Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Signalling platforms that modulate the inflammatory response: new targets for drug development

Key Points

Therapeutic control of inflammation is essential for clinical management of a wide range of high prevalence human diseases including asthma, pulmonary fibrosis, rheumatoid arthritis, periodontitis, Crohn's disease, multiple sclerosis, and an expanding group of auto-inflammatory disorders.

Targeted anti-cytokine therapy is now well established in the management of rheumatoid arthritis and Crohn's disease. Interleukin-1 inhibition appears to be more effective in controlling the manifestations of several auto-inflammatory syndromes, and a number of strategies for interfering with Interleukin-1 signalling are in various stages of development.

However, since available agents have important shortcomings including cost and the lack of predictability in clinical response, both during initiation and maintenance, there is a clear need to develop alternative approaches for inhibiting tumour necrosis factor-α and interleukin-l in a more predictable and cost-effective manner.

The development of small molecules and peptides to target the intracellular signalling pathways of these cytokines including novel anti-inflammatory drug targets based on the clustering of Interleukin-1 receptors into large, multi-protein aggregates, is a promising avenue to pursue.

Interference with receptor aggregation and the functional relationships between receptors and the endoplasmic reticulum effectively abrogates interleukin-1 signalling. The interleukin-1 -generated signal relies on the clustering of receptors into cell adhesion complexes. The assembly of the adhesion complex and its functional connection to signal generation from the endoplasmic reticulum appears to be very dependent on protein tyrosine phosphatases, which are abundant in adhesion complexes, and mutation of which is associated with poorly controlled inflammatory disease.

We suggest that protein tyrosine phosphatases could provide a particularly rich array of targets for the development of small molecular weight peptides for anti-inflammatory drug development.

Abstract

Therapeutically controlling inflammation is essential for the clinical management of many high-prevalence human diseases. Drugs that block the pro-inflammatory cytokines tumour-necrosis factor-α and interleukin-1 (IL-1) can improve outcomes for rheumatoid arthritis and other inflammatory diseases but many patients remain refractory to treatment. Here we explore the need for developing new types of anti-inflammatory drugs and the emergence of novel drug targets based on the clustering of IL-1 receptors into multi-protein aggregates associated with cell adhesions. Interference with receptor aggregation into multi-protein complexes effectively abrogates IL-1 signalling. The exploration of the crucial molecules required for receptor clustering, and therefore signal transduction, offers new targets and scope for anti-inflammatory drug development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sites of action of existing and novel therapeutics for the treatment of inflammation.
Figure 2: Focal adhesion maturation.
Figure 3: Interleukin-1-mediated calcium signalling.

Similar content being viewed by others

References

  1. Gabay, C. & Kushner, I. Acute-phase proteins and other systemic responses to inflammation. N. Engl. J. Med. 340, 448–454 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Singh, R. et al. The IL-1 receptor and Rho directly associate to drive cell activation in inflammation. J. Clin. Invest. 103, 1561–1570 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lipsky, P. E. et al. Infliximab and methotrexate in the treatment of rheumatoid arthritis. Anti-Tumor Necrosis Factor Trial in Rheumatoid Arthritis with Concomitant Therapy Study Group. N. Engl. J. Med. 343, 1594–1602 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Genovese, M. C. et al. Etanercept versus methotrexate in patients with early rheumatoid arthritis: two-year radiographic and clinical outcomes. Arthritis Rheum. 46, 1443–1450 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Bathon, J. M. et al. A comparison of etanercept and methotrexate in patients with early rheumatoid arthritis. N. Engl. J. Med. 343, 1586–1593 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Breedveld, F. C. et al. The PREMIER study: A multicenter, randomized, double-blind clinical trial of combination therapy with adalimumab plus methotrexate versus methotrexate alone or adalimumab alone in patients with early, aggressive rheumatoid arthritis who had not had previous methotrexate treatment. Arthritis Rheum. 54, 26–37 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Keystone, E. C. et al. Radiographic, clinical, and functional outcomes of treatment with adalimumab (a human anti-tumor necrosis factor monoclonal antibody) in patients with active rheumatoid arthritis receiving concomitant methotrexate therapy: a randomized, placebo-controlled, 52-week trial. Arthritis Rheum. 50, 1400–1411 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Smolen, J. S. et al. Evidence of radiographic benefit of treatment with infliximab plus methotrexate in rheumatoid arthritis patients who had no clinical improvement: a detailed subanalysis of data from the anti-tumor necrosis factor trial in rheumatoid arthritis with concomitant therapy study. Arthritis Rheum. 52, 1020–1030 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Deng, G. M., Zheng, L., Chan, F. K. & Lenardo, M. Amelioration of inflammatory arthritis by targeting the pre-ligand assembly domain of tumor necrosis factor receptors. Nature Med. 11, 1066–1072 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Horai, R. et al. TNF-α is crucial for the development of autoimmune arthritis in IL-1 receptor antagonist-deficient mice. J. Clin. Invest. 114, 1603–1611 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Redlich, K. et al. Repair of local bone erosions and reversal of systemic bone loss upon therapy with anti-tumor necrosis factor in combination with osteoprotegerin or parathyroid hormone in tumor necrosis factor-mediated arthritis. Am. J. Pathol. 164, 543–555 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zwerina, J. et al. Single and combined inhibition of tumor necrosis factor, interleukin-1, and RANKL pathways in tumor necrosis factor-induced arthritis: effects on synovial inflammation, bone erosion, and cartilage destruction. Arthritis Rheum. 50, 277–290 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Redlich, K. et al. Osteoclasts are essential for TNF-α-mediated joint destruction. J. Clin. Invest. 110, 1419–14127 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Shealy, D. J. et al. Anti-TNF-α antibody allows healing of joint damage in polyarthritic transgenic mice. Arthritis Res. 4, R7 (2002).

  15. Keystone, E. C. & Kavanaugh, A. What to do with TNF failures. Expert Opin. Drug Saf. 4, 149–155 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Smith, D. E. et al. Four new members expand the interleukin-1 superfamily. J. Biol. Chem. 275, 1169–1175 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. O'Neill, L. A. & Dinarello, C. A. The IL-1 receptor/toll-like receptor superfamily: crucial receptors for inflammation and host defense. Immunol. Today 21, 206–209 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Goldring, S. R. Pathogenesis of bone and cartilage destruction in rheumatoid arthritis. Rheumatology (Oxford) 42 Suppl 2, ii11–116 (2003).

    CAS  Google Scholar 

  19. Dayer, J. M. & Bresnihan, B. Targeting interleukin-1 in the treatment of rheumatoid arthritis. Arthritis Rheum. 46, 574–578 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Jindal, S. K. & Agarwal, R. Autoimmunity and interstitial lung disease. Curr. Opin. Pulm. Med. 11, 438–446 (2005).

    Article  PubMed  Google Scholar 

  21. Loos, B. G., John, R. P. & Laine, M. L. Identification of genetic risk factors for periodontitis and possible mechanisms of action. J. Clin. Periodontol. 32 (Suppl. 6), 159–179 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Bresnihan, B. & Cunnane, G. Interleukin-1 receptor antagonist. Rheum. Dis. Clin. North Am. 24, 615–628 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Braddock, M. & Quinn, A. Targeting IL-1 in inflammatory disease: new opportunities for therapeutic intervention. Nature Rev. Drug Discov. 3, 330–339 (2004).

    Article  CAS  Google Scholar 

  24. Christodoulou, C. & Choy, E. H. Joint inflammation and cytokine inhibition in rheumatoid arthritis. Clin. Exp. Med. 6, 13–19 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Janssens, S. & Beyaert, R. Functional diversity and regulation of different interleukin-1 receptor-associated kinase (IRAK) family members. Mol. Cell 11, 293–302 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Auron, P. E. The interleukin 1 receptor: ligand interactions and signal transduction. Cytokine Growth Factor Rev. 9, 221–237 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. Dower, S. K. et al. Detection and characterization of high affinity plasma membrane receptors for human interleukin 1. J. Exp. Med. 162, 501–515 (1985).

    Article  CAS  PubMed  Google Scholar 

  28. Akira, S., Takeda, K. & Kaisho, T. Toll-like receptors: critical proteins linking innate and acquired immunity. Nature Immunol. 2, 675–680 (2001).

    Article  CAS  Google Scholar 

  29. Sims, J. E. et al. Interleukin 1 signaling occurs exclusively via the type I receptor. Proc. Natl Acad. Sci. USA 90, 6155–6159 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wesche, H. et al. The interleukin-1 receptor accessory protein (IL-1RAcP) is essential for IL-1-induced activation of interleukin-1 receptor-associated kinase (IRAK) and stress-activated protein kinases (SAP kinases). J. Biol. Chem. 272, 7727–7731 (1997).

    Article  CAS  PubMed  Google Scholar 

  31. Burns, K. et al. Tollip, a new component of the IL-1RI pathway, links IRAK to the IL-1 receptor. Nature Cell Biol. 2, 346–351 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Burns, K. et al. MyD88, an adapter protein involved in interleukin-1 signaling. J. Biol. Chem. 273, 12203–12209 (1998).

    Article  CAS  PubMed  Google Scholar 

  33. Qwarnstrom, E. E., MacFarlane, S. A., Page, R. C. & Dower, S. K. Interleukin 1β induces rapid phosphorylation and redistribution of talin: a possible mechanism for modulation of fibroblast focal adhesion. Proc. Natl Acad. Sci. USA 88, 1232–1236 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Palsson, E. M., Popoff, M., Thelestam, M. & O'Neill, L. A. Divergent roles for Ras and Rap in the activation of p38 mitogen-activated protein kinase by interleukin-1. J. Biol. Chem. 275, 7818–7825 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Matthews, J. S. & O'Neill, L. A. Distinct roles for p42/p44 and p38 mitogen-activated protein kinases in the induction of IL-2 by IL-1. Cytokine 11, 643–655 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. Luo, L., Cruz, T. & McCulloch, C. Interleukin 1-induced calcium signalling in chondrocytes requires focal adhesions. Biochem. J. 324, 653–658 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhu, P., Xiong, W., Rodgers, G. & Qwarnstrom, E. E. Regulation of interleukin 1 signalling through integrin binding and actin reorganization: disparate effects on NF-κB and stress kinase pathways. Biochem. J. 330, 975–981 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Maraldi, N. M., Marmiroli, S., Rizzoli, R., Mazzotti, G. & Manzoli, F. A. Phosphatidylinositol 3-kinase translocation to the nucleus is an early event in the interleukin-1 signalling mechanism in human osteosarcoma Saos-2 cells. Adv. Enzyme Regul. 39, 33–49 (1999).

    Article  CAS  PubMed  Google Scholar 

  39. Bergman, M. R. et al. A functional activating protein 1 (AP-1) site regulates matrix metalloproteinase 2 (MMP-2) transcription by cardiac cells through interactions with JunB-Fra1 and JunB-FosB heterodimers. Biochem. J. 369, 485–496 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ferrari, D. et al. The P2X7 receptor: a key player in IL-1 processing and release. J. Immunol. 176, 3877–3883 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Laliberte, R. E. et al. Glutathione s-transferase omega 1–1 is a target of cytokine release inhibitory drugs and may be responsible for their effect on interleukin-1β posttranslational processing. J. Biol. Chem. 278, 16567–16578 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Smeets, R. L. et al. Soluble interleukin-1 receptor accessory protein ameliorates collagen-induced arthritis by a different mode of action from that of interleukin-1 receptor antagonist. Arthritis Rheum. 52, 2202–2211 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Fleischmann, R. M. et al. Anakinra, a recombinant human interleukin-1 receptor antagonist (r-metHuIL-1ra), in patients with rheumatoid arthritis: A large, international, multicenter, placebo-controlled trial. Arthritis Rheum. 48, 927–934 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. Siegel, J. FDA briefing document on safety and efficacy update of approved TNF-blocking agents [online], (2003).

  45. Zou, J. et al. Down-regulation of the nonspecific and antigen-specific T cell cytokine response in ankylosing spondylitis during treatment with infliximab. Arthritis Rheum. 48, 780–790 (2003).

    Article  CAS  PubMed  Google Scholar 

  46. Bresnihan, B., Newmark, R., Robbins, S. & Genant, H. K. Effects of anakinra monotherapy on joint damage in patients with rheumatoid arthritis. Extension of a 24-week randomized, placebo-controlled trial. J. Rheumatol. 31, 1103–1111 (2004).

    CAS  PubMed  Google Scholar 

  47. Cohen, S. et al. Treatment of rheumatoid arthritis with anakinra, a recombinant human interleukin-1 receptor antagonist, in combination with methotrexate: results of a twenty-four-week, multicenter, randomized, double-blind, placebo-controlled trial. Arthritis Rheum. 46, 614–624 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Jiang, Y. et al. A multicenter, double-blind, dose-ranging, randomized, placebo-controlled study of recombinant human interleukin-1 receptor antagonist in patients with rheumatoid arthritis: radiologic progression and correlation of Genant and Larsen scores. Arthritis Rheum. 43, 1001–1009 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. Coxon, A. et al. Inhibition of interleukin-1 but not tumor necrosis factor suppresses neovascularization in rat models of corneal angiogenesis and adjuvant arthritis. Arthritis Rheum. 46, 2604–2612 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Bendele, A. et al. Efficacy of sustained blood levels of interleukin-1 receptor antagonist in animal models of arthritis: comparison of efficacy in animal models with human clinical data. Arthritis Rheum. 42, 498–506 (1999).

    Article  CAS  PubMed  Google Scholar 

  51. Boivin, B., Villeneuve, L. R., Farhat, N., Chevalier, D. & Allen, B. G. Sub-cellular distribution of endothelin signaling pathway components in ventricular myocytes and heart: lack of preformed caveolar signalosomes. J. Mol. Cell. Cardiol. 38, 665–676 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. Pascual, V., Allantaz, F., Arce, E., Punaro, M. & Banchereau, J. Role of interleukin-1 (IL-1) in the pathogenesis of systemic onset juvenile idiopathic arthritis and clinical response to IL-1 blockade. J. Exp. Med. 201, 1479–1486 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Fitzgerald, A. A., Leclercq, S. A., Yan, A., Homik, J. E. & Dinarello, C. A. Rapid responses to anakinra in patients with refractory adult-onset Still's disease. Arthritis Rheum. 52, 1794–1803 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. Stojanov, S. & Kastner, D. L. Familial autoinflammatory diseases: genetics, pathogenesis and treatment. Curr. Opin. Rheumatol. 17, 586–599 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. Drenth, J. P. & van der Meer, J. W. The Inflammasome-- A Linebacker of Innate Defense. N. Engl. J. Med. 355, 730–732 (2006).

    Article  CAS  PubMed  Google Scholar 

  56. Srinivasula, S. M. et al. The PYRIN-CARD protein ASC is an activating adaptor for caspase-1. J. Biol. Chem. 277, 21119–21122 (2002).

    Article  CAS  PubMed  Google Scholar 

  57. Lovell, D. J., Bowyer, S. L. & Solinger, A. M. Interleukin-1 blockade by anakinra improves clinical symptoms in patients with neonatal-onset multisystem inflammatory disease. Arthritis Rheum. 52, 1283–1286 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Boschan, C. et al. Neonatal-onset multisystem inflammatory disease (NOMID) due to a novel S331R mutation of the CIAS1 gene and response to interleukin-1 receptor antagonist treatment. Am. J. Med. Genet. A 140, 883–886 (2006).

    Article  CAS  PubMed  Google Scholar 

  59. Rudolphi, K., Gerwin, N., Verzijl, N., van der Kraan, P. & van den Berg, W. Pralnacasan, an inhibitor of interleukin-1β converting enzyme, reduces joint damage in two murine models of osteoarthritis. Osteoarthritis Cartilage 11, 738–746 (2003).

    Article  CAS  PubMed  Google Scholar 

  60. Loher, F. et al. The interleukin-1β-converting enzyme inhibitor pralnacasan reduces dextran sulfate sodium-induced murine colitis and T helper 1 T-cell activation. J. Pharmacol. Exp. Ther. 308, 583–590 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Pavelka, K. Clinical effects of pralnacasan (PRAL), an orally-active interleukin-1β converting enzyme (ICE) inhibitor in a 285-patient phase II trial in rheumatoid arthritis (RA). Arthritis Rheum. 46 (Suppl. 9), S281 (2002).

  62. Economides, A. N. et al. Cytokine traps: multi-component, high-affinity blockers of cytokine action. Nature Med. 9, 47–52 (2003).

    Article  CAS  PubMed  Google Scholar 

  63. Guler, H.-P., Caldwell, J., Littlejohn, Tl, McIlwain, H, Offenberg, H., Stahl, N. A phase I, single dose excalation study of IL-1 trap in patients with rheumatoid arthritis. Arthritis Rheum. 44, S370 (2001).

  64. Breitling, R. & Hoeller, D. Current challenges in quantitative modeling of epidermal growth factor signaling. FEBS Lett. 579, 6289–6294 (2005).

    Article  CAS  PubMed  Google Scholar 

  65. Richardson, K. S. & Zundel, W. The emerging role of the COP9 signalosome in cancer. Mol. Cancer Res. 3, 645–653 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Noguchi, T. et al. Recruitment of tumor necrosis factor receptor-associated factor family proteins to apoptosis signal-regulating kinase 1 signalosome is essential for oxidative stress-induced cell death. J. Biol. Chem. 280, 37033–37040 (2005).

    Article  CAS  PubMed  Google Scholar 

  67. Kapoor, G. S., Zhan, Y., Johnson, G. R. & O'Rourke, D. M. Distinct domains in the SHP-2 phosphatase differentially regulate epidermal growth factor receptor/NF-κB activation through Gab1 in glioblastoma cells. Mol. Cell Biol. 24, 823–836 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Arora, P. D., Ma, J., Min, W., Cruz, T. & McCulloch, C. A. Interleukin-1-induced calcium flux in human fibroblasts is mediated through focal adhesions. J. Biol. Chem. 270, 6042–6049 (1995).

    Article  CAS  PubMed  Google Scholar 

  69. Qwarnstrom, E. E., Page, R. C., Gillis, S. & Dower, S. K. Binding, internalization, and intracellular localization of interleukin-1β in human diploid fibroblasts. J. Biol. Chem. 263, 8261–8269 (1988).

    CAS  PubMed  Google Scholar 

  70. Critchley, D. R. Focal adhesions — the cytoskeletal connection. Curr. Opin. Cell Biol. 12, 133–139 (2000).

    Article  CAS  PubMed  Google Scholar 

  71. Burridge, K. & Chrzanowska-Wodnicka, M. Focal adhesions, contractility, and signaling. Annu. Rev. Cell Dev. Biol. 12, 463–518 (1996).

    Article  CAS  PubMed  Google Scholar 

  72. Wehrle-Haller, B. & Imhof, B. The inner lives of focal adhesions. Trends Cell Biol. 12, 382–389 (2002).

    CAS  PubMed  Google Scholar 

  73. Carragher, N. O. & Frame, M. C. Focal adhesion and actin dynamics: a place where kinases and proteases meet to promote invasion. Trends Cell Biol. 14, 241–249 (2004).

    Article  CAS  PubMed  Google Scholar 

  74. Zamir, E. & Geiger, B. Molecular complexity and dynamics of cell-matrix adhesions. J. Cell Sci. 114, 3583–3590 (2001).

    CAS  PubMed  Google Scholar 

  75. MacGillivray, M. K., Cruz, T. F. & McCulloch, C. A. The recruitment of the interleukin-1 (IL-1) receptor-associated kinase (IRAK) into focal adhesion complexes is required for IL-1β-induced ERK activation. J. Biol. Chem. 275, 23509–23515 (2000).

    Article  CAS  PubMed  Google Scholar 

  76. Murphy-Ullrich, J. E., Gurusiddappa, S., Frazier, W. A. & Hook, M. Heparin-binding peptides from thrombospondins 1 and 2 contain focal adhesion-labilizing activity. J. Biol. Chem. 268, 26784–26789 (1993).

    CAS  PubMed  Google Scholar 

  77. Wang, Q., Downey, G. P., Choi, C., Kapus, A. & McCulloch, C. A. IL-1 induced release of Ca2+ from internal stores is dependent on cell-matrix interactions and regulates ERK activation. FASEB J. 17, 1898–1900 (2003).

    Article  CAS  PubMed  Google Scholar 

  78. Zaidel-Bar, R., Cohen, M., Addadi, L. & Geiger, B. Hierarchical assembly of cell-matrix adhesion complexes. Biochem. Soc. Trans. 32, 416–420 (2004).

    Article  CAS  PubMed  Google Scholar 

  79. Kirchner, J., Kam, Z., Tzur, G., Bershadsky, A. D. & Geiger, B. Live-cell monitoring of tyrosine phosphorylation in focal adhesions following microtubule disruption. J. Cell Sci. 116, 975–986 (2003).

    Article  CAS  PubMed  Google Scholar 

  80. Ilic, D. et al. Reduced cell motility and enhanced focal adhesion contact formation in cells from FAK-deficient mice. Nature 377, 539–544 (1995).

    Article  CAS  PubMed  Google Scholar 

  81. Shinkai, Y. et al. RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangement. Cell 68, 855–867 (1992).

    Article  CAS  PubMed  Google Scholar 

  82. Klinghoffer, R. A., Sachsenmaier, C., Cooper, J. A. & Soriano, P. Src family kinases are required for integrin but not PDGFR signal transduction. EMBO J. 18, 2459–2471 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Miyamoto, S., Akiyama, S. K. & Yamada, K. M. Synergistic roles for receptor occupancy and aggregation in integrin transmembrane function. Science 267, 883–835 (1995).

    Article  CAS  PubMed  Google Scholar 

  84. Katz, B. Z. et al. Targeting membrane-localized focal adhesion kinase to focal adhesions: roles of tyrosine phosphorylation and SRC family kinases. J. Biol. Chem. 278, 29115–29120 (2003).

    Article  CAS  PubMed  Google Scholar 

  85. Herrera Abreu, M. T. et al. Tyrosine phosphatase SHP-2 regulates IL-1 signaling in fibroblasts through focal adhesions. J. Cell Physiol. 207, 132–143 (2006).

    Article  CAS  PubMed  Google Scholar 

  86. Alonso, A. et al. Protein tyrosine phosphatases in the human genome. Cell 117, 699–711 (2004).

    Article  CAS  PubMed  Google Scholar 

  87. Ayalon, O. & Geiger, B. Cyclic changes in the organization of cell adhesions and the associated cytoskeleton, induced by stimulation of tyrosine phosphorylation in bovine aortic endothelial cells. J. Cell Sci. 110, 547–556 (1997).

    CAS  PubMed  Google Scholar 

  88. Jones, M. L. & Poole, A. W. Protein tyrosine phosphatases. Methods Mol. Biol. 273, 169–78 (2004).

    CAS  PubMed  Google Scholar 

  89. Tonks, N. K. Redox redux: revisiting PTPs and the control of cell signaling. Cell 121, 667–670 (2005).

    Article  CAS  PubMed  Google Scholar 

  90. Poole, A. W. & Jones, M. L. A SHPing tale: perspectives on the regulation of SHP-1 and SHP-2 tyrosine phosphatases by the C-terminal tail. Cell Signal 17, 1323–1332 (2005).

    Article  CAS  PubMed  Google Scholar 

  91. Chishti, A. H. et al. The FERM domain: a unique module involved in the linkage of cytoplasmic proteins to the membrane. Trends Biochem. Sci. 23, 281–282 (1998).

    Article  CAS  PubMed  Google Scholar 

  92. Fujioka, Y. et al. A novel membrane glycoprotein, SHPS-1, that binds the SH2-domain-containing protein tyrosine phosphatase SHP-2 in response to mitogens and cell adhesion. Mol. Cell Biol. 16, 6887–6899 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Tsuda, M. et al. Integrin-mediated tyrosine phosphorylation of SHPS-1 and its association with SHP-2. Roles of Fak and Src family kinases. J. Biol. Chem. 273, 13223–13229 (1998).

    Article  CAS  PubMed  Google Scholar 

  94. Yu, D. H., Qu, C. K., Henegariu, O., Lu, X. & Feng, G. S. Protein-tyrosine phosphatase Shp-2 regulates cell spreading, migration, and focal adhesion. J. Biol. Chem. 273, 21125–21131 (1998).

    Article  CAS  PubMed  Google Scholar 

  95. Oh, E. S. et al. Regulation of early events in integrin signaling by protein tyrosine phosphatase SHP-2. Mol. Cell Biol. 19, 3205–3215 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Kodama, A. et al. Involvement of an SHP-2-Rho small G protein pathway in hepatocyte growth factor/scatter factor-induced cell scattering. Mol. Biol. Cell 11, 2565–2575 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Schoenwaelder, S. M. et al. The protein tyrosine phosphatase Shp-2 regulates RhoA activity. Curr. Biol. 10, 1523–1526 (2000).

    Article  CAS  PubMed  Google Scholar 

  98. Kodama, A. et al. Regulation of Ras and Rho small G proteins by SHP-2. Genes Cells 6, 869–876 (2001).

    Article  CAS  PubMed  Google Scholar 

  99. MacGillivray, M. et al. The protein tyrosine phosphatase SHP-2 regulates interleukin-1-induced ERK activation in fibroblasts. J. Biol. Chem. 278, 27190–27198 (2003).

    Article  CAS  PubMed  Google Scholar 

  100. Wang, Q., Downey, G. P., Herrera-Abreu, M. T., Kapus, A. & McCulloch, C. A. SHP-2 modulates interleukin-1-induced Ca2+ flux and ERK activation via phosphorylation of phospholipase Cγ1. J. Biol. Chem. 280, 8397–8406 (2005).

    Article  CAS  PubMed  Google Scholar 

  101. Lo, Y. Y., Luo, L., McCulloch, C. A. & Cruz, T. F. Requirements of focal adhesions and calcium fluxes for interleukin-1-induced ERK kinase activation and c-fos expression in fibroblasts. J. Biol. Chem. 273, 7059–7065 (1998).

    Article  CAS  PubMed  Google Scholar 

  102. Lammers, R., Lerch, M. M. & Ullrich, A. The carboxyl-terminal tyrosine residue of protein-tyrosine phosphatase α mediates association with focal adhesion plaques. J. Biol. Chem. 275, 3391–3396 (2000).

    Article  CAS  PubMed  Google Scholar 

  103. von Wichert, G. et al. RPTP-α acts as a transducer of mechanical force on αv/β3-integrin-cytoskeleton linkages. J. Cell Biol. 161, 143–153 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Su, J., Muranjan, M. & Sap, J. Receptor protein tyrosine phosphatase α activates Src-family kinases and controls integrin-mediated responses in fibroblasts. Curr. Biol. 9, 505–511 (1999).

    Article  CAS  PubMed  Google Scholar 

  105. Hardingham, G. E., Cruzalegui, F. H., Chawla, S. & Bading, H. Mechanisms controlling gene expression by nuclear calcium signals. Cell Calcium 23, 131–134 (1998).

    Article  CAS  PubMed  Google Scholar 

  106. Ma, H. T. et al. Requirement of the inositol trisphosphate receptor for activation of store-operated Ca2+ channels. Science 287, 1647–1651 (2000).

    Article  CAS  PubMed  Google Scholar 

  107. Patterson, R. L., Boehning, D. & Snyder, S. H. Inositol 1, 4, 5-trisphosphate receptors as signal integrators. Annu. Rev. Biochem. 73, 437–465 (2004).

    Article  CAS  PubMed  Google Scholar 

  108. Kruger, J. et al. Deficiency of Src homology 2-containing phosphatase 1 results in abnormalities in murine neutrophil function: studies in motheaten mice. J. Immunol. 165, 5847–5859 (2000).

    Article  CAS  PubMed  Google Scholar 

  109. Marcucci, G., Perrotti, D. & Caligiuri, M. A. Understanding the molecular basis of imatinib mesylate therapy in chronic myelogenous leukemia and the related mechanisms of resistance. Clin. Cancer Res. 9, 1333–1337 (2003).

    Google Scholar 

  110. Ross, D. M. & Hughes, T. P. Cancer treatment with kinase inhibitors: what have we learnt from imatinib? Br. J. Cancer 90, 12–19 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. West, H. L. et al. Gefitinib therapy in advanced bronchioloalveolar carcinoma: Southwest Oncology Group Study S0126. J. Clin. Oncol. 24, 1807–1813 (2006).

    Article  CAS  PubMed  Google Scholar 

  112. Erlichman, C. et al. Phase I study of EKB-569, an irreversible inhibitor of the epidermal growth factor receptor, in patients with advanced solid tumors. J. Clin. Oncol. 24, 2252–2260 (2006).

    Article  CAS  PubMed  Google Scholar 

  113. Graeven, U. et al. Phase I study of the humanised anti-EGFR monoclonal antibody matuzumab (EMD 72000) combined with gemcitabine in advanced pancreatic cancer. Br. J. Cancer 94, 1293–1299 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Jennens, R. R., Rosenthal, M. A., Lindeman, G. J. & Michael, M. Complete radiological and metabolic response of metastatic renal cell carcinoma to SU5416 (semaxanib) in a patient with probable von Hippel-Lindau syndrome. Urol. Oncol. 22, 193–196 (2004).

    Article  PubMed  Google Scholar 

  115. Yoshinari, N. et al. Effects of scaling and root planing on the amounts of interleukin-1 and interleukin-1 receptor antagonist and the mRNA expression of interleukin-1β in gingival crevicular fluid and gingival tissues. J. Periodontal Res. 39, 158–167 (2004).

    Article  CAS  PubMed  Google Scholar 

  116. Papageorgiou, A. C. & Wikman, L. E. Is JAK3 a new drug target for immunomodulation-based therapies? Trends Pharmacol. Sci. 25, 558–562 (2004).

    Article  CAS  PubMed  Google Scholar 

  117. Johnson, T. O., Ermolieff, J. & Jirousek, M. R. Protein tyrosine phosphatase 1B inhibitors for diabetes. Nature Rev. Drug Discov. 1, 696–709 (2002).

    Article  CAS  Google Scholar 

  118. Alonso, A. et al. Protein tyrosine phosphatases in the human genome. Cell 117, 699–711 (2004).

    Article  CAS  PubMed  Google Scholar 

  119. Mustelin, T., Vang, T. & Bottini, N. Protein tyrosine phosphatases and the immune response. Nature Rev. Immunol. 5, 43–57 (2005).

    Article  CAS  Google Scholar 

  120. Tautz, L., Pellecchia, M. & Mustelin, T. Targeting the PTPome in human disease. Expert Opin Ther Targets 10, 157–177 (2006).

    Article  CAS  PubMed  Google Scholar 

  121. Pederson, R. A., Ramanadham, S., Buchan, A. M. & McNeill, J. H. Long-term effects of vanadyl treatment on streptozocin-induced diabetes in rats. Diabetes 38, 1390–1395 (1989).

    Article  CAS  PubMed  Google Scholar 

  122. Meyerovitch, J., Rothenberg, P., Shechter, Y., Bonner-Weir, S. & Kahn, C. R. Vanadate normalizes hyperglycemia in two mouse models of non-insulin-dependent diabetes mellitus. J. Clin. Invest. 87, 1286–1294 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Robertson, R. P. & Klein, D. J. Treatment of diabetes mellitus. Diabetologia 35 (Suppl. 2), S8–S17 (1992).

    Article  PubMed  Google Scholar 

  124. Goldfine, A. B., Simonson, D. C., Folli, F., Patti, M. E. & Kahn, C. R. Metabolic effects of sodium metavanadate in humans with insulin-dependent and noninsulin-dependent diabetes mellitus in vivo and in vitro studies. J. Clin. Endocrinol. Metab. 80, 3311–3320 (1995).

    CAS  PubMed  Google Scholar 

  125. Sakurai, H. A new concept: the use of vanadium complexes in the treatment of diabetes mellitus. Chem. Rec. 2, 237–248 (2002).

    Article  CAS  PubMed  Google Scholar 

  126. Winter, C. L. et al. A nonspecific phosphotyrosine phosphatase inhibitor, bis(maltolato)oxovanadium(IV), improves glucose tolerance and prevents diabetes in Zucker diabetic fatty rats. Exp. Biol. Med. (Maywood) 230, 207–216 (2005).

    Article  CAS  Google Scholar 

  127. Poucheret, P., Verma, S., Grynpas, M. D. & McNeill, J. H. Vanadium and diabetes. Mol. Cell. Biochem. 188, 73–80 (1998).

    Article  CAS  PubMed  Google Scholar 

  128. Sekar, N., Li, J. & Shechter, Y. Vanadium salts as insulin substitutes: mechanisms of action, a scientific and therapeutic tool in diabetes mellitus research. Crit. Rev. Biochem. Mol. Biol. 31, 339–359 (1996).

    Article  CAS  PubMed  Google Scholar 

  129. Willsky, G. R. et al. Effect of vanadium(IV) compounds in the treatment of diabetes: in vivo and in vitro studies with vanadyl sulfate and bis(maltolato)oxovandium(IV). J. Inorg. Biochem. 85, 33–42 (2001).

    Article  CAS  PubMed  Google Scholar 

  130. Rao, G. S., Ramachandran, M. V. & Bajaj, J. S. In silico structure-based design of a potent and selective small peptide inhibitor of protein tyrosine phosphatase 1B, a novel therapeutic target for obesity and type 2 diabetes mellitus: a computer modeling approach. J. Biomol. Struct. Dyn 23, 377–384 (2006).

    Article  CAS  PubMed  Google Scholar 

  131. Mizuno, K., Katagiri, T., Hasegawa, K., Ogimoto, M. & Yakura, H. Hematopoietic cell phosphatase, SHP-1, is constitutively associated with the SH2 domain-containing leukocyte protein, SLP-76, in B cells. J. Exp. Med. 184, 457–463 (1996).

    Article  CAS  PubMed  Google Scholar 

  132. Jiao, H. et al. Direct association with and dephosphorylation of Jak2 kinase by the SH2-domain-containing protein tyrosine phosphatase SHP-1. Mol. Cell Biol. 16, 6985–6992 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Barford, D. & Neel, B. G. Revealing mechanisms for SH2 domain mediated regulation of the protein tyrosine phosphatase SHP-2. Structure 6, 249–254 (1998).

    Article  CAS  PubMed  Google Scholar 

  134. Huyer, G. & Ramachandran, C. The specificity of the N-terminal SH2 domain of SHP-2 is modified by a single point mutation. Biochemistry 37, 2741–2747 (1998).

    Article  CAS  PubMed  Google Scholar 

  135. Kruger, J. M. et al. Protein-tyrosine phosphatase MEG2 is expressed by human neutrophils. Localization to the phagosome and activation by polyphosphoinositides. J. Biol. Chem. 277, 2620–2628 (2002).

    Article  CAS  PubMed  Google Scholar 

  136. Zhang, Z. Y. & Lee, S. Y. PTP1B inhibitors as potential therapeutics in the treatment of type 2 diabetes and obesity. Expert Opin. Investig. Drugs 12, 223–233 (2003).

    Article  CAS  PubMed  Google Scholar 

  137. Chen, L. et al. Discovery of a novel shp2 protein tyrosine phosphatase inhibitor. Mol. Pharmacol. 70, 562–570 (2006).

    Article  CAS  PubMed  Google Scholar 

  138. Zhang, S. Q., Kovalenko, A., Cantarella, G. & Wallach, D. Recruitment of the IKK signalosome to the p55 TNF receptor: RIP and A20 bind to NEMO (IKKγ) upon receptor stimulation. Immunity 12, 301–311 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

C.A.M., G.P.D and H.E.G. are supported by operating grants from the Canadian Institutes of Health Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher. A. McCulloch.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

OMIM

Ankylosing spondylitis

Atherosclerosis

Inflammatory bowel disease

Psoriatic arthritis

Pulmonary fibrosis

Rheumatoid arthritis

Systemic lupus erythematosus

FURTHER INFORMATION

CIHR Group in Matrix Dynamics

Glossary

Innate and acquired immunity

Innate immune responses are activated by pathogens through ligation of Toll-like receptors expressed on the surface of epithelial cells, neutrophils, macrophages, natural killer cells and dendritic cells. Acquired immune responses are highly specific and develop as a result of antigen processing by antigen-presenting cells with subsequent presentation to T cells.

Synovium

The thin layer of connective tissue that forms the inner lining of the joint cavity, which primarily serves to maintain the health of the cartilage.

Acute-phase response

A stereotyped syndrome characterized by the presence of constitutional symptoms such as fatigue and weight loss, elevation in acute-phase proteins such as C-reactive protein and a host of haematological and endocrine changes.

Erosive articular damage

The development of defects in the cartilage and bone adjacent to the joint cavity caused by chronic inflammation of the synovium lining the joint.

Osteoclastogenesis

The process of generating bone-resorbing multinucleated cells from blood-forming precursor cells that is mediated by the sequential action of specific cytokines and growth factors.

Periarticular bone

Bone that is subjacent to the cartilage-covered, load-bearing surfaces of joints.

Inflammasome

A cytosolic complex of proteins that activates caspase 1 to process pro-inflammatory cytokines such as IL-1β and IL-18.

Mesenchymal

The part of the embryonic mesoderm from which connective tissue, bone, cartilage, and the circulatory and lymphatic systems develop.

Protein tyrosine phosphatase

A group of enzymes that remove phosphates from tyrosine residues by hydrolysis.

Focal adhesions

Actin-enriched anchorage sites of adherent cells where there is close apposition of the plasma membrane to the substratum. Focal adhesions are enriched in actin-binding proteins and molecules associated with signalling processes.

Fibroblast

Ubiquitous cells of connective tissue that synthesize and remodel collagen and other extracellular matrix proteins.

Synoviocyte

Cells of soft connective tissues that line the joints and which upon activation can contribute to the degradation of joint tissues.

Chondrocyte

A connective tissue cell that resides in a lacuna within the cartilage matrix.

SH2 (Src homology 2) domain

A conserved sequence of amino acids originally identified in the tyrosine kinase Src that mediates binding to tyrosine residues in target proteins.

Signalosomes

Multimeric protein complexes comprising various signalling molecules that by virtue of their spatial clustering enhance signal transduction138.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McCulloch, C., Downey, G. & El-Gabalawy, H. Signalling platforms that modulate the inflammatory response: new targets for drug development. Nat Rev Drug Discov 5, 864–876 (2006). https://doi.org/10.1038/nrd2109

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd2109

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing