apoptosis of motor neurons and pc12 cells by tyrosine-containing peptides. J. Biol. Chem. 282, 6324–6337 (2007).

    CAS  PubMed  Google Scholar 

  208. 208

    Panasenko, O. M., Sharov, V. S., Briviba, K. & Sies, H. Interaction of peroxynitrite with carotenoids in human low density lipoproteins. Arch. Biochem. Biophys. 373, 302–305 (2000).

    CAS  PubMed  Google Scholar 

  209. 209

    Arteel, G. E. & Sies, H. Protection against peroxynitrite by cocoa polyphenol oligomers. FEBS Lett. 462, 167–170 (1999).

    CAS  PubMed  Google Scholar 

  210. 210

    Schroeder, P., Klotz, L. O. & Sies, H. Amphiphilic properties of (-)-epicatechin and their significance for protection of cells against peroxynitrite. Biochem. Biophys. Res. Commun. 307, 69–73 (2003).

    CAS  PubMed  Google Scholar 

  211. 211

    Ferrer-Sueta, G., Quijano, C., Alvarez, B. & Radi, R. Reactions of manganese porphyrins and manganese-superoxide dismutase with peroxynitrite. Methods Enzymol. 349, 23–37 (2002).

    CAS  PubMed  Google Scholar 

  212. 212

    Stern, M. K., Jensen, M. P. & Kramer, K. Peroxynitrite decomposition catalysts. J. Am. Chem. Soc. 118, 8735–8736 (1996). The first paper on the synthesis and initial characterization of a peroxynitrite decomposition catalyst ferro-porphyrinic compound.

    CAS  Google Scholar 

  213. 213

    Jensen, M. P. & Riley, D. P. Peroxynitrite decomposition activity of iron porphyrin complexes. Inorg. Chem. 41, 4788–4797 (2002).

    CAS  PubMed  Google Scholar 

  214. 214

    Shimanovich, R. & Groves, J. T. Mechanisms of peroxynitrite decomposition catalyzed by FeTMPS, a bioactive sulfonated iron porphyrin. Arch. Biochem. Biophys. 387, 307–317 (2001).

    CAS  PubMed  Google Scholar 

  215. 215

    Salvemini, D. et al. Evidence of peroxynitrite involvement in the carrageenan-induced rat paw edema. Eur. J. Pharmacol. 303, 217–220 (1996).

    CAS  PubMed  Google Scholar 

  216. 216

    Salvemini, D., Wang, Z. Q., Stern, M. K., Currie, M. G. & Misko, T. P. Peroxynitrite decomposition catalysts: therapeutics for peroxynitrite-mediated pathology. Proc. Natl Acad. Sci. USA 95, 2659–2663 (1998). An initial characterization of the pharmacological effect of molecules designed to catalytically neutralize peroxynitrite.

    CAS  PubMed  Google Scholar 

  217. 217

    Cross, A. H. et al. A catalyst of peroxynitrite decomposition inhibits murine experimental autoimmune encephalomyelitis. J. Neuroimmunol. 107, 21–28 (2001).

    Google Scholar 

  218. 218

    Muscoli, C. et al. Peroxynitrite decomposition catalyst prevents apoptotic cell death in a human astrocytoma cell line incubated with supernatants of HIV-infected macrophages. BMC Neurosci. 3, 13 (2002).

    PubMed  PubMed Central  Google Scholar 

  219. 219

    Cuzzocrea, S. et al. Beneficial effects of peroxynitrite decomposition catalyst in a rat model of splanchnic artery occlusion and reperfusion. FASEB J. 14, 1061–1072 (2000).

    CAS  PubMed  Google Scholar 

  220. 220

    Thiyagarajan, M., Kaul, C. L. & Sharma, S. S. Neuroprotective efficacy and therapeutic time window of peroxynitrite decomposition catalysts in focal cerebral ischemia in rats. Br. J. Pharmacol. 142, 899–911 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  221. 221

    Sharma, S. S., Munusamy, S., Thiyagarajan, M. & Kaul, C. L. Neuroprotective effect of peroxynitrite decomposition catalyst and poly(adenosine diphosphate-ribose) polymerase inhibitor alone and in combination in rats with focal cerebral ischemia. J. Neurosurg. 101, 669–675 (2004).

    CAS  PubMed  Google Scholar 

  222. 222

    Xie, Z. et al. Peroxynitrite mediates neurotoxicity of amyloid β-peptide1–42- and lipopolysaccharide-activated microglia. J. Neurosci. 22, 3484–3492 (2002).

    CAS  PubMed  Google Scholar 

  223. 223

    Mander, P. & Brown, G. C. Activation of microglial NADPH oxidase is synergistic with glial iNOS expression in inducing neuronal death: a dual-key mechanism of inflammatory neurodegeneration. J. Neuroinflammation 22, 20 (2005).

    Google Scholar 

  224. 224

    Tan, K. H., Harrington, S., Purcell, W. M. & Hurst, R. D. Peroxynitrite mediates NO-induced blood–brain barrier damage. Neurochem. Res. 29, 579–587 (2004).

    CAS  PubMed  Google Scholar 

  225. 225

    Ferdinandy, P., Danial, H. Ambrus, I., Rothery, R. A. & Schulz, R. Peroxynitrite is a major contributor to cytokine-induced myocardial contractile failure. Circ. Res. 87, 241–247 (2000).

    CAS  PubMed  Google Scholar 

  226. 226

    Kim, J. Y., Lee, K. H., Lee, B. K. & Ro, J. Y. Peroxynitrite modulates release of inflammatory mediators from guinea pig lung mast cells activated by antigen–antibody reaction. Int. Arch. Allergy Immunol. 137, 104–114 (2005).

    CAS  PubMed  Google Scholar 

  227. 227

    Beauchamp, M. H. et al. Redox-dependent effects of NO on microvascular integrity in oxygen-induced retinopathy. Free Radic. Biol. Med. 37, 1885–1894 (2004).

    CAS  PubMed  Google Scholar 

  228. 228

    Chirino, Y. I., Hernandez-Pando, R. & Pedraza-Chaverri, J. Peroxynitrite decomposition catalyst ameliorates renal damage and protein nitration in cisplatin-induced nephrotoxicity in rats. BMC Pharmacol. 4, 20 (2004).

    PubMed  PubMed Central  Google Scholar 

  229. 229

    Nangle, M. R., Cotter, M. A. & Cameron, N. E. Effects of the peroxynitrite decomposition catalyst, FeTMPyP, on function of corpus cavernosum from diabetic mice. Eur. J. Pharmacol. 502, 143–148 (2004).

    CAS  PubMed  Google Scholar 

  230. 230

    Cuzzocrea, S. et al. A role for NO-mediated peroxynitrite formation in a model of endotoxin induced shock. J. Pharmacol. Exp. Ther. 319, 73–81 (2006).

    CAS  PubMed  Google Scholar 

  231. 231

    Szabó, C. et al. Pathogenetic role of peroxynitrite in the development of diabetes and diabetic vascular complications: studies with FP15, a novel potent peroxynitrite decomposition catalyst. Mol. Med. 8, 571–580 (2002). A description of an iron-porphyrinic peroxynitrite decomposition calalyst: anti-inflammatory effects in vivo.

    PubMed  PubMed Central  Google Scholar 

  232. 232

    Tauskela, J. S. et al. Competing approaches to excitotoxic neuroprotection by inert and catalytic antioxidant porphyrins. Neurosci. Lett. 401, 236–241 (2006).

    CAS  PubMed  Google Scholar 

  233. 233

    Obrosova, I. G. et al. Role for nitrosative stress in diabetic neuropathy: evidence from studies with a peroxynitrite decomposition catalyst. FASEB J. 19, 401–403 (2005).

    CAS  PubMed  Google Scholar 

  234. 234

    Sugawara, R. et al. Peroxynitrite decomposition catalyst, FP15, and poly(ADP-ribose) polymerase inhibitor, PJ34, inhibit leukocyte entrapment in the retinal microcirculation of diabetic rats. Curr. Eye Res. 29, 11–16 (2004).

    CAS  PubMed  Google Scholar 

  235. 235

    Bianchi, C. et al. A novel peroxynitrite decomposer catalyst (FP-15) reduces myocardial infarct size in an in vivo peroxynitrite decomposer and acute ischemia-reperfusion in pigs. Ann. Thorac. Surg. 74, 1201–1207 (2002).

    PubMed  Google Scholar 

  236. 236

    Pacher, P. et al. Potent metalloporphyrin peroxynitrite decomposition catalyst protects against the development of doxorubicin-induced cardiac dysfunction. Circulation 107, 896–904 (2003).

    CAS  PubMed  Google Scholar 

  237. 237

    Naidu, B. V. et al. Enhanced peroxynitrite decomposition protects against experimental obliterative bronchiolitis. Exp. Mol. Pathol. 75, 12–17 (2003).

    CAS  PubMed  Google Scholar 

  238. 238

    Lacza, Z. et al. PARP inhibition improves the effectiveness of neural stem cell transplantation in experimental brain trauma. Int. J. Mol. Med. 12, 153–159 (2003).

    CAS  PubMed  Google Scholar 

  239. 239

    Naidu, B. V. et al. Critical role of reactive nitrogen species in lung ischemia-reperfusion injury. J. Heart Lung Transplant. 22, 784–793 (2003).

    PubMed  Google Scholar 

  240. 240

    Mabley, J. G. et al. Suppression of intestinal polyposis in Apcmin/+ mice by targeting the NO or poly(ADP-ribose) pathways. Mutat. Res. 548, 107–116 (2004).

    CAS  PubMed  Google Scholar 

  241. 241

    Mabley, J. G. et al. Beneficial effects of the peroxynitrite decomposition catalyst FP15 in murine models of arthritis and colitis. Mol. Med. 8, 581–590 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  242. 242

    Pieper, G. M. et al. Protective mechanisms of a metalloporphyrinic peroxynitrite decomposition catalyst, WW85, in rat cardiac transplants. J. Pharmacol. Exp. Ther. 314, 53–60 (2005).

    CAS  PubMed  Google Scholar 

  243. 243

    Mangino, M. J. et al. Role of peroxynitrite anion in renal hypothermic preservation injury. Transplantation 80, 1455–1460 (2005).

    PubMed  Google Scholar 

  244. 244

    Szabó, C., Day, B. J. & Salzman, A. L. Evaluation of the relative contribution of NO and peroxynitrite to the suppression of mitochondrial respiration in immunostimulated macrophages using a manganese mesoporphyrin superoxide dismutase mimetic and peroxynitrite scavenger. FEBS Lett. 381, 82–86 (1996).

    PubMed  Google Scholar 

  245. 245

    Zingarelli, B., Day, B. J., Crapo, J. D., Salzman, A. L. & Szabó, C. The potential role of peroxynitrite in the vascular contractile and cellular energetic failure in endotoxic shock. Br. J. Pharmacol. 120, 259–267 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  246. 246

    Cuzzocrea, S., Zingarelli, B., Costantino, G. & Caputi, A. P. Beneficial effects of Mn(III)tetrakis (4-benzoic acid) porphyrin (MnTBAP), a superoxide dismutase mimetic, in carrageenan-induced pleurisy. Free Radic. Biol. Med. 26, 25–33 (1999).

    CAS  PubMed  Google Scholar 

  247. 247

    Kastenbauer, S., Koedel, U., Becker, B. F. & Pfister, H. W. Pneumococcal meningitis in the rat: evaluation of peroxynitrite scavengers for adjunctive therapy. Eur. J. Pharmacol. 449, 177–181 (2002).

    CAS  PubMed  Google Scholar 

  248. 248

    Liu, D., Bao, F., Prough, D. S. & Dewitt, D. S. Peroxynitrite generated at the level produced by spinal cord injury induces peroxidation of membrane phospholipids in normal rat cord: reduction by a metalloporphyrin. J. Neurotrauma. 22, 1123–1133 (2005).

    CAS  PubMed  Google Scholar 

  249. 249

    Ferrer-Sueta, G. et al. Reactions of manganese porphyrins with peroxynitrite and carbonate radical anion. J. Biol. Chem. 278, 27432–27438 (2003). A detailed biochemical characterization of the peroxynitrite/manganese porphyrin interactions.

    CAS  PubMed  Google Scholar 

  250. 250

    Trostchansky, A. et al. Peroxynitrite flux-mediated LDL oxidation is inhibited by manganese porphyrins in the presence of uric acid. Free Radic. Biol. Med. 35, 1293–1300 (2003).

    CAS  PubMed  Google Scholar 

  251. 251

    Crow, J. P. Peroxynitrite scavenging by metalloporphyrins and thiolates. Free Radic. Biol. Med. 28, 1487–1494 (2000).

    CAS  PubMed  Google Scholar 

  252. 252

    Ferrer-Sueta, G., Hannibal, L., Batinic-Haberle, I. & Radi, R. Reduction of manganese porphyrins by flavoenzymes and submitochondrial particles: a catalytic cycle for the reduction of peroxynitrite. Free Radic. Biol. Med. 41, 503–512 (2006).

    CAS  PubMed  Google Scholar 

  253. 253

    Faulkner, K. M., Liochev, S. I. & Fridovich, I. Stable Mn(III) porphyrins mimic superoxide dismutase in vitro and substitute for it in vivo. J. Biol. Chem. 269, 23471–23476 (1994).

    CAS  PubMed  Google Scholar 

  254. 254

    Spasojevic, I. et al. Mn porphyrin-based SOD mimic, Mnte-2-Pyp5+, targets mouse heart mitochondria. Free Radic. Biol. Med. 42, 1193–1200 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  255. 255

    Batinic-Haberle, I., Benov, L., Spasojevic, I. & Fridovich, I. The ortho effect makes manganese(III) meso-tetrakis(N-methylpyridinium-2-yl)porphyrin a powerful and potentially useful superoxide dismutase mimic. J. Biol. Chem. 273, 24521–24528 (1998).

    CAS  PubMed  Google Scholar 

  256. 256

    Mackensen, G. B. et al. Neuroprotection from delayed postischemic administration of a metalloporphyrin catalytic antioxidant. J. Neurosci. 21, 4582–4592 (2001).

    CAS  PubMed  Google Scholar 

  257. 257

    Vujaskovic, Z. et al. A small molecular weight catalytic metalloporphyrin antioxidant with superoxide dismutase (SOD) mimetic properties protects lungs from radiation-induced injury. Free Radic. Biol. Med. 33, 857–863 (2002).

    CAS  PubMed  Google Scholar 

  258. 258

    Moeller, B. J. et al. A manganese porphyrin superoxide dismutase mimetic enhances tumor radioresponsiveness. Int. J. Radiat. Oncol. Biol. Phys. 63, 545–552 (2005).

    CAS  PubMed  Google Scholar 

  259. 259

    Orrell, R. W. AEOL-10150 (Aeolus). Curr. Opin. Investig. Drugs 7, 70–80 (2006). An overview of AEOL-10150, a manganese porphyrinic antioxidant with neuroprotective actions, entering a Phase I clinical trial.

    CAS  PubMed  Google Scholar 

  260. 260

    Sheng, H. et al. Effects of metalloporphyrin catalytic antioxidants in experimental brain ischemia. Free Radic. Biol. Med. 33, 947–961 (2002).

    CAS  PubMed  Google Scholar 

  261. 261

    Sheng, H., Spasojevic, I., Warner, D. S. & Batinic-Haberle, I. Mouse spinal cord compression injury is ameliorated by intrathecal cationic manganese(III) porphyrin catalytic antioxidant therapy. Neurosci. Lett. 366, 220–225 (2004).

    CAS  PubMed  Google Scholar 

  262. 262

    Crow, J. P., Calingasan, N. Y., Chen, J., Hill, J. L. & Beal, M. F. Manganese porphyrin given at symptom onset markedly extends survival of ALS mice. Ann. Neurol. 58, 258–265 (2005).

    CAS  PubMed  Google Scholar 

  263. 263

    Shimanovich, R. et al. Mn(II)-texaphyrin as a catalyst for the decomposition of peroxynitrite. J. Am. Chem. Soc. 123, 3613–3614 (2001).

    CAS  PubMed  Google Scholar 

  264. 264

    Sharpe, M. A., Ollosson, R., Stewart, V. C. & Clark, J. B. Oxidation of nitric oxide by oxomanganese-salen complexes: a new mechanism for cellular protection by superoxide dismutase/catalase mimetics. Biochem. J. 366, 97–107 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  265. 265

    Schepetkin, I. et al. Decomposition of reactive oxygen species by copper(II) bis(1-pyrazolyl)methane complexes. J. Biol. Inorg. Chem. 11, 499–513 (2006).

    CAS  PubMed  Google Scholar 

  266. 266

    Asayama, S., Kawamura, E., Nagaoka, S. & Kawakami, H. Design of manganese porphyrin modified with mitochondrial signal peptide for a new antioxidant. Mol. Pharm. 3, 468–470 (2006).

    CAS  PubMed  Google Scholar 

  267. 267

    Szabó, C., Salzman, A. L. & Ischiropoulos, H. Endotoxin triggers the expression of an inducible isoform of NO synthase and the formation of peroxynitrite in the rat aorta in vivo. FEBS Lett. 363, 235–238 (1995).

    PubMed  Google Scholar 

  268. 268

    Szabó, C., Salzman, A. L. & Ischiropoulos, H. Peroxynitrite-mediated oxidation of dihydrorhodamine 123 occurs in early stages of endotoxic and hemorrhagic shock and ischemia-reperfusion injury. FEBS Lett. 372, 229–232 (1995).

    PubMed  Google Scholar 

  269. 269

    Fukuyama, N. et al. Clinical evidence of peroxynitrite formation in chronic renal failure patients with septic shock. Free Radic. Biol. Med. 22, 771–774 (1997).

    CAS  PubMed  Google Scholar 

  270. 270

    Takakura, K., Xiaohong, W., Takeuchi, K., Yasuda, Y. & Fukuda, S. Deactivation of norepinephrine by peroxynitrite as a new pathogenesis in the hypotension of septic shock. Anesthesiology 98, 928–934 (2003).

    CAS  PubMed  Google Scholar 

  271. 271

    Delaney, C. A. et al. Sensitivity of human pancreatic islets to peroxynitrite-induced cell dysfunction and death. FEBS Lett. 394, 300–306 (1996).

    CAS  PubMed  Google Scholar 

  272. 272

    Suarez-Pinzon, W. L., Szabó, C. & Rabinovitch, A. Development of autoimmune diabetes in NOD mice is associated with the formation of peroxynitrite in pancreatic islet β-cells. Diabetes 46, 907–911 (1997).

    CAS  PubMed  Google Scholar 

  273. 273

    Suarez-Pinzon, W. L. et al. An inhibitor of inducible NO synthase and scavenger of peroxynitrite prevents diabetes development in NOD mice. J. Autoimmun. 16, 449–455 (2001).

    CAS  PubMed  Google Scholar 

  274. 274

    Bottino, R. et al. Preservation of human islet cell functional mass by anti-oxidative action of a novel SOD mimic compound. Diabetes 51, 2561–2567 (2002).

    CAS  PubMed  Google Scholar 

  275. 275

    Piganelli, J. D. et al. A metalloporphyrin-based superoxide dismutase mimic inhibits adoptive transfer of autoimmune diabetes by a diabetogenic T-cell clone. Diabetes 51, 347–355 (2002).

    CAS  PubMed  Google Scholar 

  276. 276

    Olcott, A. P. et al. A salen-manganese catalytic free radical scavenger inhibits type 1 diabetes and islet allograft rejection. Diabetes 53, 2574–2580 (2004).

    CAS  PubMed  Google Scholar 

  277. 277

    Del Guerra, S. et al. Functional and molecular defects of pancreatic islets in human type 2 diabetes. Diabetes 54, 727–735 (2005).

    CAS  PubMed  Google Scholar 

  278. 278

    Thuraisingham, R. C., Nott, C. A., Dodd, S. M. & Yaqoob, M. M. Increased nitrotyrosine staining in kidneys from patients with diabetic nephropathy. Kidney Int. 57, 1968–1972 (2000).

    CAS  PubMed  Google Scholar 

  279. 279

    Szabó, C. et al. Poly(ADP-Ribose) polymerase is activated in subjects at risk of developing type 2 diabetes and is associated with impaired vascular reactivity. Circulation 106, 2680–2686 (2002).

    PubMed  Google Scholar 

  280. 280

    Garcia Soriano, F. et al. Diabetic endothelial dysfunction: the role of poly(ADP-ribose) polymerase activation. Nature Med. 7, 108–113 (2001).

    CAS  PubMed  Google Scholar 

  281. 281

    Devaraj, S. et al. Increased monocytic activity and biomarkers of inflammation in patients with type 1 diabetes. Diabetes 55, 774–779 (2006).

    CAS  PubMed  Google Scholar 

  282. 282

    Pacher, P., Schulz, R., Liaudet, L. & Szabó, C. Nitrosative stress and pharmacological modulation of heart failure. Trends Pharmacol. Sci. 26, 302–310 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  283. 283

    Flesch, M. et al. Effects of endotoxin on human myocardial contractility involvement of NO and peroxynitrite. J. Am. Coll. Cardiol. 33, 1062–1070 (1996).

    Google Scholar 

  284. 284

    Lokuta, A. J. et al. Increased nitration of sarcoplasmic reticulum Ca2+-ATPase in human heart failure. Circulation 111, 988–995 (2005).

    CAS  PubMed  Google Scholar 

  285. 285

    Linke, A. et al. Antioxidative effects of exercise training in patients with chronic heart failure: increase in radical scavenger enzyme activity in skeletal muscle. Circulation 111, 1763–1770 (2005).

    CAS  PubMed  Google Scholar 

  286. 286

    Hunt, M. J. et al. Induction of oxidative stress and disintegrin metalloproteinase in human heart end-stage failure. Am. J. Physiol. Lung Cell. Mol. Physiol. 283, L239–L245 (2002).

    CAS  PubMed  Google Scholar 

  287. 287

    Stewart, V. C. & Heales, S. J. NO-induced mitochondrial dysfunction: implications for neurodegeneration. Free Radic. Biol. Med. 34, 287–303 (2003).

    CAS  PubMed  Google Scholar 

  288. 288

    Schulz, J. B., Matthews, R. T., Klockgether, T., Dichgans, J. & Beal, M. F. The role of mitochondrial dysfunction and neuronal NO in animal models of neurodegenerative diseases. Mol. Cell. Biochem. 174, 193–197 (1997).

    CAS  PubMed  Google Scholar 

  289. 289

    Torreilles, F., Salman-Tabcheh, S., Guerin, M. & Torreilles, J. Neurodegenerative disorders: the role of peroxynitrite. Brain Res. Brain Res. Rev. 30, 153–163 (1999).

    CAS  PubMed  Google Scholar 

  290. 290

    Liu, J. S., Zhao, M. L., Brosnan, C. F. & Lee, S. C. Expression of inducible NO synthase and nitrotyrosine in multiple sclerosis lesions. Am. J. Pathol. 158, 2057–2066 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  291. 291

    Mapp, P. I. et al. Localization of 3-nitrotyrosine to rheumatoid and normal synovium. Arthritis Rheum. 44, 1534–1539 (2001).

    CAS  PubMed  Google Scholar 

  292. 292

    Kimura, H. et al. Increased expression of an inducible isoform of NO synthase and the formation of peroxynitrite in colonic mucosa of patients with active ulcerative colitis. Gut 42, 180–187 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  293. 293

    Forster, C., Clark, H. B., Ross, M. E. & Iadecola, C. Inducible NO synthase expression in human cerebral infarcts. Acta Neuropathol. 97, 215–220 (1999).

    CAS  PubMed  Google Scholar 

  294. 294

    Baker, C. S. et al. Immunocytochemical evidence for inducible NO synthase and cyclooxygenase-2 expression with nitrotyrosine formation in human hibernating myocardium. Basic Res. Cardiol. 97, 409–415 (2002).

    CAS  PubMed  Google Scholar 

  295. 295

    Levrand, S. et al. Peroxynitrite is a major trigger of cardiomyocyte apoptosis in vitro and in vivo. Free Radic. Biol. Med. 41, 886–895 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  296. 296

    Greenacre, S. A. & Ischiropoulos, H. Tyrosine nitration: localisation, quantification, consequences for protein function and signal transduction. Free Radic. Res. 34, 541–581 (2001).

    CAS  PubMed  Google Scholar 

  297. 297

    Wu, A. S. et al. Iron porphyrin treatment extends survival in a transgenic animal model of amyotrophic lateral sclerosis. J. Neurochem. 85, 142–150 (2003).

    CAS  PubMed  Google Scholar 

  298. 298

    Yamaguchi, Y. et al. Peroxynitrite formation during rat hepatic allograft rejection. Hepatology 29, 777–784 (1999).

    CAS  PubMed  Google Scholar 

  299. 299

    Sakurai, M. et al. Quantitative analysis of cardiac 3-L-nitrotyrosine during acute allograft rejection in an experimental heart transplantation. Transplantation 68, 1818–1822 (1999).

    CAS  PubMed  Google Scholar 

  300. 300

    Van der Loo, B. et al. Enhanced peroxynitrite formation is associated with vascular aging. J. Exp Med. 192, 1731–1744 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  301. 301

    Xu, S. et al. Detection of sequence-specific tyrosine nitration of manganese SOD and SERCA in cardiovascular disease and aging. Am. J. Physiol. Heart Circ. Physiol. 290, H2220–H2226 (2006).

    CAS  PubMed  Google Scholar 

  302. 302

    Seo, A. Y. et al. Hepatic oxidative stress during aging: effects of 8% long-term calorie restriction and lifelong exercise. Antioxid. Redox Signal. 8, 529–538 (2006).

    CAS  PubMed  Google Scholar 

  303. 303

    Radovits, T. et al. The peroxynitrite decomposition catalyst FP15 improves ageing-associated cardiac and vascular dysfunction. Mech. Ageing Dev. 128, 173–181 (2007).

    CAS  PubMed  Google Scholar 

  304. 304

    Vadseth, C. et al. Pro-thrombotic state induced by post-translational modification of fibrinogen by reactive nitrogen species. J. Biol. Chem. 279, 8820–8826 (2004).

    CAS  PubMed  Google Scholar 

  305. 305

    Marcondes, S., Turko, I. V. & Murad, F. Nitration of succinyl-CoA:3-oxoacid CoA-transferase in rats after endotoxin administration. Proc. Natl Acad. Sci. USA 98, 7146–7151 (2001).

    CAS  PubMed  Google Scholar 

  306. 306

    Turko, I. V., Marcondes, S. & Murad, F. Diabetes-associated nitration of tyrosine and inactivation of succinyl-CoA:3-oxoacid CoA-transferase. Am. J. Physiol. Heart Circ. Physiol. 281, H2289–H2294 (2001).

    CAS  PubMed  Google Scholar 

  307. 307

    Lees, K. R. et al. Stroke-Acute Ischemic NXY Treatment (SAINT I) Trial Investigators. NXY-059 for acute ischemic stroke. N. Engl. J. Med. 354, 588–600 (2006).

    CAS  PubMed  Google Scholar 

  308. 308

    Cable, E. E., Gildemeister, O. S., Pepe, J. A., Lambrecht, R. W. & Bonkovsky, H. L. Mechanism of induction of heme oxygenase by metalloporphyrins in primary chick embryo liver cells: evidence against a stress-mediated response. Mol. Cell. Biochem. 169, 13–20 (1997).

    CAS  PubMed  Google Scholar 

  309. 309

    Bowler, R. P. et al. A catalytic antioxidant (AEOL 10150) attenuates expression of inflammatory genes in stroke. Free Radic. Biol. Med. 33, 1141–1152 (2002).

    CAS  PubMed  Google Scholar 

  310. 310

    Tumurkhuu, G. et al. MnTBAP, a synthetic metalloporphyrin, inhibits production of tumor necrosis factor-α in lipopolysaccharide-stimulated RAW 264.7 macrophages cells via inhibiting oxidative stress-mediating p38 and SAPK/JNK signaling. FEMS Immunol. Med. Microbiol. 49, 304–311 (2007).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank V. Valez and D. Vitturi (Universidad de la República, Uruguay) for their contribution to the artwork. We also thank G. Ferrer-Sueta (Universidad de la República, Uruguay) for useful discussions. This work was supported by the NIH R01 GM060915 grant and the Oscar Asboth Project Grant from the National Office of Research and Technology, Budapest, Hungary to C.S.; HL54926, AG13966, ES013508 NIEHS Center of Excellence in Environmental Toxicology grants to H.I.; and The Howard Hughes Medical Institute and the International Centre of Genetic Engineering and Biotechnology grant to R.R. H.I. is the Gisela and Dennis Alter Chair in Pediatric Neonatology at the Children's Hospital of Philadelphia. R.R. is a Howard Hughes International Research Scholar.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Csaba Szabó or Rafael Radi.

Ethics declarations

Competing interests

C.S. is a founder, stockholder and consultant to Inotek Pharmaceuticals Corporation, a pharmaceutical firm that is involved in the development of peroxynitrite decomposition catalysts.

Supplementary information

Supplementary information S1 (box)

Exposure of biological systems to peroxynitrite (PDF 109 kb)

Supplementary information S2 (box)

Practical aspects of working with peroxynitrite (PDF 107 kb)

Supplementary information S3 (box)

Peroxynitrite – a mediator of cell death (PDF 102 kb)

Related links

Related links

DATABASES

OMIM

Amyotrophic lateral sclerosis

Multiple sclerosis

Parkinson's disease

Glossary

Nitric oxide

The product of nitric oxide (NO) synthases, a family of proteins that catalyze the oxidation of the guanidine group of L-arginine to citrulline and NO.

Superoxide

The product of the one-electron reduction of molecular oxygen.

Transition metal centres

Complexes of biomolecules with transition metals such as iron, manganese or copper that can participate in redox chemistry.

Radical–radical termination

A reaction between two free radicals, which leads to a non-free radical adduct as a reaction product and therefore stops radical propagation reactions.

Homolytic fission

Rupture of a covalent bond in a molecule, in which the two resulting products keep one of the bond electrons (for example, A:B → A. + B.).

Tetrahydrobiopterin

A cofactor that carries electrons for redox reactions. It serves as a cofactor for nitric oxide synthase.

Mitochondrial electron-transport chain

A series of redox carrier proteins in the inner mitochondrial membrane that enable the flow of electrons from respiratory substrates to molecular oxygen. The potential energy inherent in the electron gradient is used to drive the synthesis of ATP when protons flow back across the membrane through another enzyme complex, ATP synthase.

Cytochrome c

An evolutionally highly conserved small 12,000 daltons haem protein present in the mitochondrial intermembrane space. It participates in mitochondrial electron transport and can also serve as a pro-apoptotic signal if released into the cytosol.

Mn superoxide dismutase

A key manganese-containing mitochondrial antioxidant enzyme that catalyzes superoxide radical dismutation.

Poly(ADP-ribose) polymerase

(PARP). Several reactive oxygen and nitrogen species can trigger DNA strand breakage, which then activates the nuclear enzyme PARP. Rapid activation of the enzyme depletes the intracellular concentration of its substrate, NAD, thus slowing the rate of glycolysis, electron transport and subsequently ATP formation. PARP plays a physiological role in the cells to facilitate DNA repair and to maintain genomic integrity.

Permeability transition pore

A mitochondrial multiprote in structure that once activated serves for the release of pro-apoptotic factors into the cytosol.

Sepsis

A serious systemic inflammatory disease condition associated with fever, elevated white blood cell count, raised heart rate and increased breathing rate. Severe sepsis can be also associated with multiple organ failure and circulatory collapse.

Porphyrin

A macrocyclic organic molecule consisting of four pyrrole rings that participates in the structure of haem proteins such as haemoglobin and cytochromes. It can tightly bind iron and manganese.

Catecholamines

A group of endogenous amines (adrenaline, noradrenaline and dopamine) derived from catechol that have important physiological effects as neurotransmitters and hormones. Some of their effects include increases in heart rate, blood pressure and blood glucose levels.

Chelator

A molecule that has the capacity of tight metal binding (complexation).

Dismutation

A chemical reaction between two identical molecules to produce two different products (for example, superoxide dismutation to molecular oxygen and hydrogen peroxide).

Cage return reaction

In the course of a chemical reaction, the reaction between two transient products before they diffuse out of the 'solvent cage'.

Atropoisomerism

A type of stereoisomerism that may arise in systems in which free rotation around a single covalent bond is impeded sufficiently so as to allow different stereoisomers to be isolated.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Szabó, C., Ischiropoulos, H. & Radi, R. Peroxynitrite: biochemistry, pathophysiology and development of therapeutics. Nat Rev Drug Discov 6, 662–680 (2007). https://doi.org/10.1038/nrd2222

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing