Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

NADPH oxidases and oxidase crosstalk in cardiovascular diseases: novel therapeutic targets

Abstract

Reactive oxygen species (ROS)-dependent production of ROS underlies sustained oxidative stress, which has been implicated in the pathogenesis of cardiovascular diseases such as hypertension, aortic aneurysm, hypercholesterolaemia, atherosclerosis, diabetic vascular complications, cardiac ischaemia–reperfusion injury, myocardial infarction, heart failure and cardiac arrhythmias. Interactions between different oxidases or oxidase systems have been intensively investigated for their roles in inducing sustained oxidative stress. In this Review, we discuss the latest data on the pathobiology of each oxidase component, the complex crosstalk between different oxidase components and the consequences of this crosstalk in mediating cardiovascular disease processes, focusing on the central role of particular NADPH oxidase (NOX) isoforms that are activated in specific cardiovascular diseases. An improved understanding of these mechanisms might facilitate the development of novel therapeutic agents targeting these oxidase systems and their interactions, which could be effective in the prevention and treatment of cardiovascular disorders.

Key points

  • Activation of NADPH oxidase (NOX) has a critical role in the pathogenesis of cardiovascular diseases.

  • Activation of NOX induces activation of downstream secondary oxidase systems, including uncoupled endothelial nitric oxide synthase, dysfunctional mitochondria and xanthine oxidase.

  • Crosstalk between oxidases or oxidase systems sustains oxidative stress to mediate the development of cardiovascular diseases.

  • Targeting NOXs as well as interactions between NOXs and secondary oxidase systems might be a novel therapeutic strategy for the prevention and treatment of cardiovascular diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: NADPH oxidase-dependent oxidase crosstalk in the pathogenesis of cardiovascular diseases.
Fig. 2: Composition and cell-specific expression and activity of NOX isoforms in the cardiovascular system.

Similar content being viewed by others

References

  1. Cai, H. & Harrison, D. G. Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circ. Res. 87, 840–844 (2000).

    CAS  PubMed  Google Scholar 

  2. Brown, D. I. & Griendling, K. K. Regulation of signal transduction by reactive oxygen species in the cardiovascular system. Circ. Res. 116, 531–549 (2015).

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Zorov, D. B., Filburn, C. R., Klotz, L. O., Zweier, J. L. & Sollott, S. J. Reactive oxygen species (ROS)-induced ROS release: a new phenomenon accompanying induction of the mitochondrial permeability transition in cardiac myocytes. J. Exp. Med. 192, 1001–1014 (2000).

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Zinkevich, N. S. & Gutterman, D. D. ROS-induced ROS release in vascular biology: redox-redox signaling. Am. J. Physiol. Heart Circ. Physiol. 301, H647–H653 (2011).

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Cai, H., Griendling, K. K. & Harrison, D. G. The vascular NAD(P)H oxidases as therapeutic targets in cardiovascular diseases. Trends Pharmacol. Sci. 24, 471–478 (2003).

    CAS  PubMed  Google Scholar 

  6. Cai, H. Hydrogen peroxide regulation of endothelial function: origins, mechanisms, and consequences. Cardiovasc. Res. 68, 26–36 (2005).

    CAS  PubMed  Google Scholar 

  7. Cai, H. NAD(P)H oxidase-dependent self-propagation of hydrogen peroxide and vascular disease. Circ. Res. 96, 818–822 (2005).

    CAS  PubMed  Google Scholar 

  8. Youn, J. Y., Siu, K. L., Li, Q., Harrison, D. G. & Cai, H. in Systems biology of free radicals and antioxidants (ed. Laher, I.) 849–876 (Springer, Berlin, Heidelberg, 2014).

  9. Wever, R. M., van Dam, T., van Rijn, H. J., de Groot, F. & Rabelink, T. J. Tetrahydrobiopterin regulates superoxide and nitric oxide generation by recombinant endothelial nitric oxide synthase. Biochem. Biophys. Res. Commun. 237, 340–344 (1997).

    CAS  PubMed  Google Scholar 

  10. Vasquez-Vivar, J. et al. Superoxide generation by endothelial nitric oxide synthase: the influence of cofactors. Proc. Natl Acad. Sci. USA 95, 9220–9225 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Xia, Y., Tsai, A. L., Berka, V. & Zweier, J. L. Superoxide generation from endothelial nitric-oxide synthase. A Ca2+/calmodulin-dependent and tetrahydrobiopterin regulatory process. J. Biol. Chem. 273, 25804–25808 (1998).

    CAS  PubMed  Google Scholar 

  12. Laursen, J. B. et al. Endothelial regulation of vasomotion in apoE-deficient mice: implications for interactions between peroxynitrite and tetrahydrobiopterin. Circulation 103, 1282–1288 (2001).

    CAS  PubMed  Google Scholar 

  13. Landmesser, U. et al. Oxidation of tetrahydrobiopterin leads to uncoupling of endothelial cell nitric oxide synthase in hypertension. J. Clin. Invest. 111, 1201–1209 (2003).

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Alp, N. J., McAteer, M. A., Khoo, J., Choudhury, R. P. & Channon, K. M. Increased endothelial tetrahydrobiopterin synthesis by targeted transgenic GTP-cyclohydrolase I overexpression reduces endothelial dysfunction and atherosclerosis in ApoE-knockout mice. Arterioscler. Thromb. Vasc. Biol. 24, 445–450 (2004).

    CAS  PubMed  Google Scholar 

  15. Chalupsky, K. & Cai, H. Endothelial dihydrofolate reductase: critical for nitric oxide bioavailability and role in angiotensin II uncoupling of endothelial nitric oxide synthase. Proc. Natl Acad. Sci. USA 102, 9056–9061 (2005).

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Takimoto, E. et al. Oxidant stress from nitric oxide synthase-3 uncoupling stimulates cardiac pathologic remodeling from chronic pressure load. J. Clin. Invest. 115, 1221–1231 (2005).

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Oak, J. H. & Cai, H. Attenuation of angiotensin II signaling recouples eNOS and inhibits nonendothelial NOX activity in diabetic mice. Diabetes 56, 118–126 (2007).

    CAS  PubMed  Google Scholar 

  18. Takaya, T. et al. A specific role for eNOS-derived reactive oxygen species in atherosclerosis progression. Arterioscler. Thromb. Vasc. Biol. 27, 1632–1637 (2007).

    CAS  PubMed  Google Scholar 

  19. Hattori, Y. et al. Oral administration of tetrahydrobiopterin slows the progression of atherosclerosis in apolipoprotein E-knockout mice. Arterioscler. Thromb. Vasc. Biol. 27, 865–870 (2007).

    CAS  PubMed  Google Scholar 

  20. Du, Y. H., Guan, Y. Y., Alp, N. J., Channon, K. M. & Chen, A. F. Endothelium-specific GTP cyclohydrolase I overexpression attenuates blood pressure progression in salt-sensitive low-renin hypertension. Circulation 117, 1045–1054 (2008).

    CAS  PubMed  Google Scholar 

  21. Wang, S. et al. Acute inhibition of guanosine triphosphate cyclohydrolase 1 uncouples endothelial nitric oxide synthase and elevates blood pressure. Hypertension 52, 484–490 (2008).

    CAS  PubMed  Google Scholar 

  22. Gao, L. et al. Sepiapterin reductase regulation of endothelial tetrahydrobiopterin and nitric oxide bioavailability. Am. J. Physiol. Heart Circ. Physiol. 297, H331–H339 (2009).

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Gao, L., Chalupsky, K., Stefani, E. & Cai, H. Mechanistic insights into folic acid-dependent vascular protection: dihydrofolate reductase (DHFR)-mediated reduction in oxidant stress in endothelial cells and angiotensin II-infused mice: a novel HPLC-based fluorescent assay for DHFR activity. J. Mol. Cell. Cardiol. 47, 752–760 (2009).

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Crabtree, M. J. & Channon, K. M. Synthesis and recycling of tetrahydrobiopterin in endothelial function and vascular disease. Nitric Oxide 25, 81–88 (2011).

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Li, L., Chen, W., Rezvan, A., Jo, H. & Harrison, D. G. Tetrahydrobiopterin deficiency and nitric oxide synthase uncoupling contribute to atherosclerosis induced by disturbed flow. Arterioscler. Thromb. Vasc. Biol. 31, 1547–1554 (2011).

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Youn, J. Y., Gao, L. & Cai, H. The p47phox- and NADPH oxidase organiser 1 (NOXO1)-dependent activation of NADPH oxidase 1 (NOX1) mediates endothelial nitric oxide synthase (eNOS) uncoupling and endothelial dysfunction in a streptozotocin-induced murine model of diabetes. Diabetologia 55, 2069–2079 (2012).

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Gao, L. et al. Role of uncoupled endothelial nitric oxide synthase in abdominal aortic aneurysm formation: treatment with folic acid. Hypertension 59, 158–166 (2012).

    CAS  PubMed  Google Scholar 

  28. Youn, J. Y. et al. Endothelium-specific sepiapterin reductase deficiency in DOCA-salt hypertension. Am. J. Physiol. Heart Circ. Physiol. 302, H2243–H2249 (2012).

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Siu, K. L., Miao, X. N. & Cai, H. Recoupling of eNOS with folic acid prevents abdominal aortic aneurysm formation in angiotensin II-infused apolipoprotein E null mice. PLOS ONE 9, e88899 (2014).

    PubMed Central  PubMed  Google Scholar 

  30. Siu, K. L. & Cai, H. Circulating tetrahydrobiopterin as a novel biomarker for abdominal aortic aneurysm. Am. J. Physiol. Heart Circ. Physiol. 307, H1559–H1564 (2014).

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Siu, K. L., Lotz, C., Ping, P. & Cai, H. Netrin-1 abrogates ischemia/reperfusion-induced cardiac mitochondrial dysfunction via nitric oxide-dependent attenuation of NOX4 activation and recoupling of NOS. J. Mol. Cell. Cardiol. 78, 174–185 (2015).

    CAS  PubMed  Google Scholar 

  32. Miao, X. N., Siu, K. L. & Cai, H. Nifedipine attenuation of abdominal aortic aneurysm in hypertensive and non-hypertensive mice: mechanisms and implications. J. Mol. Cell. Cardiol. 87, 152–159 (2015).

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Li, Q., Youn, J. Y. & Cai, H. Mechanisms and consequences of endothelial nitric oxide synthase dysfunction in hypertension. J. Hypertens. 33, 1128–1136 (2015).

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Siu, K. L. et al. NOX isoforms in the development of abdominal aortic aneurysm. Redox Biol. 11, 118–125 (2017).

    CAS  PubMed  Google Scholar 

  35. Youn, J. Y., Zhou, J. & Cai, H. Bone morphogenic protein 4 mediates NOX1-dependent eNOS uncoupling, endothelial dysfunction, and COX2 induction in type 2 diabetes mellitus. Mol. Endocrinol. 29, 1123–1133 (2015).

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Li, H. et al. Novel treatment of hypertension by specifically targeting E2F for restoration of endothelial dihydrofolate reductase and eNOS function under oxidative stress. Hypertension 73, 179–189 (2019).

    CAS  PubMed  Google Scholar 

  37. Li, Q. et al. Knockout of dihydrofolate reductase in mice induces hypertension and abdominal aortic aneurysm via mitochondrial dysfunction. Redox Biol. 24, 101185 (2019).

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Daiber, A. Redox signaling (cross-talk) from and to mitochondria involves mitochondrial pores and reactive oxygen species. Biochim. Biophys. Acta 1797, 897–906 (2010).

    CAS  PubMed  Google Scholar 

  39. Dikalov, S. Cross talk between mitochondria and NADPH oxidases. Free Radic. Biol. Med. 51, 1289–1301 (2011).

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Daiber, A. et al. Crosstalk of mitochondria with NADPH oxidase via reactive oxygen and nitrogen species signalling and its role for vascular function. Br. J. Pharmacol. 174, 1670–1689 (2017).

    CAS  PubMed  Google Scholar 

  41. Doughan, A. K., Harrison, D. G. & Dikalov, S. I. Molecular mechanisms of angiotensin II-mediated mitochondrial dysfunction: linking mitochondrial oxidative damage and vascular endothelial dysfunction. Circ. Res. 102, 488–496 (2008).

    CAS  PubMed  Google Scholar 

  42. Zhang, D. X. et al. Characteristics and superoxide-induced activation of reconstituted myocardial mitochondrial ATP-sensitive potassium channels. Circ. Res. 89, 1177–1183 (2001).

    CAS  PubMed  Google Scholar 

  43. Loperena, R. & Harrison, D. G. Oxidative stress and hypertensive diseases. Med. Clin. North Am. 101, 169–193 (2017).

    PubMed  Google Scholar 

  44. Kigawa, Y. et al. NADPH oxidase deficiency exacerbates angiotensin II-induced abdominal aortic aneurysms in mice. Arterioscler. Thromb. Vasc. Biol. 34, 2413–2420 (2014).

    CAS  PubMed  Google Scholar 

  45. Forstermann, U., Xia, N. & Li, H. Roles of vascular oxidative stress and nitric oxide in the pathogenesis of atherosclerosis. Circ. Res. 120, 713–735 (2017).

    PubMed  Google Scholar 

  46. Amanso, A. M. & Griendling, K. K. Differential roles of NADPH oxidases in vascular physiology and pathophysiology. Front. Biosci. 4, 1044–1064 (2012).

    Google Scholar 

  47. Konior, A., Schramm, A., Czesnikiewicz-Guzik, M. & Guzik, T. J. NADPH oxidases in vascular pathology. Antioxid. Redox Signal. 20, 2794–2814 (2014).

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Matsushima, S., Tsutsui, H. & Sadoshima, J. Physiological and pathological functions of NADPH oxidases during myocardial ischemia-reperfusion. Trends Cardiovasc. Med. 24, 202–205 (2014).

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Kahles, T. & Brandes, R. P. NADPH oxidases as therapeutic targets in ischemic stroke. Cell. Mol. Life Sci. 69, 2345–2363 (2012).

    CAS  PubMed  Google Scholar 

  50. Carbone, F. et al. Pathophysiology and treatments of oxidative injury in ischemic stroke: focus on the phagocytic nadph oxidase 2. Antioxid. Redox Signal. 23, 460–489 (2015).

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Zhang, M., Perino, A., Ghigo, A., Hirsch, E. & Shah, A. M. NADPH oxidases in heart failure: poachers or gamekeepers? Antioxid. Redox Signal. 18, 1024–1041 (2013).

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Sag, C. M., Santos, C. X. & Shah, A. M. Redox regulation of cardiac hypertrophy. J. Mol. Cell. Cardiol. 73, 103–111 (2014).

    CAS  Google Scholar 

  53. Youn, J. Y. et al. Oxidative stress in atrial fibrillation: an emerging role of NADPH oxidase. J. Mol. Cell. Cardiol. 62, 72–79 (2013).

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Guzik, T. J. & Harrison, D. G. Vascular NADPH oxidases as drug targets for novel antioxidant strategies. Drug Discov. Today 11, 524–533 (2006).

    CAS  PubMed  Google Scholar 

  55. Briones, A. M. & Touyz, R. M. Oxidative stress and hypertension: current concepts. Curr. Hypertens. Rep. 12, 135–142 (2010).

    CAS  PubMed  Google Scholar 

  56. Wang, H. D. et al. Role of NADPH oxidase in the vascular hypertrophic and oxidative stress response to angiotensin II in mice. Circ. Res. 88, 947–953 (2001).

    CAS  PubMed  Google Scholar 

  57. Barry-Lane, P. A. et al. p47phox is required for atherosclerotic lesion progression in ApoE-/- mice. J. Clin. Invest. 108, 1513–1522 (2001).

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Matsushima, S. et al. Broad suppression of NADPH oxidase activity exacerbates ischemia/reperfusion injury through inadvertent downregulation of hypoxia-inducible factor-1α and upregulation of peroxisome proliferator-activated receptor-α. Circ. Res. 112, 1135–1149 (2013).

    CAS  PubMed  Google Scholar 

  59. Kuroda, J. et al. NADPH oxidase 4 (Nox4) is a major source of oxidative stress in the failing heart. Proc. Natl Acad. Sci. USA 107, 15565–15570 (2010).

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Zhang, Y. et al. NADPH oxidase 4 induces cardiac arrhythmic phenotype in zebrafish. J. Biol. Chem. 289, 23200–23208 (2014).

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Iyer, G. Y., Islam, M. F. & Quastel, J. H. Biochemical aspects of phagocytosis. Nature 192, 535–541 (1961).

    CAS  Google Scholar 

  62. Rossi, F. & Zatti, M. Biochemical aspects of phagocytosis in polymorphonuclear leucocytes. NADH and NADPH oxidation by the granules of resting and phagocytizing cells. Experientia 20, 21–23 (1964).

    CAS  PubMed  Google Scholar 

  63. Segal, A. W. & Jones, O. T. Novel cytochrome b system in phagocytic vacuoles of human granulocytes. Nature 276, 515–517 (1978).

    CAS  PubMed  Google Scholar 

  64. Segal, A. W., Jones, O. T., Webster, D. & Allison, A. C. Absence of a newly described cytochrome b from neutrophils of patients with chronic granulomatous disease. Lancet 2, 446–449 (1978).

    CAS  PubMed  Google Scholar 

  65. Royer-Pokora, B. et al. Cloning the gene for an inherited human disorder–chronic granulomatous disease–on the basis of its chromosomal location. Nature 322, 32–38 (1986).

    CAS  PubMed  Google Scholar 

  66. Dinauer, M. C., Orkin, S. H., Brown, R., Jesaitis, A. J. & Parkos, C. A. The glycoprotein encoded by the X-linked chronic granulomatous disease locus is a component of the neutrophil cytochrome b complex. Nature 327, 717–720 (1987).

    CAS  PubMed  Google Scholar 

  67. Nunoi, H., Rotrosen, D., Gallin, J. I. & Malech, H. L. Two forms of autosomal chronic granulomatous disease lack distinct neutrophil cytosol factors. Science 242, 1298–1301 (1988).

    CAS  PubMed  Google Scholar 

  68. Volpp, B. D., Nauseef, W. M. & Clark, R. A. Two cytosolic neutrophil oxidase components absent in autosomal chronic granulomatous disease. Science 242, 1295–1297 (1988).

    CAS  PubMed  Google Scholar 

  69. Abo, A. et al. Activation of the NADPH oxidase involves the small GTP-binding protein p21rac1. Nature 353, 668–670 (1991).

    CAS  PubMed  Google Scholar 

  70. Knaus, U. G., Heyworth, P. G., Evans, T., Curnutte, J. T. & Bokoch, G. M. Regulation of phagocyte oxygen radical production by the GTP-binding protein Rac 2. Science 254, 1512–1515 (1991).

    CAS  PubMed  Google Scholar 

  71. Wientjes, F. B., Hsuan, J. J., Totty, N. F. & Segal, A. W. p40phox, a third cytosolic component of the activation complex of the NADPH oxidase to contain src homology 3 domains. Biochem. J. 296, 557–561 (1993).

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Griendling, K. K., Minieri, C. A., Ollerenshaw, J. D. & Alexander, R. W. Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. Circ. Res. 74, 1141–1148 (1994).

    CAS  PubMed  Google Scholar 

  73. Suh, Y. A. et al. Cell transformation by the superoxide-generating oxidase Mox1. Nature 401, 79–82 (1999).

    CAS  PubMed  Google Scholar 

  74. Banfi, B. et al. A mammalian H+ channel generated through alternative splicing of the NADPH oxidase homolog NOH-1. Science 287, 138–142 (2000).

    CAS  PubMed  Google Scholar 

  75. Kikuchi, H., Hikage, M., Miyashita, H. & Fukumoto, M. NADPH oxidase subunit, gp91phox homologue, preferentially expressed in human colon epithelial cells. Gene 254, 237–243 (2000).

    CAS  PubMed  Google Scholar 

  76. Geiszt, M., Kopp, J. B., Varnai, P. & Leto, T. L. Identification of renox, an NAD(P)H oxidase in kidney. Proc. Natl Acad. Sci. USA 97, 8010–8014 (2000).

    CAS  PubMed Central  PubMed  Google Scholar 

  77. De Deken, X. et al. Cloning of two human thyroid cDNAs encoding new members of the NADPH oxidase family. J. Biol. Chem. 275, 23227–23233 (2000).

    PubMed  Google Scholar 

  78. Edens, W. A. et al. Tyrosine cross-linking of extracellular matrix is catalyzed by Duox, a multidomain oxidase/peroxidase with homology to the phagocyte oxidase subunit gp91phox. J. Cell Biol. 154, 879–891 (2001).

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Banfi, B. et al. A Ca2+-activated NADPH oxidase in testis, spleen, and lymph nodes. J. Biol. Chem. 276, 37594–37601 (2001).

    CAS  PubMed  Google Scholar 

  80. Cheng, G., Cao, Z., Xu, X., van Meir, E. G. & Lambeth, J. D. Homologs of gp91phox: cloning and tissue expression of Nox3, Nox4, and Nox5. Gene 269, 131–140 (2001).

    CAS  PubMed  Google Scholar 

  81. Banfi, B., Clark, R. A., Steger, K. & Krause, K. H. Two novel proteins activate superoxide generation by the NADPH oxidase NOX1. J. Biol. Chem. 278, 3510–3513 (2003).

    CAS  PubMed  Google Scholar 

  82. Geiszt, M., Lekstrom, K., Witta, J. & Leto, T. L. Proteins homologous to p47phox and p67phox support superoxide production by NAD(P)H oxidase 1 in colon epithelial cells. J. Biol. Chem. 278, 20006–20012 (2003).

    CAS  PubMed  Google Scholar 

  83. Takeya, R. et al. Novel human homologues of p47phox and p67phox participate in activation of superoxide-producing NADPH oxidases. J. Biol. Chem. 278, 25234–25246 (2003).

    CAS  PubMed  Google Scholar 

  84. Grasberger, H. & Refetoff, S. Identification of the maturation factor for dual oxidase. Evolution of an eukaryotic operon equivalent. J. Biol. Chem. 281, 18269–18272 (2006).

    CAS  PubMed  Google Scholar 

  85. Bedard, K. & Krause, K. H. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol. Rev. 87, 245–313 (2007).

    CAS  PubMed  Google Scholar 

  86. Gimenez, M., Schickling, B. M., Lopes, L. R. & Miller, F. J. Jr. Nox1 in cardiovascular diseases: regulation and pathophysiology. Clin. Sci. 130, 151–165 (2016).

    CAS  Google Scholar 

  87. Dinauer, M. C., Curnutte, J. T., Rosen, H. & Orkin, S. H. A missense mutation in the neutrophil cytochrome b heavy chain in cytochrome-positive X-linked chronic granulomatous disease. J. Clin. Invest. 84, 2012–2016 (1989).

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Ueno, N., Takeya, R., Miyano, K., Kikuchi, H. & Sumimoto, H. The NADPH oxidase Nox3 constitutively produces superoxide in a p22phox-dependent manner: its regulation by oxidase organizers and activators. J. Biol. Chem. 280, 23328–23339 (2005).

    CAS  PubMed  Google Scholar 

  89. Ago, T. et al. Upregulation of Nox4 by hypertrophic stimuli promotes apoptosis and mitochondrial dysfunction in cardiac myocytes. Circ. Res. 106, 1253–1264 (2010).

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Oda, T. et al. Structure of the N-terminal regulatory domain of a plant NADPH oxidase and its functional implications. J. Biol. Chem. 285, 1435–1445 (2010).

    CAS  PubMed  Google Scholar 

  91. Magnani, F. et al. Crystal structures and atomic model of NADPH oxidase. Proc. Natl Acad. Sci. USA 114, 6764–6769 (2017).

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Brandes, R. P., Weissmann, N. & Schroder, K. Nox family NADPH oxidases: molecular mechanisms of activation. Free Radic. Biol. Med. 76, 208–226 (2014).

    CAS  PubMed  Google Scholar 

  93. Van Buul, J. D., Fernandez-Borja, M., Anthony, E. C. & Hordijk, P. L. Expression and localization of NOX2 and NOX4 in primary human endothelial cells. Antioxid. Redox Signal. 7, 308–317 (2005).

    PubMed  Google Scholar 

  94. Mizuno, T. et al. Regulation of the superoxide-generating NADPH oxidase by a small GTP-binding protein and its stimulatory and inhibitory GDP/GTP exchange proteins. J. Biol. Chem. 267, 10215–10218 (1992).

    CAS  PubMed  Google Scholar 

  95. Kwong, C. H., Malech, H. L., Rotrosen, D. & Leto, T. L. Regulation of the human neutrophil NADPH oxidase by rho-related G-proteins. Biochemistry 32, 5711–5717 (1993).

    CAS  PubMed  Google Scholar 

  96. Kim, C. & Dinauer, M. C. Rac2 is an essential regulator of neutrophil nicotinamide adenine dinucleotide phosphate oxidase activation in response to specific signaling pathways. J. Immunol. 166, 1223–1232 (2001).

    CAS  PubMed  Google Scholar 

  97. Fontayne, A., Dang, P. M., Gougerot-Pocidalo, M. A. & El-Benna, J. Phosphorylation of p47phox sites by PKC α, βII, δ, and ζ: effect on binding to p22phox and on NADPH oxidase activation. Biochemistry 41, 7743–7750 (2002).

    CAS  PubMed  Google Scholar 

  98. Kitada, M. et al. Translocation of glomerular p47phox and p67phox by protein kinase C-β activation is required for oxidative stress in diabetic nephropathy. Diabetes 52, 2603–2614 (2003).

    CAS  PubMed  Google Scholar 

  99. Schulz, E., Wenzel, P., Munzel, T. & Daiber, A. Mitochondrial redox signaling: interaction of mitochondrial reactive oxygen species with other sources of oxidative stress. Antioxid. Redox Signal. 20, 308–324 (2014).

    CAS  PubMed Central  PubMed  Google Scholar 

  100. Groemping, Y., Lapouge, K., Smerdon, S. J. & Rittinger, K. Molecular basis of phosphorylation-induced activation of the NADPH oxidase. Cell 113, 343–355 (2003).

    CAS  PubMed  Google Scholar 

  101. Seshiah, P. N. et al. Angiotensin II stimulation of NAD(P)H oxidase activity: upstream mediators. Circ. Res. 91, 406–413 (2002).

    CAS  PubMed  Google Scholar 

  102. Altenhofer, S., Radermacher, K. A., Kleikers, P. W., Wingler, K. & Schmidt, H. H. Evolution of NADPH oxidase inhibitors: selectivity and mechanisms for target engagement. Antioxid. Redox Signal. 23, 406–427 (2015).

    PubMed Central  PubMed  Google Scholar 

  103. Sahoo, S., Meijles, D. N. & Pagano, P. J. NADPH oxidases: key modulators in aging and age-related cardiovascular diseases? Clin. Sci. 130, 317–335 (2016).

    CAS  Google Scholar 

  104. Lyle, A. N. et al. Poldip2, a novel regulator of Nox4 and cytoskeletal integrity in vascular smooth muscle cells. Circ. Res. 105, 249–259 (2009).

    CAS  PubMed Central  PubMed  Google Scholar 

  105. Banfi, B. et al. Mechanism of Ca2+ activation of the NADPH oxidase 5 (NOX5). J. Biol. Chem. 279, 18583–18591 (2004).

    CAS  PubMed  Google Scholar 

  106. Jha, J. C., Watson, A. M. D., Mathew, G., de Vos, L. C. & Jandeleit-Dahm, K. The emerging role of NADPH oxidase NOX5 in vascular disease. Clin. Sci. 131, 981–990 (2017).

    CAS  Google Scholar 

  107. Chen, F., Yin, C., Dimitropoulou, C. & Fulton, D. J. Cloning, characteristics, and functional analysis of rabbit NADPH oxidase 5. Front. Physiol. 7, 284 (2016).

    PubMed Central  PubMed  Google Scholar 

  108. BelAiba, R. S. et al. NOX5 variants are functionally active in endothelial cells. Free Radic. Biol. Med. 42, 446–459 (2007).

    CAS  PubMed  Google Scholar 

  109. Chen, F., Wang, Y., Barman, S. & Fulton, D. J. Enzymatic regulation and functional relevance of NOX5. Curr. Pharm. Des. 21, 5999–6008 (2015).

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Tirone, F. & Cox, J. A. NADPH oxidase 5 (NOX5) interacts with and is regulated by calmodulin. FEBS Lett. 581, 1202–1208 (2007).

    CAS  PubMed  Google Scholar 

  111. Chen, F. et al. Regulation of NADPH oxidase 5 by protein kinase C isoforms. PLOS ONE 9, e88405 (2014).

    PubMed Central  PubMed  Google Scholar 

  112. Pandey, D., Gratton, J. P., Rafikov, R., Black, S. M. & Fulton, D. J. Calcium/calmodulin-dependent kinase II mediates the phosphorylation and activation of NADPH oxidase 5. Mol. Pharmacol. 80, 407–415 (2011).

    CAS  PubMed Central  PubMed  Google Scholar 

  113. Pandey, D. & Fulton, D. J. Molecular regulation of NADPH oxidase 5 via the MAPK pathway. Am. J. Physiol. Heart Circ. Physiol. 300, H1336–H1344 (2011).

    CAS  PubMed Central  PubMed  Google Scholar 

  114. Montezano, A. C. et al. Redox signaling, Nox5 and vascular remodeling in hypertension. Curr. Opin. Nephrol. Hypertens. 24, 425–433 (2015).

    CAS  PubMed Central  PubMed  Google Scholar 

  115. Lambeth, J. D., Kawahara, T. & Diebold, B. Regulation of Nox and Duox enzymatic activity and expression. Free Radic. Biol. Med. 43, 319–331 (2007).

    CAS  PubMed Central  PubMed  Google Scholar 

  116. Lassegue, B., San Martin, A. & Griendling, K. K. Biochemistry, physiology, and pathophysiology of NADPH oxidases in the cardiovascular system. Circ. Res. 110, 1364–1390 (2012).

    CAS  PubMed Central  PubMed  Google Scholar 

  117. Brandes, R. P. & Schroder, K. Differential vascular functions of Nox family NADPH oxidases. Curr. Opin. Lipidol. 19, 513–518 (2008).

    CAS  PubMed  Google Scholar 

  118. Ago, T. et al. NAD(P)H oxidases in rat basilar arterial endothelial cells. Stroke 36, 1040–1046 (2005).

    CAS  PubMed  Google Scholar 

  119. Gorlach, A. et al. A gp91phox containing NADPH oxidase selectively expressed in endothelial cells is a major source of oxygen radical generation in the arterial wall. Circ. Res. 87, 26–32 (2000).

    CAS  PubMed  Google Scholar 

  120. Guzik, T. J. et al. Calcium-dependent NOX5 nicotinamide adenine dinucleotide phosphate oxidase contributes to vascular oxidative stress in human coronary artery disease. J. Am. Coll. Cardiol. 52, 1803–1809 (2008).

    CAS  PubMed Central  PubMed  Google Scholar 

  121. Ellmark, S. H., Dusting, G. J., Fui, M. N., Guzzo-Pernell, N. & Drummond, G. R. The contribution of Nox4 to NADPH oxidase activity in mouse vascular smooth muscle. Cardiovasc. Res. 65, 495–504 (2005).

    CAS  PubMed  Google Scholar 

  122. Matsuno, K. et al. NOX1/NADPH oxidase is involved in endotoxin-induced cardiomyocyte apoptosis. Free Radic. Biol. Med. 53, 1718–1728 (2012).

    CAS  PubMed  Google Scholar 

  123. Morawietz, H. & Bornstein, S. R. Leptin, endothelin, NADPH oxidase, and heart failure. Hypertension 47, e20 (2006).

    CAS  PubMed  Google Scholar 

  124. Heymes, C. et al. Increased myocardial NADPH oxidase activity in human heart failure. J. Am. Coll. Cardiol. 41, 2164–2171 (2003).

    CAS  PubMed  Google Scholar 

  125. Krijnen, P. A. et al. Increased Nox2 expression in human cardiomyocytes after acute myocardial infarction. J. Clin. Pathol. 56, 194–199 (2003).

    CAS  PubMed Central  PubMed  Google Scholar 

  126. Hahn, N. E. et al. NOX5 expression is increased in intramyocardial blood vessels and cardiomyocytes after acute myocardial infarction in humans. Am. J. Pathol. 180, 2222–2229 (2012).

    CAS  PubMed  Google Scholar 

  127. Chen, K., Kirber, M. T., Xiao, H., Yang, Y. & Keaney, J. F. Jr. Regulation of ROS signal transduction by NADPH oxidase 4 localization. J. Cell Biol. 181, 1129–1139 (2008).

    CAS  PubMed Central  PubMed  Google Scholar 

  128. Wu, R. F., Ma, Z., Liu, Z. & Terada, L. S. Nox4-derived H2O2 mediates endoplasmic reticulum signaling through local Ras activation. Mol. Cell. Biol. 30, 3553–3568 (2010).

    CAS  PubMed Central  PubMed  Google Scholar 

  129. Hilenski, L. L., Clempus, R. E., Quinn, M. T., Lambeth, J. D. & Griendling, K. K. Distinct subcellular localizations of Nox1 and Nox4 in vascular smooth muscle cells. Arterioscler. Thromb. Vasc. Biol. 24, 677–683 (2004).

    CAS  PubMed  Google Scholar 

  130. Clempus, R. E. et al. Nox4 is required for maintenance of the differentiated vascular smooth muscle cell phenotype. Arterioscler. Thromb. Vasc. Biol. 27, 42–48 (2007).

    CAS  PubMed  Google Scholar 

  131. Perrotta, I., Sciangula, A., Perrotta, E., Donato, G. & Cassese, M. Ultrastructural analysis and electron microscopic localization of Nox4 in healthy and atherosclerotic human aorta. Ultrastruct. Pathol. 35, 1–6 (2011).

    PubMed  Google Scholar 

  132. Camargo, L. L. et al. Vascular NOX (NADPH oxidase) compartmentalization, protein hyperoxidation, and endoplasmic reticulum stress response in hypertension. Hypertension 72, 235–246 (2018).

    CAS  PubMed  Google Scholar 

  133. Ago, T. et al. Nox4 as the major catalytic component of an endothelial NAD(P)H oxidase. Circulation 109, 227–233 (2004).

    CAS  PubMed  Google Scholar 

  134. Matsushima, S. et al. Increased oxidative stress in the nucleus caused by Nox4 mediates oxidation of HDAC4 and cardiac hypertrophy. Circ. Res. 112, 651–663 (2013).

    CAS  PubMed  Google Scholar 

  135. Dikalov, S. I. et al. Distinct roles of Nox1 and Nox4 in basal and angiotensin II-stimulated superoxide and hydrogen peroxide production. Free Radic. Biol. Med. 45, 1340–1351 (2008).

    CAS  PubMed Central  PubMed  Google Scholar 

  136. Helmcke, I., Heumuller, S., Tikkanen, R., Schroder, K. & Brandes, R. P. Identification of structural elements in Nox1 and Nox4 controlling localization and activity. Antioxid. Redox. Signal. 11, 1279–1287 (2009).

    CAS  PubMed  Google Scholar 

  137. Takac, I. et al. The E-loop is involved in hydrogen peroxide formation by the NADPH oxidase Nox4. J. Biol. Chem. 286, 13304–13313 (2011).

    CAS  PubMed Central  PubMed  Google Scholar 

  138. Cai, H., Dikalov, S., Griendling, K. K. & Harrison, D. G. Detection of reactive oxygen species and nitric oxide in vascular cells and tissues: comparison of sensitivity and specificity. Methods Mol. Med. 139, 293–311 (2007).

    CAS  PubMed  Google Scholar 

  139. Schulz, E., Jansen, T., Wenzel, P., Daiber, A. & Munzel, T. Nitric oxide, tetrahydrobiopterin, oxidative stress, and endothelial dysfunction in hypertension. Antioxid. Redox Signal. 10, 1115–1126 (2008).

    CAS  PubMed  Google Scholar 

  140. Forstermann, U. & Li, H. Therapeutic effect of enhancing endothelial nitric oxide synthase (eNOS) expression and preventing eNOS uncoupling. Br. J. Pharmacol. 164, 213–223 (2011).

    PubMed Central  PubMed  Google Scholar 

  141. Thony, B., Auerbach, G. & Blau, N. Tetrahydrobiopterin biosynthesis, regeneration and functions. Biochem. J. 347, 1–16 (2000).

    CAS  PubMed Central  PubMed  Google Scholar 

  142. Hink, U. et al. Mechanisms underlying endothelial dysfunction in diabetes mellitus. Circ. Res. 88, E14–E22 (2001).

    CAS  PubMed  Google Scholar 

  143. Faria, A. M., Papadimitriou, A., Silva, K. C., Lopes de Faria, J. M. & Lopes de Faria, J. B. Uncoupling endothelial nitric oxide synthase is ameliorated by green tea in experimental diabetes by re-establishing tetrahydrobiopterin levels. Diabetes 61, 1838–1847 (2012).

    CAS  PubMed Central  PubMed  Google Scholar 

  144. Moens, A. L. et al. High-dose folic acid pretreatment blunts cardiac dysfunction during ischemia coupled to maintenance of high-energy phosphates and reduces postreperfusion injury. Circulation 117, 1810–1819 (2008).

    CAS  PubMed Central  PubMed  Google Scholar 

  145. Moens, A. L. et al. Bi-modal dose-dependent cardiac response to tetrahydrobiopterin in pressure-overload induced hypertrophy and heart failure. J. Mol. Cell. Cardiol. 51, 564–569 (2011).

    CAS  PubMed Central  PubMed  Google Scholar 

  146. Zheng, J. S. et al. Gene transfer of human guanosine 5’-triphosphate cyclohydrolase I restores vascular tetrahydrobiopterin level and endothelial function in low renin hypertension. Circulation 108, 1238–1245 (2003).

    CAS  PubMed  Google Scholar 

  147. Raman, C. S. et al. Crystal structure of constitutive endothelial nitric oxide synthase: a paradigm for pterin function involving a novel metal center. Cell 95, 939–950 (1998).

    CAS  PubMed  Google Scholar 

  148. Li, H. et al. Crystal structures of zinc-free and -bound heme domain of human inducible nitric-oxide synthase. Implications for dimer stability and comparison with endothelial nitric-oxide synthase. J. Biol. Chem. 274, 21276–21284 (1999).

    CAS  PubMed  Google Scholar 

  149. Hemmens, B., Goessler, W., Schmidt, K. & Mayer, B. Role of bound zinc in dimer stabilization but not enzyme activity of neuronal nitric-oxide synthase. J. Biol. Chem. 275, 35786–35791 (2000).

    CAS  PubMed  Google Scholar 

  150. Zou, M. H., Shi, C. & Cohen, R. A. Oxidation of the zinc-thiolate complex and uncoupling of endothelial nitric oxide synthase by peroxynitrite. J. Clin. Invest. 109, 817–826 (2002).

    CAS  PubMed Central  PubMed  Google Scholar 

  151. Xu, J., Xie, Z., Reece, R., Pimental, D. & Zou, M. H. Uncoupling of endothelial nitric oxidase synthase by hypochlorous acid: role of NAD(P)H oxidase-derived superoxide and peroxynitrite. Arterioscler. Thromb. Vasc. Biol. 26, 2688–2695 (2006).

    CAS  PubMed  Google Scholar 

  152. Chen, C. A. et al. S-glutathionylation uncouples eNOS and regulates its cellular and vascular function. Nature 468, 1115–1118 (2010).

    CAS  PubMed Central  PubMed  Google Scholar 

  153. Knorr, M. et al. Nitroglycerin-induced endothelial dysfunction and tolerance involve adverse phosphorylation and S-glutathionylation of endothelial nitric oxide synthase: beneficial effects of therapy with the AT1 receptor blocker telmisartan. Arterioscler. Thromb. Vasc. Biol. 31, 2223–2231 (2011).

    CAS  PubMed  Google Scholar 

  154. Oelze, M. et al. Chronic therapy with isosorbide-5-mononitrate causes endothelial dysfunction, oxidative stress, and a marked increase in vascular endothelin-1 expression. Eur. Heart J. 34, 3206–3216 (2013).

    CAS  PubMed  Google Scholar 

  155. Schuhmacher, S. et al. Vascular dysfunction in experimental diabetes is improved by pentaerithrityl tetranitrate but not isosorbide-5-mononitrate therapy. Diabetes 60, 2608–2616 (2011).

    CAS  PubMed Central  PubMed  Google Scholar 

  156. Heinzel, B., John, M., Klatt, P., Bohme, E. & Mayer, B. Ca2+/calmodulin-dependent formation of hydrogen peroxide by brain nitric oxide synthase. Biochem. J. 281, 627–630 (1992).

    CAS  PubMed Central  PubMed  Google Scholar 

  157. Pou, S., Pou, W. S., Bredt, D. S., Snyder, S. H. & Rosen, G. M. Generation of superoxide by purified brain nitric oxide synthase. J. Biol. Chem. 267, 24173–24176 (1992).

    CAS  PubMed  Google Scholar 

  158. Xia, Y., Dawson, V. L., Dawson, T. M., Snyder, S. H. & Zweier, J. L. Nitric oxide synthase generates superoxide and nitric oxide in arginine-depleted cells leading to peroxynitrite-mediated cellular injury. Proc. Natl Acad. Sci. USA 93, 6770–6774 (1996).

    CAS  PubMed Central  PubMed  Google Scholar 

  159. Loughran, P. A. et al. Monomeric inducible nitric oxide synthase localizes to peroxisomes in hepatocytes. Proc. Natl Acad. Sci. USA 102, 13837–13842 (2005).

    CAS  PubMed Central  PubMed  Google Scholar 

  160. Chance, B., Sies, H. & Boveris, A. Hydroperoxide metabolism in mammalian organs. Physiol. Rev. 59, 527–605 (1979).

    CAS  PubMed  Google Scholar 

  161. Trono, D., Laus, M. N., Soccio, M., Alfarano, M. & Pastore, D. Modulation of potassium channel activity in the balance of ROS and ATP production by durum wheat mitochondria — an amazing defense tool against hyperosmotic stress. Front. Plant Sci. 6, 1072 (2015).

    Google Scholar 

  162. Queliconi, B. B., Wojtovich, A. P., Nadtochiy, S. M., Kowaltowski, A. J. & Brookes, P. S. Redox regulation of the mitochondrial KATP channel in cardioprotection. Biochim. Biophys. Acta 1813, 1309–1315 (2011).

    CAS  PubMed  Google Scholar 

  163. Oldenburg, O., Cohen, M. V., Yellon, D. M. & Downey, J. M. Mitochondrial KATP channels: role in cardioprotection. Cardiovasc. Res. 55, 429–437 (2002).

    CAS  Google Scholar 

  164. Malinska, D., Mirandola, S. R. & Kunz, W. S. Mitochondrial potassium channels and reactive oxygen species. FEBS Lett. 584, 2043–2048 (2010).

    CAS  PubMed  Google Scholar 

  165. Brandes, R. P. Triggering mitochondrial radical release: a new function for NADPH oxidases. Hypertension 45, 847–848 (2005).

    CAS  PubMed  Google Scholar 

  166. Kimura, S. et al. Mitochondria-derived reactive oxygen species and vascular MAP kinases: comparison of angiotensin II and diazoxide. Hypertension 45, 438–444 (2005).

    CAS  PubMed  Google Scholar 

  167. Brownlee, M. The pathobiology of diabetic complications: a unifying mechanism. Diabetes 54, 1615–1625 (2005).

    CAS  PubMed  Google Scholar 

  168. Jastroch, M., Divakaruni, A. S., Mookerjee, S., Treberg, J. R. & Brand, M. D. Mitochondrial proton and electron leaks. Essays Biochem. 47, 53–67 (2010).

    CAS  PubMed Central  PubMed  Google Scholar 

  169. Madamanchi, N. R. & Runge, M. S. Mitochondrial dysfunction in atherosclerosis. Circ. Res. 100, 460–473 (2007).

    CAS  PubMed  Google Scholar 

  170. Cadenas, E., Boveris, A., Ragan, C. I. & Stoppani, A. O. Production of superoxide radicals and hydrogen peroxide by NADH-ubiquinone reductase and ubiquinol-cytochrome C reductase from beef-heart mitochondria. Arch. Biochem. Biophys. 180, 248–257 (1977).

    CAS  PubMed  Google Scholar 

  171. Han, D., Williams, E. & Cadenas, E. Mitochondrial respiratory chain-dependent generation of superoxide anion and its release into the intermembrane space. Biochem. J. 353, 411–416 (2001).

    CAS  PubMed Central  PubMed  Google Scholar 

  172. Ago, T., Kuroda, J., Kamouchi, M., Sadoshima, J. & Kitazono, T. Pathophysiological roles of NADPH oxidase/NOX family proteins in the vascular system. Review and perspective. Circ. J. 75, 1791–1800 (2011).

    CAS  PubMed  Google Scholar 

  173. Graham, D. et al. Mitochondria-targeted antioxidant MitoQ10 improves endothelial function and attenuates cardiac hypertrophy. Hypertension 54, 322–328 (2009).

    CAS  PubMed  Google Scholar 

  174. Ballinger, S. W. et al. Mitochondrial integrity and function in atherogenesis. Circulation 106, 544–549 (2002).

    CAS  PubMed  Google Scholar 

  175. Chen, J., Stimpson, S. E., Fernandez-Bueno, G. A. & Mathews, C. E. Mitochondrial reactive oxygen species and type 1 diabetes. Antioxid. Redox Signal. 29, 1361–1372 (2018).

    CAS  PubMed Central  PubMed  Google Scholar 

  176. Anderson, E. J. et al. Mitochondrial H2O2 emission and cellular redox state link excess fat intake to insulin resistance in both rodents and humans. J. Clin. Invest. 119, 573–581 (2009).

    CAS  PubMed Central  PubMed  Google Scholar 

  177. Ide, T. et al. Mitochondrial electron transport complex I is a potential source of oxygen free radicals in the failing myocardium. Circ. Res. 85, 357–363 (1999).

    CAS  PubMed  Google Scholar 

  178. Dai, D. F. et al. Mitochondrial oxidative stress mediates angiotensin II-induced cardiac hypertrophy and Gαq overexpression-induced heart failure. Circ. Res. 108, 837–846 (2011).

    CAS  PubMed Central  PubMed  Google Scholar 

  179. Munzel, T., Gori, T., Keaney, J. F. Jr, Maack, C. & Daiber, A. Pathophysiological role of oxidative stress in systolic and diastolic heart failure and its therapeutic implications. Eur. Heart J. 36, 2555–2564 (2015).

    PubMed  PubMed Central  Google Scholar 

  180. Escribano-Lopez, I. et al. The mitochondria-targeted antioxidant MitoQ modulates oxidative stress, inflammation and leukocyte-endothelium interactions in leukocytes isolated from type 2 diabetic patients. Redox Biol. 10, 200–205 (2016).

    CAS  PubMed Central  PubMed  Google Scholar 

  181. Ohashi, M., Runge, M. S., Faraci, F. M. & Heistad, D. D. MnSOD deficiency increases endothelial dysfunction in ApoE-deficient mice. Arterioscler. Thromb. Vasc. Biol. 26, 2331–2336 (2006).

    CAS  PubMed  Google Scholar 

  182. Nishikawa, T. et al. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 404, 787–790 (2000).

    CAS  PubMed  Google Scholar 

  183. Dai, D. F. et al. Mitochondrial targeted antioxidant peptide ameliorates hypertensive cardiomyopathy. J. Am. Coll. Cardiol. 58, 73–82 (2011).

    CAS  PubMed Central  PubMed  Google Scholar 

  184. Hille, R. & Nishino, T. Flavoprotein structure and mechanism. 4. Xanthine oxidase and xanthine dehydrogenase. FASEB J. 9, 995–1003 (1995).

    CAS  PubMed  Google Scholar 

  185. Christen, S., Bifrare, Y. D., Siegenthaler, C., Leib, S. L. & Tauber, M. G. Marked elevation in cortical urate and xanthine oxidoreductase activity in experimental bacterial meningitis. Brain Res. 900, 244–251 (2001).

    CAS  PubMed  Google Scholar 

  186. Nagler, R. M., Klein, I., Zarzhevsky, N., Drigues, N. & Reznick, A. Z. Characterization of the differentiated antioxidant profile of human saliva. Free Radic. Biol. Med. 32, 268–277 (2002).

    CAS  PubMed  Google Scholar 

  187. Nakazono, K. et al. Does superoxide underlie the pathogenesis of hypertension? Proc. Natl Acad. Sci. USA 88, 10045–10048 (1991).

    CAS  PubMed Central  PubMed  Google Scholar 

  188. Suzuki, H. et al. Xanthine oxidase activity associated with arterial blood pressure in spontaneously hypertensive rats. Proc. Natl Acad. Sci. USA 95, 4754–4759 (1998).

    CAS  PubMed Central  PubMed  Google Scholar 

  189. Swei, A., Lacy, F., Delano, F. A., Parks, D. A. & Schmid-Schonbein, G. W. A mechanism of oxygen free radical production in the Dahl hypertensive rat. Microcirculation 6, 179–187 (1999).

    CAS  PubMed  Google Scholar 

  190. Montor, S. G., Thoolen, M. J., Mackin, W. M. & Timmermans, P. B. Effect of azapropazone and allopurinol on myocardial infarct size in rats. Eur. J. Pharmacol. 140, 203–207 (1987).

    CAS  PubMed  Google Scholar 

  191. Li, G. R. & Ferrier, G. R. Effects of allopurinol on reperfusion arrhythmias in isolated ventricles. Am. J. Physiol. 263, H341–H348 (1992).

    CAS  PubMed  Google Scholar 

  192. Stull, L. B., Leppo, M. K., Szweda, L., Gao, W. D. & Marban, E. Chronic treatment with allopurinol boosts survival and cardiac contractility in murine postischemic cardiomyopathy. Circ. Res. 95, 1005–1011 (2004).

    CAS  PubMed  Google Scholar 

  193. Engberding, N. et al. Allopurinol attenuates left ventricular remodeling and dysfunction after experimental myocardial infarction: a new action for an old drug? Circulation 110, 2175–2179 (2004).

    CAS  PubMed  Google Scholar 

  194. Segal, M. S. et al. The effect of the addition of allopurinol on blood pressure control in African Americans treated with a thiazide-like diuretic. J. Am. Soc. Hypertens. 9, 610–619.e1 (2015).

    CAS  PubMed Central  PubMed  Google Scholar 

  195. Hare, J. M. et al. Impact of oxypurinol in patients with symptomatic heart failure. Results of the OPT-CHF study. J. Am. Coll. Cardiol. 51, 2301–2309 (2008).

    CAS  PubMed  Google Scholar 

  196. Alem, M. M., Alshehri, A. M., Cahusac, P. M. & Walters, M. R. Effect of xanthine oxidase inhibition on arterial stiffness in patients with chronic heart failure. Clin. Med. Insights Cardiol. 12, 1179546818779584 (2018).

    PubMed Central  PubMed  Google Scholar 

  197. Borghi, C. et al. Effects of the concomitant administration of xanthine oxidase inhibitors with zofenopril or other ACE-inhibitors in post-myocardial infarction patients: a meta-analysis of individual data of four randomized, double-blind, prospective studies. BMC Cardiovasc. Disord. 18, 112 (2018).

    PubMed Central  PubMed  Google Scholar 

  198. Duda, M., Konior, A., Klemenska, E. & Beresewicz, A. Preconditioning protects endothelium by preventing ET-1-induced activation of NADPH oxidase and xanthine oxidase in post-ischemic heart. J. Mol. Cell. Cardiol. 42, 400–410 (2007).

    CAS  PubMed  Google Scholar 

  199. Zhao, Q., Zhang, J. & Wang, H. PGC-1α overexpression suppresses blood pressure elevation in DOCA-salt hypertensive mice. Biosci. Rep. 35, e00217 (2015).

  200. Callera, G. E., Tostes, R. C., Yogi, A., Montezano, A. C. & Touyz, R. M. Endothelin-1-induced oxidative stress in DOCA-salt hypertension involves NADPH-oxidase-independent mechanisms. Clin. Sci. 110, 243–253 (2006).

    CAS  Google Scholar 

  201. Pain, T. et al. Opening of mitochondrial KATP channels triggers the preconditioned state by generating free radicals. Circ. Res. 87, 460–466 (2000).

    CAS  PubMed  Google Scholar 

  202. Lassegue, B. & Griendling, K. K. NADPH oxidases: functions and pathologies in the vasculature. Arterioscler. Thromb. Vasc. Biol. 30, 653–661 (2010).

    CAS  PubMed  Google Scholar 

  203. Dikalova, A. E. et al. Therapeutic targeting of mitochondrial superoxide in hypertension. Circ. Res. 107, 106–116 (2010).

    CAS  PubMed Central  PubMed  Google Scholar 

  204. Rubbo, H. et al. Nitric oxide regulation of superoxide and peroxynitrite-dependent lipid peroxidation. formation of novel nitrogen-containing oxidized lipid derivatives. J. Biol. Chem. 269, 26066–26075 (1994).

    CAS  PubMed  Google Scholar 

  205. Ebadi, M. & Sharma, S. K. Peroxynitrite and mitochondrial dysfunction in the pathogenesis of Parkinson’s disease. Antioxid. Redox Signal. 5, 319–335 (2003).

    CAS  PubMed  Google Scholar 

  206. Ceylan-Isik, A. F. et al. Metallothionein abrogates GTP cyclohydrolase I inhibition-induced cardiac contractile and morphological defects: role of mitochondrial biogenesis. Hypertension 53, 1023–1031 (2009).

    CAS  PubMed  Google Scholar 

  207. Watts, G. F. et al. Coenzyme Q10 improves endothelial dysfunction of the brachial artery in type II diabetes mellitus. Diabetologia 45, 420–426 (2002).

    CAS  PubMed  Google Scholar 

  208. Chew, G. T. & Watts, G. F. Coenzyme Q10 and diabetic endotheliopathy: oxidative stress and the ‘recoupling hypothesis’. QJM 97, 537–548 (2004).

    CAS  PubMed  Google Scholar 

  209. Vergeade, A. et al. Xanthine oxidase contributes to mitochondrial ROS generation in an experimental model of cocaine-induced diastolic dysfunction. J. Cardiovasc. Pharmacol. 60, 538–543 (2012).

    CAS  PubMed  Google Scholar 

  210. Gladden, J. D. et al. Novel insights into interactions between mitochondria and xanthine oxidase in acute cardiac volume overload. Free Radic. Biol. Med. 51, 1975–1984 (2011).

    CAS  PubMed Central  PubMed  Google Scholar 

  211. Rajagopalan, S. et al. Angiotensin II-mediated hypertension in the rat increases vascular superoxide production via membrane NADH/NADPH oxidase activation. Contribution to alterations of vasomotor tone. J. Clin. Invest. 97, 1916–1923 (1996).

    CAS  PubMed Central  PubMed  Google Scholar 

  212. Fukui, T. et al. p22phox mRNA expression and NADPH oxidase activity are increased in aortas from hypertensive rats. Circ. Res. 80, 45–51 (1997).

    CAS  PubMed  Google Scholar 

  213. Beswick, R. A., Dorrance, A. M., Leite, R. & Webb, R. C. NADH/NADPH oxidase and enhanced superoxide production in the mineralocorticoid hypertensive rat. Hypertension 38, 1107–1111 (2001).

    CAS  PubMed  Google Scholar 

  214. Wu, R., Millette, E., Wu, L. & de Champlain, J. Enhanced superoxide anion formation in vascular tissues from spontaneously hypertensive and desoxycorticosterone acetate-salt hypertensive rats. J. Hypertens. 19, 741–748 (2001).

    CAS  PubMed  Google Scholar 

  215. Bauersachs, J. et al. Hydralazine prevents endothelial dysfunction, but not the increase in superoxide production in nitric oxide-deficient hypertension. Eur. J. Pharmacol. 362, 77–81 (1998).

    CAS  PubMed  Google Scholar 

  216. Kobori, H. & Nishiyama, A. Effects of tempol on renal angiotensinogen production in Dahl salt-sensitive rats. Biochem. Biophys. Res. Commun. 315, 746–750 (2004).

    CAS  PubMed Central  PubMed  Google Scholar 

  217. Zalba, G. et al. Vascular NADH/NADPH oxidase is involved in enhanced superoxide production in spontaneously hypertensive rats. Hypertension 35, 1055–1061 (2000).

    CAS  PubMed  Google Scholar 

  218. Delles, C., Miller, W. H. & Dominiczak, A. F. Targeting reactive oxygen species in hypertension. Antioxid. Redox Signal. 10, 1061–1077 (2008).

    CAS  PubMed  Google Scholar 

  219. Sedeek, M., Hebert, R. L., Kennedy, C. R., Burns, K. D. & Touyz, R. M. Molecular mechanisms of hypertension: role of Nox family NADPH oxidases. Curr. Opin. Nephrol. Hypertens. 18, 122–127 (2009).

    CAS  PubMed  Google Scholar 

  220. Takac, I., Schroder, K. & Brandes, R. P. The Nox family of NADPH oxidases: friend or foe of the vascular system? Curr. Hypertens. Rep. 14, 70–78 (2012).

    CAS  PubMed  Google Scholar 

  221. Higashi, M. et al. Long-term inhibition of Rho-kinase suppresses angiotensin II-induced cardiovascular hypertrophy in rats in vivo: effect on endothelial NAD(P)H oxidase system. Circ. Res. 93, 767–775 (2003).

    CAS  PubMed  Google Scholar 

  222. Matsuno, K. et al. Nox1 is involved in angiotensin II-mediated hypertension: a study in Nox1-deficient mice. Circulation 112, 2677–2685 (2005).

    CAS  PubMed  Google Scholar 

  223. Wingler, K. et al. Upregulation of the vascular NAD(P)H-oxidase isoforms Nox1 and Nox4 by the renin-angiotensin system in vitro and in vivo. Free Radic. Biol. Med. 31, 1456–1464 (2001).

    CAS  PubMed  Google Scholar 

  224. Zhao, Q., Zhang, J. & Wang, H. PGC-1α limits angiotensin II-induced rat vascular smooth muscle cells proliferation via attenuating NOX1-mediated generation of reactive oxygen species. Biosci. Rep. 35, e00252 (2015).

  225. Liang, G. Z. et al. ClC-3 promotes angiotensin II-induced reactive oxygen species production in endothelial cells by facilitating Nox2 NADPH oxidase complex formation. Acta Pharmacol. Sin. 39, 1725–1734 (2018).

    CAS  PubMed Central  PubMed  Google Scholar 

  226. Yamagishi, S., Nakamura, K., Ueda, S., Kato, S. & Imaizumi, T. Pigment epithelium-derived factor (PEDF) blocks angiotensin II signaling in endothelial cells via suppression of NADPH oxidase: a novel anti-oxidative mechanism of PEDF. Cell Tissue Res. 320, 437–445 (2005).

    CAS  PubMed  Google Scholar 

  227. Montezano, A. C. et al. Nicotinamide adenine dinucleotide phosphate reduced oxidase 5 (Nox5) regulation by angiotensin II and endothelin-1 is mediated via calcium/calmodulin-dependent, rac-1-independent pathways in human endothelial cells. Circ. Res. 106, 1363–1373 (2010).

    CAS  PubMed Central  PubMed  Google Scholar 

  228. Touyz, R. M., Yao, G. & Schiffrin, E. L. c-Src induces phosphorylation and translocation of p47phox: role in superoxide generation by angiotensin II in human vascular smooth muscle cells. Arterioscler. Thromb. Vasc. Biol. 23, 981–987 (2003).

    CAS  PubMed  Google Scholar 

  229. Touyz, R. M. & Schiffrin, E. L. Ang II-stimulated superoxide production is mediated via phospholipase D in human vascular smooth muscle cells. Hypertension 34, 976–982 (1999).

    CAS  PubMed  Google Scholar 

  230. Touyz, R. M. & Schiffrin, E. L. Signal transduction mechanisms mediating the physiological and pathophysiological actions of angiotensin II in vascular smooth muscle cells. Pharmacol. Rev. 52, 639–672 (2000).

    CAS  PubMed  Google Scholar 

  231. Garrido, A. M. & Griendling, K. K. NADPH oxidases and angiotensin II receptor signaling. Mol. Cell. Endocrinol. 302, 148–158 (2009).

    CAS  PubMed  Google Scholar 

  232. Nguyen Dinh Cat, A., Montezano, A. C., Burger, D. & Touyz, R. M. Angiotensin II, NADPH oxidase, and redox signaling in the vasculature. Antioxid. Redox Signal. 19, 1110–1120 (2013).

    CAS  PubMed Central  PubMed  Google Scholar 

  233. Gavazzi, G. et al. Decreased blood pressure in NOX1-deficient mice. FEBS Lett. 580, 497–504 (2006).

    CAS  PubMed  Google Scholar 

  234. Weber, D. S. et al. Angiotensin II-induced hypertrophy is potentiated in mice overexpressing p22phox in vascular smooth muscle. Am. J. Physiol. Heart Circ. Physiol. 288, H37–H42 (2005).

    CAS  PubMed  Google Scholar 

  235. Dikalova, A. et al. Nox1 overexpression potentiates angiotensin II-induced hypertension and vascular smooth muscle hypertrophy in transgenic mice. Circulation 112, 2668–2676 (2005).

    CAS  PubMed  Google Scholar 

  236. Bendall, J. K. et al. Endothelial Nox2 overexpression potentiates vascular oxidative stress and hemodynamic response to angiotensin II: studies in endothelial-targeted Nox2 transgenic mice. Circ. Res. 100, 1016–1025 (2007).

    CAS  PubMed  Google Scholar 

  237. Murdoch, C. E. et al. Role of endothelial Nox2 NADPH oxidase in angiotensin II-induced hypertension and vasomotor dysfunction. Basic Res. Cardiol. 106, 527–538 (2011).

    CAS  PubMed Central  PubMed  Google Scholar 

  238. Bouabout, G. et al. Nox4 genetic inhibition in experimental hypertension and metabolic syndrome. Arch. Cardiovasc. Dis. 111, 41–52 (2018).

    PubMed  Google Scholar 

  239. Schroder, K. et al. Nox4 is a protective reactive oxygen species generating vascular NADPH oxidase. Circ. Res. 110, 1217–1225 (2012).

    PubMed  Google Scholar 

  240. Zhao, Q. D. et al. NADPH oxidase 4 induces cardiac fibrosis and hypertrophy through activating Akt/mTOR and NFκB signaling pathways. Circulation 131, 643–655 (2015).

    CAS  PubMed Central  PubMed  Google Scholar 

  241. Ray, R. et al. Endothelial Nox4 NADPH oxidase enhances vasodilatation and reduces blood pressure in vivo. Arterioscler. Thromb. Vasc. Biol. 31, 1368–1376 (2011).

    CAS  PubMed  Google Scholar 

  242. Laude, K. et al. Hemodynamic and biochemical adaptations to vascular smooth muscle overexpression of p22phox in mice. Am. J. Physiol. Heart Circ. Physiol. 288, H7–H12 (2005).

    CAS  PubMed  Google Scholar 

  243. Langbein, H. et al. NADPH oxidase 4 protects against development of endothelial dysfunction and atherosclerosis in LDL receptor deficient mice. Eur. Heart J. 37, 1753–1761 (2016).

    CAS  PubMed  Google Scholar 

  244. Drummond, G. R. & Sobey, C. G. Endothelial NADPH oxidases: which NOX to target in vascular disease? Trends Endocrinol. Metab. 25, 452–463 (2014).

    CAS  PubMed  Google Scholar 

  245. Montezano, A.C. et al. NADPH oxidase 5 is a pro-contractile nox isoform and a point of cross-talk for calcium and redox signaling-implications in vascular function. J. Am. Heart Assoc. 7, e009388 (2018).

  246. Jha, J. C. et al. NADPH oxidase NOX5 accelerates renal injury in diabetic nephropathy. Diabetes 66, 2691–2703 (2017).

    CAS  PubMed  Google Scholar 

  247. Casas, A. I. et al. Calcium-dependent blood-brain barrier breakdown by NOX5 limits postreperfusion benefit in stroke. J. Clin. Invest. 130, 1772–1778 (2019).

    Google Scholar 

  248. Holterman, C. E. et al. Nephropathy and elevated BP in mice with podocyte-specific NADPH oxidase 5 expression. J. Am. Soc. Nephrol. 25, 784–797 (2014).

    CAS  PubMed  Google Scholar 

  249. Cowley, A. W. Jr. et al. Evidence of the importance of NOX4 in production of hypertension in Dahl salt-sensitive rats. Hypertension 67, 440–450 (2016).

    CAS  PubMed  Google Scholar 

  250. Kroller-Schon, S. et al. Molecular mechanisms of the crosstalk between mitochondria and NADPH oxidase through reactive oxygen species — studies in white blood cells and in animal models. Antioxid. Redox Signal. 20, 247–266 (2014).

    PubMed Central  PubMed  Google Scholar 

  251. Miller, F. J. Jr. et al. Oxidative stress in human abdominal aortic aneurysms: a potential mediator of aneurysmal remodeling. Arterioscler. Thromb. Vasc. Biol. 22, 560–565 (2002).

    CAS  PubMed  Google Scholar 

  252. Guzik, B. et al. Mechanisms of oxidative stress in human aortic aneurysms — association with clinical risk factors for atherosclerosis and disease severity. Int. J. Cardiol. 168, 2389–2396 (2013).

    PubMed Central  PubMed  Google Scholar 

  253. McCormick, M. L., Gavrila, D. & Weintraub, N. L. Role of oxidative stress in the pathogenesis of abdominal aortic aneurysms. Arterioscler. Thromb. Vasc. Biol. 27, 461–469 (2007).

    CAS  PubMed  Google Scholar 

  254. Streeter, J., Thiel, W., Brieger, K. & Miller, F. J. Opportunity NOX: the future of NADPH oxidases as therapeutic targets in cardiovascular disease. Cardiovasc. Ther. 31, 125–137 (2013).

    CAS  PubMed  Google Scholar 

  255. Aviram, M., Rosenblat, M., Etzioni, A. & Levy, R. Activation of NADPH oxidase required for macrophage-mediated oxidation of low-density lipoprotein. Metabolism 45, 1069–1079 (1996).

    CAS  PubMed  Google Scholar 

  256. Sheehan, A. L. et al. Role for Nox1 NADPH oxidase in atherosclerosis. Atherosclerosis 216, 321–326 (2011).

    CAS  PubMed Central  PubMed  Google Scholar 

  257. Gray, S. P. et al. NADPH oxidase 1 plays a key role in diabetes mellitus-accelerated atherosclerosis. Circulation 127, 1888–1902 (2013).

    CAS  PubMed  Google Scholar 

  258. Judkins, C. P. et al. Direct evidence of a role for Nox2 in superoxide production, reduced nitric oxide bioavailability, and early atherosclerotic plaque formation in ApoE-/- mice. Am. J. Physiol. Heart Circ. Physiol. 298, H24–H32 (2010).

    CAS  PubMed  Google Scholar 

  259. Douglas, G. et al. Endothelial-specific Nox2 overexpression increases vascular superoxide and macrophage recruitment in ApoE-/- mice. Cardiovasc. Res. 94, 20–29 (2012).

    CAS  PubMed Central  PubMed  Google Scholar 

  260. Gray, S. P. et al. Reactive oxygen species can provide atheroprotection via NOX4-dependent inhibition of inflammation and vascular remodeling. Arterioscler. Thromb. Vasc. Biol. 36, 295–307 (2016).

    CAS  PubMed  Google Scholar 

  261. Schurmann, C. et al. The NADPH oxidase Nox4 has anti-atherosclerotic functions. Eur. Heart J. 36, 3447–3456 (2015).

    PubMed Central  PubMed  Google Scholar 

  262. Craige, S. M. et al. Endothelial NADPH oxidase 4 protects ApoE-/- mice from atherosclerotic lesions. Free Radic. Biol. Med. 89, 1–7 (2015).

    CAS  PubMed Central  PubMed  Google Scholar 

  263. Jay, D. B. et al. Nox5 mediates PDGF-induced proliferation in human aortic smooth muscle cells. Free Radic. Biol. Med. 45, 329–335 (2008).

    CAS  PubMed Central  PubMed  Google Scholar 

  264. Ozaki, M. et al. Overexpression of endothelial nitric oxide synthase accelerates atherosclerotic lesion formation in apoE-deficient mice. J. Clin. Invest. 110, 331–340 (2002).

    CAS  PubMed Central  PubMed  Google Scholar 

  265. Karnewar, S. et al. Mitochondria-targeted esculetin alleviates mitochondrial dysfunction by AMPK-mediated nitric oxide and SIRT3 regulation in endothelial cells: potential implications in atherosclerosis. Sci. Rep. 6, 24108 (2016).

    CAS  PubMed Central  PubMed  Google Scholar 

  266. San Martin, A. et al. Reactive oxygen species-selective regulation of aortic inflammatory gene expression in type 2 diabetes. Am. J. Physiol. Heart Circ. Physiol. 292, H2073–H2082 (2007).

    CAS  PubMed  Google Scholar 

  267. Youn, J. Y. et al. Role of vascular oxidative stress in obesity and metabolic syndrome. Diabetes 63, 2344–2355 (2014).

    PubMed Central  PubMed  Google Scholar 

  268. Mahmoud, A. M. et al. Nox2 contributes to hyperinsulinemia-induced redox imbalance and impaired vascular function. Redox Biol. 13, 288–300 (2017).

    CAS  PubMed Central  PubMed  Google Scholar 

  269. Wingler, K. et al. VAS2870 is a pan-NADPH oxidase inhibitor. Cell. Mol. Life Sci. 69, 3159–3160 (2012).

    CAS  PubMed  Google Scholar 

  270. Kassan, M. et al. Enhanced p22phox expression impairs vascular function through p38 and ERK1/2 MAP kinase-dependent mechanisms in type 2 diabetic mice. Am. J. Physiol. Heart Circ. Physiol. 306, H972–H980 (2014).

    CAS  PubMed Central  PubMed  Google Scholar 

  271. Maxwell, S. R. & Lip, G. Y. Reperfusion injury: a review of the pathophysiology, clinical manifestations and therapeutic options. Int. J. Cardiol. 58, 95–117 (1997).

    CAS  PubMed  Google Scholar 

  272. Eltzschig, H. K. & Collard, C. D. Vascular ischaemia and reperfusion injury. Br. Med. Bull. 70, 71–86 (2004).

    CAS  PubMed  Google Scholar 

  273. Brandes, R. P., Weissmann, N. & Schroder, K. NADPH oxidases in cardiovascular disease. Free Radic. Biol. Med. 49, 687–706 (2010).

    CAS  PubMed  Google Scholar 

  274. Li, Z. et al. BRG1 regulates NOX gene transcription in endothelial cells and contributes to cardiac ischemia-reperfusion injury. Biochim. Biophys. Acta Mol. Basis Dis. 1864, 3477–3486 (2018).

    CAS  PubMed  Google Scholar 

  275. Sirker, A. et al. Cell-specific effects of Nox2 on the acute and chronic response to myocardial infarction. J. Mol. Cell. Cardiol. 98, 11–17 (2016).

    CAS  PubMed Central  PubMed  Google Scholar 

  276. Yu, Q. et al. Elimination of NADPH oxidase activity promotes reductive stress and sensitizes the heart to ischemic injury. J. Am. Heart Assoc. 3, e000555 (2014).

    PubMed Central  PubMed  Google Scholar 

  277. Narravula, S. & Colgan, S. P. Hypoxia-inducible factor 1-mediated inhibition of peroxisome proliferator-activated receptor α expression during hypoxia. J. Immunol. 166, 7543–7548 (2001).

    CAS  PubMed  Google Scholar 

  278. Braunersreuther, V. & Jaquet, V. Reactive oxygen species in myocardial reperfusion injury: from physiopathology to therapeutic approaches. Curr. Pharm. Biotechnol. 13, 97–114 (2012).

    CAS  PubMed  Google Scholar 

  279. Zhang, J. & Cai, H. Netrin-1 prevents ischemia/reperfusion-induced myocardial infarction via a DCC/ERK1/2/eNOS s1177/NO/DCC feed-forward mechanism. J. Mol. Cell. Cardiol. 48, 1060–1070 (2010).

    CAS  PubMed Central  PubMed  Google Scholar 

  280. Bouhidel, J. O. et al. Netrin-1 improves post-injury cardiac function in vivo via DCC/NO-dependent preservation of mitochondrial integrity, while attenuating autophagy. Biochim. Biophys. Acta 1852, 277–289 (2015).

    CAS  PubMed  Google Scholar 

  281. Bouhidel, J. O., Wang, P., Li, Q. & Cai, H. Pharmacological postconditioning treatment of myocardial infarction with netrin-1. Front. Biosci. 19, 566–570 (2014).

    Google Scholar 

  282. Nguyen, A. & Cai, H. Netrin-1 induces angiogenesis via a DCC-dependent ERK1/2-eNOS feed-forward mechanism. Proc. Natl Acad. Sci. USA 103, 6530–6535 (2006).

    CAS  PubMed Central  PubMed  Google Scholar 

  283. Li, Q., Wang, P., Ye, K. & Cai, H. Central role of SIAH inhibition in DCC-dependent cardioprotection provoked by netrin-1/NO. Proc. Natl Acad. Sci. USA 112, 899–904 (2015).

    CAS  PubMed Central  PubMed  Google Scholar 

  284. Li, Q. & Cai, H. Induction of cardioprotection by small netrin-1-derived peptides. Am. J. Physiol. Cell Physiol. 309, C100–C106 (2015).

    CAS  PubMed Central  PubMed  Google Scholar 

  285. Octavia, Y., Brunner-La Rocca, H. P. & Moens, A. L. NADPH oxidase-dependent oxidative stress in the failing heart: from pathogenic roles to therapeutic approach. Free Radic. Biol. Med. 52, 291–297 (2012).

    CAS  PubMed  Google Scholar 

  286. Sirker, A., Zhang, M. & Shah, A. M. NADPH oxidases in cardiovascular disease: insights from in vivo models and clinical studies. Basic Res. Cardiol. 106, 735–747 (2011).

    CAS  PubMed Central  PubMed  Google Scholar 

  287. Maejima, Y., Kuroda, J., Matsushima, S., Ago, T. & Sadoshima, J. Regulation of myocardial growth and death by NADPH oxidase. J. Mol. Cell. Cardiol. 50, 408–416 (2011).

    CAS  PubMed Central  PubMed  Google Scholar 

  288. Zhang, M. et al. NADPH oxidase-4 mediates protection against chronic load-induced stress in mouse hearts by enhancing angiogenesis. Proc. Natl Acad. Sci. USA 107, 18121–18126 (2010).

    CAS  PubMed Central  PubMed  Google Scholar 

  289. Burgoyne, J. R., Mongue-Din, H., Eaton, P. & Shah, A. M. Redox signaling in cardiac physiology and pathology. Circ. Res. 111, 1091–1106 (2012).

    CAS  PubMed  Google Scholar 

  290. Sartoretto, J. L., Kalwa, H., Pluth, M. D., Lippard, S. J. & Michel, T. Hydrogen peroxide differentially modulates cardiac myocyte nitric oxide synthesis. Proc. Natl Acad. Sci. USA 108, 15792–15797 (2011).

    CAS  PubMed Central  PubMed  Google Scholar 

  291. Steinhorn, B. et al. Chemogenetic generation of hydrogen peroxide in the heart induces severe cardiac dysfunction. Nat. Commun. 9, 4044 (2018).

    PubMed Central  PubMed  Google Scholar 

  292. Bendall, J. K., Cave, A. C., Heymes, C., Gall, N. & Shah, A. M. Pivotal role of a gp91phox-containing NADPH oxidase in angiotensin II-induced cardiac hypertrophy in mice. Circulation 105, 293–296 (2002).

    CAS  PubMed  Google Scholar 

  293. Li, J. M., Gall, N. P., Grieve, D. J., Chen, M. & Shah, A. M. Activation of NADPH oxidase during progression of cardiac hypertrophy to failure. Hypertension 40, 477–484 (2002).

    CAS  PubMed  Google Scholar 

  294. Parajuli, N., Patel, V. B., Wang, W., Basu, R. & Oudit, G. Y. Loss of NOX2 (gp91phox) prevents oxidative stress and progression to advanced heart failure. Clin. Sci. 127, 331–340 (2014).

    CAS  Google Scholar 

  295. Looi, Y. H. et al. Involvement of Nox2 NADPH oxidase in adverse cardiac remodeling after myocardial infarction. Hypertension 51, 319–325 (2008).

    CAS  PubMed  Google Scholar 

  296. Ishikawa, K. et al. Acute left ventricular unloading reduces atrial stretch and inhibits atrial arrhythmias. J. Am. Coll. Cardiol. 72, 738–750 (2018).

    PubMed Central  PubMed  Google Scholar 

  297. Takimoto, E. & Kass, D. A. Role of oxidative stress in cardiac hypertrophy and remodeling. Hypertension 49, 241–248 (2007).

    CAS  PubMed  Google Scholar 

  298. Ide, T. et al. Direct evidence for increased hydroxyl radicals originating from superoxide in the failing myocardium. Circ. Res. 86, 152–157 (2000).

    CAS  PubMed  Google Scholar 

  299. Dey, S., DeMazumder, D., Sidor, A., Foster, D. B. & O’Rourke, B. Mitochondrial ROS drive sudden cardiac death and chronic proteome remodeling in heart failure. Circ. Res. 123, 356–371 (2018).

    CAS  PubMed  Google Scholar 

  300. Maack, C. & Bohm, M. Targeting mitochondrial oxidative stress in heart failure throttling the afterburner. J. Am. Coll. Cardiol. 58, 83–86 (2011).

    CAS  PubMed  Google Scholar 

  301. Liu, T. et al. Inhibiting mitochondrial Na+/Ca2+ exchange prevents sudden death in a Guinea pig model of heart failure. Circ. Res. 115, 44–54 (2014).

    CAS  PubMed Central  PubMed  Google Scholar 

  302. Meyer, A. J. & Dick, T. P. Fluorescent protein-based redox probes. Antioxid. Redox Signal. 13, 621–650 (2010).

    CAS  PubMed  Google Scholar 

  303. Kim, Y. M. et al. A myocardial Nox2 containing NAD(P)H oxidase contributes to oxidative stress in human atrial fibrillation. Circ. Res. 97, 629–636 (2005).

    CAS  PubMed  Google Scholar 

  304. Zhang, J. et al. NOX4-dependent hydrogen peroxide overproduction in human atrial fibrillation and HL-1 atrial cells: relationship to hypertension. Front. Physiol. 3, 140 (2012).

    PubMed Central  PubMed  Google Scholar 

  305. Schramm, A., Matusik, P., Osmenda, G. & Guzik, T. J. Targeting NADPH oxidases in vascular pharmacology. Vasc. Pharmacol. 56, 216–231 (2012).

    CAS  Google Scholar 

  306. Wingler, K. et al. NOX1, 2, 4, 5: counting out oxidative stress. Br. J. Pharmacol. 164, 866–883 (2011).

    CAS  PubMed Central  PubMed  Google Scholar 

  307. Cross, A. R. & Jones, O. T. The effect of the inhibitor diphenylene iodonium on the superoxide-generating system of neutrophils. Specific labelling of a component polypeptide of the oxidase. Biochem. J. 237, 111–116 (1986).

    CAS  PubMed Central  PubMed  Google Scholar 

  308. Ellis, J. A., Mayer, S. J. & Jones, O. T. The effect of the NADPH oxidase inhibitor diphenyleneiodonium on aerobic and anaerobic microbicidal activities of human neutrophils. Biochem. J. 251, 887–891 (1988).

    CAS  PubMed Central  PubMed  Google Scholar 

  309. Simons, J. M., Hart, B. A., Ip Vai Ching, T. R., Van Dijk, H. & Labadie, R. P. Metabolic activation of natural phenols into selective oxidative burst agonists by activated human neutrophils. Free Radic. Biol. Med. 8, 251–258 (1990).

    CAS  PubMed  Google Scholar 

  310. Suzuki, Y., Wang, W., Vu, T. H. & Raffin, T. A. Effect of NADPH oxidase inhibition on endothelial cell ELAM-1 mRNA expression. Biochem. Biophys. Res. Commun. 184, 1339–1343 (1992).

    CAS  PubMed  Google Scholar 

  311. Garrido-Urbani, S. et al. Targeting vascular NADPH oxidase 1 blocks tumor angiogenesis through a PPARα mediated mechanism. PLOS ONE 6, e14665 (2011).

    CAS  PubMed Central  PubMed  Google Scholar 

  312. Sedeek, M. et al. Critical role of Nox4-based NADPH oxidase in glucose-induced oxidative stress in the kidney: implications in type 2 diabetic nephropathy. Am. J. Physiol. Ren. Physiol. 299, F1348–F1358 (2010).

    CAS  Google Scholar 

  313. Aoyama, T. et al. Nicotinamide adenine dinucleotide phosphate oxidase in experimental liver fibrosis: GKT137831 as a novel potential therapeutic agent. Hepatology 56, 2316–2327 (2012).

    CAS  PubMed  Google Scholar 

  314. O’Donnell, V. B., Smith, G. C. & Jones, O. T. Involvement of phenyl radicals in iodonium inhibition of flavoenzymes. Mol. Pharmacol. 46, 778–785 (1994).

    CAS  PubMed  Google Scholar 

  315. O’Donnell, B. V., Tew, D. G., Jones, O. T. & England, P. J. Studies on the inhibitory mechanism of iodonium compounds with special reference to neutrophil NADPH oxidase. Biochem. J. 290, 41–49 (1993).

    CAS  PubMed Central  PubMed  Google Scholar 

  316. Gianni, D. et al. A novel and specific NADPH oxidase-1 (Nox1) small-molecule inhibitor blocks the formation of functional invadopodia in human colon cancer cells. ACS Chem. Biol. 5, 981–993 (2010).

    CAS  PubMed Central  PubMed  Google Scholar 

  317. Altenhofer, S. et al. The NOX toolbox: validating the role of NADPH oxidases in physiology and disease. Cell. Mol. Life Sci. 69, 2327–2343 (2012).

    PubMed Central  PubMed  Google Scholar 

  318. Maraldi, T. Natural compounds as modulators of NADPH oxidases. Oxid. Med. Cell. Longev. 2013, 271602 (2013).

  319. Barbieri, S. S. et al. Apocynin prevents cyclooxygenase 2 expression in human monocytes through NADPH oxidase and glutathione redox-dependent mechanisms. Free Radic. Biol. Med. 37, 156–165 (2004).

    CAS  PubMed  Google Scholar 

  320. Stolk, J., Hiltermann, T. J., Dijkman, J. H. & Verhoeven, A. J. Characteristics of the inhibition of NADPH oxidase activation in neutrophils by apocynin, a methoxy-substituted catechol. Am. J. Respir. Cell Mol. Biol. 11, 95–102 (1994).

    CAS  PubMed  Google Scholar 

  321. Williams, H. C. & Griendling, K. K. NADPH oxidase inhibitors: new antihypertensive agents? J. Cardiovasc. Pharmacol. 50, 9–16 (2007).

    CAS  PubMed  Google Scholar 

  322. Tanriverdi, L. H. et al. Inhibition of NADPH oxidase by apocynin promotes myocardial antioxidant response and prevents isoproterenol-induced myocardial oxidative stress in rats. Free. Radic. Res. 51, 772–786 (2017).

    CAS  PubMed  Google Scholar 

  323. Drummond, G. R., Selemidis, S., Griendling, K. K. & Sobey, C. G. Combating oxidative stress in vascular disease: NADPH oxidases as therapeutic targets. Nat. Rev. Drug Discov. 10, 453–471 (2011).

    CAS  PubMed Central  PubMed  Google Scholar 

  324. Remold-O’Donnell, E. & Parent, D. Downregulation of neutrophil CD43 by opsonized zymosan. Blood 85, 337–342 (1995).

    CAS  PubMed  Google Scholar 

  325. Diatchuk, V., Lotan, O., Koshkin, V., Wikstroem, P. & Pick, E. Inhibition of NADPH oxidase activation by 4-(2-aminoethyl)-benzenesulfonyl fluoride and related compounds. J. Biol. Chem. 272, 13292–13301 (1997).

    CAS  PubMed  Google Scholar 

  326. Wartenberg, M. et al. Reactive oxygen species-linked regulation of the multidrug resistance transporter P-glycoprotein in Nox-1 overexpressing prostate tumor spheroids. FEBS Lett. 579, 4541–4549 (2005).

    CAS  PubMed  Google Scholar 

  327. Cayatte, A. J. et al. S17834, a new inhibitor of cell adhesion and atherosclerosis that targets NADPH oxidase. Arterioscler. Thromb. Vasc. Biol. 21, 1577–1584 (2001).

    CAS  PubMed  Google Scholar 

  328. Zang, M. et al. Polyphenols stimulate AMP-activated protein kinase, lower lipids, and inhibit accelerated atherosclerosis in diabetic LDL receptor-deficient mice. Diabetes 55, 2180–2191 (2006).

    CAS  PubMed  Google Scholar 

  329. Delbosc, S. et al. Statins, 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors, are able to reduce superoxide anion production by NADPH oxidase in THP-1-derived monocytes. J. Cardiovasc. Pharmacol. 40, 611–617 (2002).

    CAS  PubMed  Google Scholar 

  330. Wassmann, S. et al. Cellular antioxidant effects of atorvastatin in vitro and in vivo. Arterioscler. Thromb. Vasc. Biol. 22, 300–305 (2002).

    CAS  PubMed  Google Scholar 

  331. Wei, Y. M. et al. Attenuation by statins of membrane raft-redox signaling in coronary arterial endothelium. J. Pharmacol. Exp. Ther. 345, 170–179 (2013).

    CAS  PubMed Central  PubMed  Google Scholar 

  332. Kwok, J. M. F., Ma, C. C. H. & Ma, S. Recent development in the effects of statins on cardiovascular disease through Rac1 and NADPH oxidase. Vasc. Pharmacol. 58, 21–30 (2013).

    CAS  Google Scholar 

  333. Shiga, N. et al. Long-term inhibition of RhoA attenuates vascular contractility by enhancing endothelial NO production in an intact rabbit mesenteric artery. Circ. Res. 96, 1014–1021 (2005).

    CAS  PubMed  Google Scholar 

  334. Gao, Y., Dickerson, J. B., Guo, F., Zheng, J. & Zheng, Y. Rational design and characterization of a Rac GTPase-specific small molecule inhibitor. Proc. Natl Acad. Sci. USA 101, 7618–7623 (2004).

    CAS  PubMed Central  PubMed  Google Scholar 

  335. Youn, J. Y., Nguyen, A. & Cai, H. Inhibition of XO or NOX attenuates diethylstilbestrol-induced endothelial nitric oxide deficiency without affecting its effects on LNCaP cell invasion and apoptosis. Clin. Sci. 123, 509–518 (2012).

    CAS  Google Scholar 

  336. ten Freyhaus, H. et al. Novel Nox inhibitor VAS2870 attenuates PDGF-dependent smooth muscle cell chemotaxis, but not proliferation. Cardiovasc. Res. 71, 331–341 (2006).

    PubMed  Google Scholar 

  337. Stielow, C. et al. Novel Nox inhibitor of oxLDL-induced reactive oxygen species formation in human endothelial cells. Biochem. Biophys. Res. Commun. 344, 200–205 (2006).

    CAS  PubMed  Google Scholar 

  338. Wind, S. et al. Comparative pharmacology of chemically distinct NADPH oxidase inhibitors. Br. J. Pharmacol. 161, 885–898 (2010).

    CAS  PubMed Central  PubMed  Google Scholar 

  339. Seredenina, T. et al. A subset of N-substituted phenothiazines inhibits NADPH oxidases. Free Radic. Biol. Med. 86, 239–249 (2015).

    CAS  PubMed  Google Scholar 

  340. Perry, B. N. et al. Pharmacologic blockade of angiopoietin-2 is efficacious against model hemangiomas in mice. J. Invest. Dermatol. 126, 2316–2322 (2006).

    CAS  PubMed  Google Scholar 

  341. Munson, J. M. et al. Anti-invasive adjuvant therapy with imipramine blue enhances chemotherapeutic efficacy against glioma. Sci. Transl Med. 4, 127ra36 (2012).

    PubMed  Google Scholar 

  342. Bhandarkar, S. S. et al. Fulvene-5 potently inhibits NADPH oxidase 4 and blocks the growth of endothelial tumors in mice. J. Clin. Invest. 119, 2359–2365 (2009).

    CAS  PubMed Central  PubMed  Google Scholar 

  343. Rey, F. E., Cifuentes, M. E., Kiarash, A., Quinn, M. T. & Pagano, P. J. Novel competitive inhibitor of NAD(P)H oxidase assembly attenuates vascular O2 and systolic blood pressure in mice. Circ. Res. 89, 408–414 (2001).

    CAS  PubMed  Google Scholar 

  344. Csanyi, G. et al. Nox2 B-loop peptide, Nox2ds, specifically inhibits the NADPH oxidase Nox2. Free Radic. Biol. Med. 51, 1116–1125 (2011).

    CAS  PubMed Central  PubMed  Google Scholar 

  345. Ranayhossaini, D. J. et al. Selective recapitulation of conserved and nonconserved regions of putative NOXA1 protein activation domain confers isoform-specific inhibition of Nox1 oxidase and attenuation of endothelial cell migration. J. Biol. Chem. 288, 36437–36450 (2013).

    CAS  PubMed Central  PubMed  Google Scholar 

  346. Cifuentes-Pagano, E., Csanyi, G. & Pagano, P. J. NADPH oxidase inhibitors: a decade of discovery from Nox2ds to HTS. Cell. Mol. Life Sci. 69, 2315–2325 (2012).

    CAS  PubMed Central  PubMed  Google Scholar 

  347. Laleu, B. et al. First in class, potent, and orally bioavailable NADPH oxidase isoform 4 (Nox4) inhibitors for the treatment of idiopathic pulmonary fibrosis. J. Med. Chem. 53, 7715–7730 (2010).

    CAS  PubMed  Google Scholar 

  348. Anvari, E., Wikstrom, P., Walum, E. & Welsh, N. The novel NADPH oxidase 4 inhibitor GLX351322 counteracts glucose intolerance in high-fat diet-treated C57BL/6 mice. Free Radic. Res. 49, 1308–1318 (2015).

    CAS  PubMed  Google Scholar 

  349. Wang, X. et al. The novel NADPH oxidase 4 selective inhibitor GLX7013114 counteracts human islet cell death in vitro. PLOS ONE 13, e0204271 (2018).

    PubMed Central  PubMed  Google Scholar 

  350. Hirano, K. et al. Discovery of gsk2795039, a novel small molecule NADPH oxidase 2 inhibitor. Antioxid. Redox Signal. 23, 358–374 (2015).

    CAS  PubMed Central  PubMed  Google Scholar 

  351. Musset, B. et al. NOX5 in human spermatozoa: expression, function, and regulation. J. Biol. Chem. 287, 9376–9388 (2012).

    CAS  PubMed Central  PubMed  Google Scholar 

  352. Jiang, J. X. et al. Liver fibrosis and hepatocyte apoptosis are attenuated by GKT137831, a novel NOX4/NOX1 inhibitor in vivo. Free Radic. Biol. Med. 53, 289–296 (2012).

    CAS  PubMed Central  PubMed  Google Scholar 

  353. Schildknecht, S. et al. The NOX1/4 inhibitor GKT136901 as selective and direct scavenger of peroxynitrite. Curr. Med. Chem. 21, 365–376 (2014).

    CAS  PubMed  Google Scholar 

  354. Strengert, M. et al. Mucosal reactive oxygen species are required for antiviral response: role of Duox in influenza A virus infection. Antioxid. Redox Signal. 20, 2695–2709 (2014).

    CAS  PubMed  Google Scholar 

  355. Gorin, Y. et al. Targeting NADPH oxidase with a novel dual Nox1/Nox4 inhibitor attenuates renal pathology in type 1 diabetes. Am. J. Physiol. Ren. Physiol. 308, F1276–F1287 (2015).

    CAS  Google Scholar 

  356. Teixeira, G. et al. Therapeutic potential of NADPH oxidase 1/4 inhibitors. Br. J. Pharmacol. 174, 1647–1669 (2017).

    CAS  PubMed  Google Scholar 

  357. Vendrov, A. E. et al. NADPH oxidases regulate CD44 and hyaluronic acid expression in thrombin-treated vascular smooth muscle cells and in atherosclerosis. J. Biol. Chem. 285, 26545–26557 (2010).

    CAS  PubMed Central  PubMed  Google Scholar 

  358. Di Marco, E. et al. Pharmacological inhibition of NOX reduces atherosclerotic lesions, vascular ROS and immune-inflammatory responses in diabetic Apoe -/- mice. Diabetologia 57, 633–642 (2014).

    PubMed  Google Scholar 

  359. Joo, J. H. et al. A novel pyrazole derivative protects from ovariectomy-induced osteoporosis through the inhibition of NADPH oxidase. Sci. Rep. 6, 22389 (2016).

    CAS  PubMed Central  PubMed  Google Scholar 

  360. Cha, J. J. et al. APX-115, a first-in-class pan-NADPH oxidase (Nox) inhibitor, protects db/db mice from renal injury. Lab. Invest. 97, 419–431 (2017).

    CAS  PubMed  Google Scholar 

  361. Dorotea, D. et al. A pan-NADPH oxidase inhibitor ameliorates kidney injury in type 1 diabetic rats. Pharmacology 102, 180–189 (2018).

    CAS  PubMed  Google Scholar 

  362. Luxen, S., Belinsky, S. A. & Knaus, U. G. Silencing of DUOX NADPH oxidases by promoter hypermethylation in lung cancer. Cancer Res. 68, 1037–1045 (2008).

    CAS  PubMed  Google Scholar 

  363. Shames, D. S. et al. A genome-wide screen for promoter methylation in lung cancer identifies novel methylation markers for multiple malignancies. PLOS MED 3, e486 (2006).

    PubMed Central  PubMed  Google Scholar 

  364. Hayes, P. & Knaus, U. G. Balancing reactive oxygen species in the epigenome: NADPH oxidases as target and perpetrator. Antioxid. Redox Signal. 18, 1937–1945 (2013).

    CAS  PubMed  Google Scholar 

  365. Kikuchi, H., Kuribayashi, F., Kiwaki, N., Takami, Y. & Nakayama, T. GCN5 regulates the superoxide-generating system in leukocytes via controlling gp91-phox gene expression. J. Immunol. 186, 3015–3022 (2011).

    CAS  PubMed  Google Scholar 

  366. Siuda, D. et al. Transcriptional regulation of Nox4 by histone deacetylases in human endothelial cells. Basic Res. Cardiol. 107, 283 (2012).

    PubMed  Google Scholar 

  367. Zelko, I. N. & Folz, R. J. Regulation of oxidative stress in pulmonary artery endothelium: modulation of extracellular superoxide dismutase and NOX4 expression using histone deacetylase class I inhibitors. Am. J. Respir. Cell Mol. Biol. 53, 513–524 (2015).

    CAS  PubMed Central  PubMed  Google Scholar 

  368. Chen, F. et al. Inhibition of histone deacetylase reduces transcription of NADPH oxidases and ROS production and ameliorates pulmonary arterial hypertension. Free Radic. Biol. Med. 99, 167–178 (2016).

    CAS  PubMed Central  PubMed  Google Scholar 

  369. Manea, S. A. et al. Epigenetic regulation of vascular NADPH oxidase expression and reactive oxygen species production by histone deacetylase-dependent mechanisms in experimental diabetes. Redox Biol. 16, 332–343 (2018).

    CAS  PubMed Central  PubMed  Google Scholar 

  370. Duraisamy, A. J., Mishra, M., Kowluru, A. & Kowluru, R. A. Epigenetics and regulation of oxidative stress in diabetic retinopathy. Invest. Ophthalmol. Vis. Sci. 59, 4831–4840 (2018).

    CAS  PubMed Central  PubMed  Google Scholar 

  371. Yu, L. et al. Megakaryocytic leukemia 1 bridges epigenetic activation of NADPH oxidase in macrophages to cardiac ischemia-reperfusion injury. Circulation 138, 2820–2836 (2018).

    CAS  PubMed  Google Scholar 

  372. Murdoch, C. E. et al. Endothelial NADPH oxidase-2 promotes interstitial cardiac fibrosis and diastolic dysfunction through proinflammatory effects and endothelial-mesenchymal transition. J. Am. Coll. Cardiol. 63, 2734–2741 (2014).

    CAS  PubMed  Google Scholar 

  373. Pollock, J. D. et al. Mouse model of X-linked chronic granulomatous disease, an inherited defect in phagocyte superoxide production. Nat. Genet. 9, 202–209 (1995).

    CAS  PubMed  Google Scholar 

  374. Jackson, S. H., Gallin, J. I. & Holland, S. M. The p47phox mouse knock-out model of chronic granulomatous disease. J. Exp. Med. 182, 751–758 (1995).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are supported by an AHA Postdoctoral Fellowship Award #14POST20380996 (Y.Z.), NIH National Heart, Lung, and Blood Institute (NHLBI) grants HL077440, HL088975 and HL119968, and an AHA Established Investigator Award 12EIA8990025 (H.C.).

Author information

Authors and Affiliations

Authors

Contributions

All the authors researched data for the article and wrote the manuscript. Y.Z. and H.C. discussed the content of the article and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Hua Cai.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

RCSB Protein Data Bank: https://www.rcsb.org/

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Murugesan, P., Huang, K. et al. NADPH oxidases and oxidase crosstalk in cardiovascular diseases: novel therapeutic targets. Nat Rev Cardiol 17, 170–194 (2020). https://doi.org/10.1038/s41569-019-0260-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41569-019-0260-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing