Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Drug therapy of the metabolic syndrome: minimizing the emerging crisis in polypharmacy

Key Points

  • The metabolic syndrome is a clustering of factors associated with an increased risk for atherosclerotic cardiovascular disease. The core 'metabolic risk factors' are atherogenic dyslipidaemia, elevated blood pressure, elevated plasma glucose, a prothrombotic state and a pro-inflammatory state, each of which has several components.

  • There are two potential therapeutic approaches to the metabolic syndrome. One strategy is to identify each risk factor separately and to treat this risk factor unrelated to its clustering with other risk factors. The alternative strategy is to target all or multiple risk factors with single therapies.

  • The former strategy will continue to be part of effective therapies, but, increasingly, the latter approach is attractive and available. This article explores the latter approach, with an emphasis on the potential utility of drug therapy for the metabolic syndrome.

  • Each of the risk factors of the metabolic syndrome is considered as a possible primary drug target, and potential secondary or tertiary targets are also discussed. Emphasis is placed on the development of multifunctional drugs that could alleviate problems with polypharmacy.

Abstract

The metabolic syndrome — a collection of factors associated with increased risk for cardiovascular disease and diabetes — is becoming increasingly common, largely as a result of the increase in the prevalence of obesity. Although it is generally agreed that first-line clinical intervention for the metabolic syndrome is lifestyle change, this is insufficient to normalize the risk factors in many patients, and so residual risk could be high enough to justify drug therapy. However, at present there are no approved drugs that can reliably reduce all of the metabolic risk factors over the long term, and so there is growing interest in therapeutic strategies that might target multiple risk factors more effectively, thereby minimizing problems with polypharmacy. This review summarizes current understanding of the nature of the metabolic syndrome, and discusses each of the risk factors of the metabolic syndrome as possible primary drug targets; potential secondary or tertiary targets are also considered.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characteristics of the metabolic syndrome.
Figure 2: Progression of the metabolic syndrome.
Figure 3: Obesity and the metabolic syndrome.
Figure 4: Pathways of lipoprotein metabolism associated with atherogenic dyslipidaemia: potential targets for drug therapy.
Figure 5: Actions of antidiabetic drugs on metabolic risk factors.
Figure 6: The metabolic syndrome and effects on the arterial wall.

Similar content being viewed by others

References

  1. Third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III). Final Report. Circulation 106, 3143–3421 (2002). The 2001 NCEP report sparked increased interest of the medical community in the metabolic syn-drome. It led to new research as well as controversy about the clinical utility of the syndrome.

  2. Grundy, S. M. et al. Definition of metabolic syndrome: report of the National Heart, Lung, and Blood Institute/American Heart Association conference on scientific issues related to definition. Circulation 109, 433–438 (2004).

    Article  PubMed  Google Scholar 

  3. Grundy, S. M. et al. Clinical management of metabolic syndrome: report of the American Heart Association/National Heart, Lung, and Blood Institute/American Diabetes Association conference on scientific issues related to management. Circulation 109, 551–556 (2004).

    Article  PubMed  Google Scholar 

  4. Eckel, R. H., Grundy, S. M. & Zimmet, P. Z. The metabolic syndrome: epidemiology, mechanisms, and therapy. Lancet 365, 1415–1428 (2005). Reviews the worldwide epidemiology, pathophysiology and management of the metabolic syndrome.

    Article  CAS  PubMed  Google Scholar 

  5. Isomaa, B. et al. Cardiovascular morbidity and mortality associated with the metabolic syndrome. Diabetes Care 24, 683–689 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Lakka, H. M. et al. The metabolic syndrome and total and cardiovascular disease mortality in middle-aged men. JAMA 288, 2709–2716 (2002).

    Article  PubMed  Google Scholar 

  7. Sattar, N. et al. Metabolic syndrome with and without C-reactive protein as a predictor of coronary heart disease and diabetes in the West of Scotland Coronary Prevention Study. Circulation 108, 414–419 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Girman, C. J. et al. The metabolic syndrome and risk of major coronary events in the Scandinavian Simvastatin Survival Study (4S) and the Air Force/Texas Coronary Atherosclerosis Prevention Study (AFCAPS/TexCAPS). Am. J. Cardiol. 93, 136–141 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Malik, S. et al. Impact of the metabolic syndrome on mortality from coronary heart disease, cardiovascular disease, and all causes in United States adults. Circulation 110, 1245–1250 (2004).

    Article  PubMed  Google Scholar 

  10. Olijhoek, J. K. et al. The metabolic syndrome is associated with advanced vascular damage in patients with coronary heart disease, stroke, peripheral arterial disease or abdominal aortic aneurysm. Eur. Heart J. 25, 342–348 (2004).

    Article  PubMed  Google Scholar 

  11. Alexander, C. M. et al. NCEP-defined metabolic syndrome, diabetes, and prevalence of coronary heart disease among NHANES III participants age 50 years and older. Diabetes 52, 1210–1214 (2003). Shows that most patients with type 2 diabetes have the metabolic syndrome, and the syndrome accounts for most of the increased risk for coronary heart disease resulting from diabetes.

    Article  CAS  PubMed  Google Scholar 

  12. Ninomiya, J. K. et al. Association of the metabolic syndrome with history of myocardial infarction and stroke in the Third National Health and Nutrition Examination Survey. Circulation 109, 42–46 (2004).

    Article  PubMed  Google Scholar 

  13. McNeill, A. M. et al. The metabolic syndrome and 11-year risk of incident cardiovascular disease in the atherosclerosis risk in communities study. Diabetes Care 28, 385–390 (2005).

    Article  PubMed  Google Scholar 

  14. Solymoss, B. C. et al. Incidence and clinical characteristics of the metabolic syndrome in patients with coronary artery disease. Coron. Artery Dis. 14, 207–212 (2003).

    PubMed  Google Scholar 

  15. Turhan, H. et al. High prevalence of metabolic syndrome among young women with premature coronary artery disease. Coron. Artery Dis. 16, 37–40 (2005).

    Article  PubMed  Google Scholar 

  16. Stern, M. et al. Does the metabolic syndrome improve identification of individuals at risk of type 2 diabetes and/or cardiovascular disease? Diabetes Care 27, 2676–2681 (2004). Reports that the metabolic syndrome increases the risk for type 2 diabetes by about fivefold.

    Article  PubMed  Google Scholar 

  17. Grundy, S. M. et al. Diagnosis and management of the metabolic syndrome. An American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation 112, 2735–2752 (2005).

    Article  PubMed  Google Scholar 

  18. Ruderman, N., Chisholm, D., Pi-Sunyer, X. & Schneider, S. The metabolically obese, normal-weight individual revisited. Diabetes 47, 699–713 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. Kahn, R., Buse, J., Ferrannini, E. & Stern, M. The metabolic syndrome: time for a critical appraisal: joint statement from the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care 28, 2289–2304 (2005).

    Article  PubMed  Google Scholar 

  20. Knowler, W. C. et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N. Engl. J. Med. 346, 393–403 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Tuomilehto, J. et al. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N. Engl. J. Med. 344, 1343–1350 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Pan, X. R. et al. Effects of diet and exercise in preventing NIDDM in people with impaired glucose tolerance: the Da Qing IGT and diabetes study. Diabetes Care 20, 537–544 (1997).

    Article  CAS  PubMed  Google Scholar 

  23. Rollason, V. & Vogt, N. Reduction of polypharmacy in the elderly: a systematic review of the role of the pharmacist. Drugs Aging 20, 817–832 (2003).

    Article  PubMed  Google Scholar 

  24. Clinical Guidelines on the Identification, Evaluation, and Treatment of Overweight and Obesity in Adults — The Evidence Report. National Institutes of Health. Obes. Res. 6 (Suppl. 2), 51–209 (1998). Presents evidence-based guidelines on the management of obesity in patients at risk for cardiovascular disease and diabetes.

  25. Berg, A. H. & Scherer, P. E. Adipose tissue, inflammation, and cardiovascular disease. Circ. Res. 96, 939–949 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Matsuzawa, Y. Adipocytokines and metabolic syndrome. Semin. Vasc. Med. 5, 34–39 (2005).

    Article  PubMed  Google Scholar 

  27. Trayhurn, P. & Wood, I. S. Adipokines: inflammation and the pleiotropic role of white adipose tissue. Br. J. Nutr. 92, 347–355 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Nawrocki, A. R. & Scherer, P. E. Keynote review: the adipocyte as a drug discovery target. Drug Discov. Today 10, 1219–1230 (2005).

    Article  CAS  Google Scholar 

  29. Arterburn, D. E., Crane, P. K. & Veenstra, D. L. The efficacy and safety of sibutramine for weight loss: a systematic review. Arch. Intern. Med. 164, 994–1003 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Di Marzo, V. & Matias, I. Endocannabinoid control of food intake and energy balance. Nature Neurosci. 8, 585–589 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Black, S. C. Cannabinoid receptor antagonists and obesity. Curr. Opin. Investig. Drugs 5, 389–394 (2004).

    CAS  PubMed  Google Scholar 

  32. Van Gaal, L. F. et al. Effects of cannabinoid-1 receptor blocker rimonabant on weight reduction and cardiovascular risk factors in overweight patients: 1-year experience from the RIO-Europe study. Lancet 365, 1389–1397 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Osei-Hyiaman, D. et al. Endocannabinoid activation at hepatic CB1 receptors stimulates fatty acid synthesis and contributes to diet-induced obesity. J. Clin. Invest. 115, 1298–1305 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bensaid, M. et al. The cannabinoid CB1 receptor antagonist SR141716 increases Acrp30 mRNA expression in adipose tissue of obese fa/fa rats and in cultured adipocyte cells. Mol. Pharmacol. 63, 908–914 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Despres, J. P., Golay, A. & Sjostrom, L. Rimonabant in Obesity-Lipids Study Group. Effects of rimonabant on metabolic risk factors in overweight patients with dyslipidemia. N. Engl. J. Med. 353, 2121–2134 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Cota, D. et al. The endogenous cannabinoid system affects energy balance via central orexigenic drive and peripheral lipogenesis. J. Clin. Invest. 112, 423–443 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Osei-Hyiaman, D. et al. Endocannabinoid activation at hepatic CB1 receptors stimulates fatty acid synthesis and contributes to diet-induced obesity. J. Clin. Invest. 115, 1298–1305 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Curran, M. P. & Scott, L. J. Orlistat: a review of its use in the management of patients with obesity. Drugs 64, 2845–2864 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Ridker, P. M. Connecting the role of C-reactive protein and statins in cardiovascular disease. Clin. Cardiol. 26 (Suppl. 3), 39–44 (2003).

    Article  Google Scholar 

  40. Jialal, I. et al. Effect of hydroxymethyl glutaryl coenzyme A reductase inhibitor therapy on high sensitive C-reactive protein levels. Circulation 103, 1933–1935 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Robinson, J. G., Smith, B., Maheshwari, N. & Schrott, H. Pleiotropic effects of statins: benefit beyond cholesterol reduction? A meta-regression analysis. J. Am. Coll. Cardiol. 46, 1855–1862 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Heart Protection Study Collaborative Group. MRC/BHF Heart Protection Study of cholesterol lowering with simvastatin in 20,536 high-risk individuals: a randomised placebo-controlled trial. Lancet 360, 7–22 (2002). Documents the benefit of cholesterol lowering in high-risk patients including those with diabetes.

  43. LaRosa, J. C. et al. Intensive lipid lowering with atorvastatin in patients with stable coronary disease. N. Engl. J. Med. 352, 1425–1435 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Hunninghake, D. et al. Coadministration of colesevelam hydrochloride with atorvastatin lowers LDL cholesterol additively. Atherosclerosis 158, 407–416 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Pearson, T. A. et al. A community-based, randomized trial of ezetimibe added to statin therapy to attain NCEP ATP III goals for LDL cholesterol in hypercholesterolemic patients: the ezetimibe add-on to statin for effectiveness (EASE) trial. Mayo Clin. Proc. 80, 587–595 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Ballantyne, C. M., Abate, N., Yuan, Z., King, T. R. & Palmisano, J. Dose-comparison study of the combination of ezetimibe and simvastatin (Vytorin) versus atorvastatin in patients with hypercholesterolemia: the Vytorin Versus Atorvastatin (VYVA) study. Am. Heart J. 149, 464–473 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Law, M. R., Wald, N. J. & Thompson, S. G. By how much and how quickly does reduction in serum cholesterol concentration lower risk of ischaemic heart disease? BMJ 308, 367–372 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Canner, P. L., Furberg, C. D., Terrin, M. L. & McGovern, M. E. Benefits of niacin by glycemic status in patients with healed myocardial infarction (from the Coronary Drug Project). Am. J. Cardiol. 95, 254–257 (2005). Demonstrates the benefit of nicotinic acid in patients with impaired glucose tolerance and diabetes.

    Article  CAS  PubMed  Google Scholar 

  49. Taylor, A. J., Sullenberger, L. E., Lee, H. J., Lee, J. K. & Grace, K. A. Arterial Biology for the Investigation of the Treatment Effects of Reducing Cholesterol (ARBITER) 2: a double-blind, placebo-controlled study of extended-release niacin on atherosclerosis progression in secondary prevention patients treated with statins. Circulation 110, 3512–3517 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. Bays, H. E. et al. ADvicor Versus Other Cholesterol-Modulating Agents Trial Evaluation. Comparison of once-daily, niacin extended-release/lovastatin with standard doses of atorvastatin and simvastatin (the ADvicor Versus Other Cholesterol-Modulating Agents Trial Evaluation [ADVOCATE]). Am. J. Cardiol. 91, 667–672 (2003).

    Article  CAS  PubMed  Google Scholar 

  51. Staels, B. & Fruchart, J. C. Therapeutic roles of peroxisome proliferator-activated receptor agonists. Diabetes 54, 2460–2470 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. Gervois, P., Torra, I. P., Fruchart, J. C. & Staels, B. Regulation of lipid and lipoprotein metabolism by PPAR activators. Clin. Chem. Lab. Med. 38, 3–11 (2000).

    Article  CAS  PubMed  Google Scholar 

  53. Grundy, S. M. et al. Effectiveness and tolerability of simvastatin plus fenofibrate for combined hyperlipidemia (the SAFARI trial). J. Cardiol. 95, 462–468 (2005). Shows the efficacy of the combination of statin and fenofibrate in improving the lipoprotein profile of patients with atherogenic dyslipidaemia.

    Article  CAS  Google Scholar 

  54. Keech, A. et al. FIELD study investigators. Effects of long-term fenofibrate therapy on cardiovascular events in 9795 people with type 2 diabetes mellitus (the FIELD study): randomized controlled trial. Lancet 366, 1849–1861 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. Vega, G. L. et al. Effects of adding fenofibrate (200 mg/day) to simvastatin (10 mg/day) in patients with combined hyperlipidemia and metabolic syndrome. Am. J. Cardiol. 91, 956–960 (2003).

    Article  CAS  PubMed  Google Scholar 

  56. Fruchart, J. C., Duriez, P. & Staels, B. Peroxisome proliferator-activated receptor-α activators regulate genes governing lipoprotein metabolism, vascular inflammation and atherosclerosis. Curr. Opin. Lipidol. 10, 245–257 (1999).

    Article  CAS  PubMed  Google Scholar 

  57. Delerive, P. et al. Peroxisome proliferator-activated receptor activators inhibit thrombin-induced endothelin-1 production in human vascular endothelial cells by inhibiting the activator protein-1 signaling pathway. Circ. Res. 85, 394–402 (1999).

    Article  CAS  PubMed  Google Scholar 

  58. Marx, N. et al. PPARα activators inhibit tissue factor expression and activity in human monocytes. Circulation 103, 213–219 (2001).

    Article  CAS  PubMed  Google Scholar 

  59. Neve, B. P. et al. PPARα agonists inhibit tissue factor expression in human monocytes and macrophages. Circulation 103, 207–212 (2001).

    Article  CAS  PubMed  Google Scholar 

  60. Tenkanen, L., Manttari, M. & Manninen, V. Some coronary risk factors related to the insulin resistance syndrome and treatment with gemfibrozil: experience from the Helsinki Heart Study. Circulation 92, 1779–1785 (1995).

    Article  CAS  PubMed  Google Scholar 

  61. Rubins, H. B. High-density lipoprotein and coronary heart disease: lessons from recent intervention trials. Prev. Cardiol. 3, 33–39 (2000).

    Article  CAS  Google Scholar 

  62. Rubins, H. B. et al. Diabetes, plasma insulin and cardiovascular disease: subgroup analysis from the Department of Veterans Affairs High-Density Lipoprotein Intervention Trial (VA-HIT). Arch. Intern. Med. 162, 2597–2604 (2002). Reports that gemfibrozil is particularly effective in cardiovascular risk reduction in patients with insulin resistance and diabetes.

    Article  CAS  PubMed  Google Scholar 

  63. Robins, S. J. et al. Veterans Affairs HDL Intervention Trial (VA-HIT). Insulin resistance and cardiovascular events with low HDL cholesterol: the Veterans Affairs HDL Intervention Trial (VA-HIT) Diabetes Care 26, 1513–1517 (2003).

    Article  CAS  PubMed  Google Scholar 

  64. Linsel-Nitschke, P. & Tall, A. R. HDL as a target in the treatment of atherosclerotic cardiovascular disease. Nature Rev. Drug Discov. 4, 193–205 (2005).

    Article  CAS  Google Scholar 

  65. Bays, H. & Stein, E. A. Pharmacotherapy for dyslipidaemia — current therapies and future agents. Expert Opin. Pharmacother. 4, 1901–1938 (2003).

    Article  CAS  PubMed  Google Scholar 

  66. UKPDS Study Group. Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes. BMJ 317, 703–713 (1998).

  67. UKPDS Study Group. Efficacy of atenolol and captopril in reducing risk of macrovascular and microvascular complications in type 2 diabetes. BMJ 317, 713–720 (1998).

  68. Pollare, T., Lithell, H., Selinus, I. & Berne, C. Sensitivity to insulin during treatment with atenolol and metoprolol: a randomised, double blind study of effects on carbohydrate and lipoprotein metabolism in hypertensive patients. BMJ 248, 1152–1157 (1989).

    Article  Google Scholar 

  69. Lithell, H. O. Effect of antihypertensive drugs on insulin, glucose, and lipid metabolism. Diabetes Care 14, 203–209 (1991).

    Article  CAS  PubMed  Google Scholar 

  70. The ALLHAT Officers and Coordinators for the ALLHAT Collaborative Research Group. Major outcomes in high-risk hypertensive patients randomized to angiotensin-converting enzyme inhibitor or calcium channel blocker vs diuretic: the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT). JAMA 28, 2981–2989 (2002).

  71. Chobanian, A. V. et al. The seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure: the JNC 7 Report. JAMA 289, 2560–2572 (2003).

    Article  CAS  PubMed  Google Scholar 

  72. Bakris, G. L. et al. GEMINI Investigators. Metabolic effects of carvedilol vs metoprolol in patients with type 2 diabetes mellitus and hypertension: a randomized controlled trial. JAMA 292, 2227–2236 (2004).

    Article  CAS  PubMed  Google Scholar 

  73. Lithell, H. O. Considerations in the treatment of insulin resistance and related disorders with a new sympatholytic agent. J. Hypertens. Suppl. 15, S39–S42 (1997).

    Article  CAS  PubMed  Google Scholar 

  74. Julius, S., Majahalme, S. & Palatini, P. Antihypertensive treatment of patients with diabetes and hypertension. Am. J. Hypertens. 14, S310–S316 (2001).

    Article  Google Scholar 

  75. Jandeleit-Dahm, K. A., Tikellis, C., Reid, C. M., Johnston, C. I. & Cooper, M. E. Why blockade of the renin–angiotensin system reduces the incidence of new-onset diabetes. J. Hypertens. 23, 463–473 (2005).

    Article  CAS  PubMed  Google Scholar 

  76. Nickenig, G. Should angiotensin II receptor blockers and statins be combined? Circulation 110, 1013–1020 (2004).

    Article  PubMed  Google Scholar 

  77. Lonn, E. Angiotensin-converting enzyme inhibitors and angiotensin receptor blockers in atherosclerosis. Curr. Atheroscler. Rep. 4, 363–372 (2002).

    Article  PubMed  Google Scholar 

  78. Staessen, J. A., Wang, J.-G. & Thijs, L. Cardiovascular prevention and blood pressure reduction: a quantitative overview updated until 1 March 2003. J. Hypertens. 21, 1055–1076 (2003).

    Article  CAS  PubMed  Google Scholar 

  79. Turnbull, F. & Blood Pressure Lowering Treatment Trialists' Collaboration. Effects of different blood-pressure-lowering regimens on major cardiovascular events: results of prospectively-designed overviews of randomised trials. Lancet 362, 1527–1535 (2003).

    Article  CAS  PubMed  Google Scholar 

  80. Ford, E. S., Giles, W. H. & Mokdad, A. H. Increasing prevalence of the metabolic syndrome among US adults. Diabetes Care 27, 2444–2449 (2004).

    Article  PubMed  Google Scholar 

  81. Calles-Escandon, J., Garcia-Rubi, E., Mirza, S. & Mortensen, A. Type 2 diabetes: one disease, multiple cardiovascular risk factors. Coron. Artery Dis. 10, 23–30 (1999).

    Article  CAS  PubMed  Google Scholar 

  82. The Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N. Engl. J. Med. 329, 977–986 (1993).

  83. Nathan, D. M. et al. Intensive diabetes therapy and carotid intima-media thickness in type 1 diabetes mellitus. N. Engl. J. Med. 348, 2294–2303 (2003).

    Article  PubMed  Google Scholar 

  84. Nathan, D. M. et al. Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) Study Research Group. Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. N. Engl. J. Med. 353, 2643–2653 (2005).

    Article  PubMed  Google Scholar 

  85. Stumvoll, M., Nurjhan, N., Perriello, G., Dailey, G. & Gerich, J. E. Metabolic effects of metformin in non-insulin-dependent diabetes mellitus. N. Engl. J. Med. 333, 550–554 (1995).

    Article  CAS  PubMed  Google Scholar 

  86. Zhou, G. et al. Role of AMP-activated protein kinase in mechanism of metformin action. J. Clin. Invest. 108, 1167–1174 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. UKPDS Group. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet 352, 854–865 (1998).

  88. Adler, A. I. et al. Insulin sensitivity at diagnosis of type 2 diabetes is not associated with subsequent cardiovascular disease (UKPDS 67) Diabetic Med. 22, 306–311 (1998).

    Article  CAS  Google Scholar 

  89. Jiang, G. et al. Potentiation of insulin signaling in tissues of Zucker obese rats after acute and long-term treatment with PPARg agonists. Diabetes 51, 2412–2419 (2002).

    Article  CAS  PubMed  Google Scholar 

  90. Way, J. M. et al. Comprehensive messenger ribonucleic acid profiling reveals that peroxisome proliferator-activated receptor γ activation has coordinate effects on gene expression in multiple insulin-sensitive tissues. Endocrinology 142, 1269–1277 (2001).

    Article  CAS  PubMed  Google Scholar 

  91. Staels, B. PPARγ and atherosclerosis. Curr. Med. Res. Opin. 21 (Suppl. 1), 13–20 (2005).

    Article  CAS  Google Scholar 

  92. Nesto, R. W. et al. Thiazolidinedione use, fluid retention, and congestive heart failure: a consensus statement from the American Heart Association and American Diabetes Association. Diabetes Care 27, 256–263 (2004).

    Article  CAS  PubMed  Google Scholar 

  93. Smith, S. R. et al. Effect of pioglitazone on body composition and energy expenditure: a randomized controlled trial. Metabolism 54, 24–32 (2005).

    Article  CAS  PubMed  Google Scholar 

  94. Tontonoz, P., Hu, E. & Spiegelman, B. M. Stimulation of adipogenesis in fibroblasts by PPARγ 2, a lipid- activated transcription factor. Cell 79, 1147–1156 (1994).

    Article  CAS  PubMed  Google Scholar 

  95. Saladin, R. et al. Differential regulation of peroxisome proliferator activated receptor γ 1 (PPARγ1) and PPARγ2 messenger RNA expression in the early stages of adipogenesis Cell Growth Differ. 10, 43–48 (1999).

    CAS  PubMed  Google Scholar 

  96. Fajas, L., Debril, M. B. & Auwerx, J. Peroxisome proliferator-activated receptor-γ: from adipogenesis to carcinogenesis. J. Mol. Endocrinol. 27, 1–9 (2001).

    Article  CAS  PubMed  Google Scholar 

  97. Miles, P. D. G., Barak, Y., He, W., Evans, R. M. & Olefsky, J. M. Improved insulin-sensitivity in mice heterozygous for PPAR. J. Clin. Invest. 105, 287–292 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Rocchi, S. et al. A unique PPARγ ligand with potent insulin-sensitizing yet weak adipogenic activity. Mol. Cell. 8, 737–747 (2001).

    Article  CAS  PubMed  Google Scholar 

  99. Wang, Y. et al. A synthetic triterpenoid, 2-cyano-3,12-dioxooleana-,9-dien-28-oic acid (CDDO), is a ligand for the peroxisome proliferator-activated receptor γ. Mol. Endocrinol. 14, 1550–1556 (2000).

    CAS  PubMed  Google Scholar 

  100. Cabrero, A., Laguna, J. C. & Vazquez, M. Peroxisome proliferator-activated receptors and the control of inflammation. Curr. Drug Targets Inflamm. Allergy 1, 243 –248 (2002).

    Article  CAS  PubMed  Google Scholar 

  101. Haffner, S. M. et al. Effect of rosiglitazone treatment on nontraditional markers of cardiovascular disease in patients with type 2 diabetes mellitus. Circulation 106, 679–684 (2002).

    Article  CAS  PubMed  Google Scholar 

  102. Calnek, D. S., Mazzella, L., Roser, S., Roman, J. & Hart, C. M. Peroxisome proliferator-activated receptor γ ligands increase release of nitric oxide from endothelial cells. Arterioscler. Thromb. Vasc. Biol. 23, 52–57 (2003).

    Article  CAS  PubMed  Google Scholar 

  103. Goya, K. et al. Peroxisome proliferator-activated receptor α agonists increase nitric oxide synthase expression in vascular endothelial cells. Arterioscler. Thromb. Vasc. Biol. 24, 658–663 (2004).

    Article  CAS  PubMed  Google Scholar 

  104. Dubey, R. K., Zhang, H. Y., Reddy, S. R., Boegehold, M. A. & Kotchen, T. A. Pioglitazone attenuates hypertension and inhibits growth of renal arteriolar smooth muscle in rats. Am. J. Physiol. 265, R726–R732 (1993).

    CAS  PubMed  Google Scholar 

  105. Law, R. E. et al. Troglitazone inhibits vascular smooth muscle cell growth and intimal hyperplasia. J. Clin. Invest. 98, 1897–1905 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. de Dios, S. T. et al. Inhibitory activity of clinical thiazolidinedione peroxisome proliferator activating receptor-γ ligands toward internal mammary artery, radial artery, and saphenous vein smooth muscle cell proliferation. Circulation 107, 2548–2550 (2003).

    Article  CAS  PubMed  Google Scholar 

  107. Dormandy, J. A. et al. Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial In macroVascular Events): a randomised controlled trial. Lancet 366, 1279–1289 (2005). Pioglitazone therapy in patients with diabetes shows a trend towards reduction in cardiovascular events.

    Article  CAS  PubMed  Google Scholar 

  108. Devasthale, P. V. et al. Design and synthesis of N-[(4-methoxyphenoxy)carbonyl]-N-[[4-[2-(5-methyl-2-phenyl-4-oxazolyl)ethoxy]phenyl]methyl]glycine [Muraglitazar/BMS-298585], a novel peroxisome proliferator-activated receptor α/γ dual agonist with efficacious glucose and lipid-lowering activities. J. Med. Chem. 48, 2248–2250 (2005).

    Article  CAS  PubMed  Google Scholar 

  109. Reifel-Miller, A. et al. A peroxisome proliferator-activated receptor α/γ dual agonist with a unique in vitro profile and potent glucose and lipid effects in rodent models of type 2 diabetes and dyslipidemia. Mol. Endocrinol. 19, 593–605 (2005).

    Article  CAS  Google Scholar 

  110. Shi, G. Q. Design and synthesis of α-aryloxyphenylacetic acid derivatives: a novel class of PPARα/γ dual agonists with potent antihyperglycemic and lipid modulating activity. J. Med. Chem. 48, 4457–4468 (2005).

    Article  CAS  PubMed  Google Scholar 

  111. Nissen, S. E., Wolski, K. & Topol, E. J. Effect of muraglitazar on death and major adverse cardiovascular events in patients with type 2 diabetes mellitus. JAMA 294, 2581–2586 (2005).

    Article  CAS  PubMed  Google Scholar 

  112. Peters, J. M. et al. Growth, adipose, brain, and skin alterations resulting from targeted disruption of the mouse peroxisome proliferator-activated receptor. Mol. Cell Biol. 20, 5119–5128 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Barak, Y. et al. Effects of peroxisome proliferator-activated receptor d on placentation, adiposity, and colorectal cancer. Proc. Natl Acad. Sci. USA 99, 303–308 (2002).

    Article  CAS  PubMed  Google Scholar 

  114. Oliver, W. R. et al. A selective peroxisome proliferator-activated receptor d agonist promotes reverse cholesterol transport. Proc. Natl Acad. Sci. USA 98, 5306–5311 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Evans, R. M., Barish, G. D. & Wang, Y. X. PPARs and the complex journey to obesity. Nature Med. 10, 355–361 (2004).

    Article  CAS  PubMed  Google Scholar 

  116. Wang, Y.-X. et al. Peroxisome-proliferator-activated receptor d activates fat metabolism to prevent obesity. Cell 113, 159–170 (2003).

    Article  CAS  PubMed  Google Scholar 

  117. Muoio, D. M. et al. Fatty acid homeostasis and induction of lipid regulatory genes in skeletal muscles of peroxisome proliferator-activated receptor (PPAR)α knock-out mice. Evidence for compensatory regulation by PPAR. J. Biol. Chem. 277, 26089–26097 (2002).

    Article  CAS  PubMed  Google Scholar 

  118. Dressel, U. et al. The peroxisome proliferator-activated receptor β/d agonist, GW501516, regulates the expression of genes involved in lipid catabolism and energy uncoupling in skeletal muscle cells. Mol. Endocrinol. 17, 2477–2493 (2003).

    Article  CAS  PubMed  Google Scholar 

  119. Luquet, S. et al. Peroxisome proliferator-activated receptor-d controls muscle development and oxidative capability. FASEB J. 17, 2299–2301 (2003).

    Article  CAS  PubMed  Google Scholar 

  120. Tanaka, T. et al. Activation of peroxisome proliferator-activated receptor β induces fatty acid β-oxidation in skeletal muscle and attenuates metabolic syndrome. Proc. Natl Acad. Sci. USA 100, 15924–15929 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Kurtz, T. W. & Pravenec, M. Antidiabetic mechanisms of angiotensin-converting enzyme inhibitors and angiotensin II receptor antagonists: beyond the renin-angiotensin system. J. Hypertens. 22, 2253–2261 (2004).

    Article  CAS  PubMed  Google Scholar 

  122. The Expert Committee on the Diagnosis and Classification of Diabetes Mellitus. Follow-up report on the diagnosis of diabetes mellitus. Diabetes Care 26, 3160–3167 (2003).

  123. Knowler, W. C. et al. Diabetes Prevention Program Research Group. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N. Engl. J. Med. 346, 393–403 (2002). Shows that aggressive lifestyle intervention reduces conversion of pre-diabetes to diabetes. Metformin therapy also reduces the rate of conversion.

    Article  CAS  PubMed  Google Scholar 

  124. Haffner, S. M. The prediabetic problem: development of non-insulin-dependent diabetes mellitus and related abnormalities. Diabetes Complications 11, 69–76 (1997).

    Article  CAS  Google Scholar 

  125. Alexander, C. M., Landsman, P. B., Teutsch, S. M. & Haffner, S. M. Third National Health and Nutrition Examination Survey (NHANES III); National Cholesterol Education Program (NCEP). NCEP-defined metabolic syndrome, diabetes, and prevalence of coronary heart disease among NHANES III participants age 50 years and older. Diabetes 52, 1210–1214 (2003).

    Article  CAS  PubMed  Google Scholar 

  126. Knowler, W. C. et al. Diabetes Prevention Program Research Group. Prevention of type 2 diabetes with troglitazone in the Diabetes Prevention Program. Diabetes 54, 1150–1156 (2005).

    Article  PubMed  Google Scholar 

  127. Ruderman, N. & Prentki, M. AMP kinase and malonyl-CoA: targets for therapy of the metabolic syndrome. Nature Rev. Drug Discov. 3, 340–351 (2004).

    Article  CAS  Google Scholar 

  128. Paterson, J. M. et al. Metabolic syndrome without obesity: hepatic overexpression of 11β-hydroxysteroid dehydrogenase type 1 in transgenic mice. Proc. Natl Acad. Sci. USA 101, 7088–7093 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. De Pergola, G. & Pannacciulli, N. Coagulation and fibrinolysis abnormalities in obesity. J. Endocrinol. Invest. 25, 899–904 (2002).

    Article  CAS  PubMed  Google Scholar 

  130. Antithrombotic Trialists' Collaboration. Collaborative meta-analysis of randomised trials of antiplatelet therapy for prevention of death, myocardial infarction, and stroke in high risk patients. BMJ 324, 71–86 (2002). Antiplatelet therapy reduces risk for myocardial infarction and stroke in high-risk patients.

  131. Pearson, T. A. et al. AHA Guidelines for Primary Prevention of Cardiovascular Disease and Stroke: 2002 Update: Consensus Panel Guide to Comprehensive Risk Reduction for Adult Patients Without Coronary or Other Atherosclerotic Vascular Diseases. American Heart Association Science Advisory and Coordinating Committee. Circulation 106, 388–391 (2002).

    Article  PubMed  Google Scholar 

  132. Eidelman, R. S., Hebert, P. R., Weisman, S. M. & Hennekens, C. H. An update on aspirin in the primary prevention of cardiovascular disease. Arch. Intern. Med. 163, 2006–2010 (2003).

    Article  PubMed  Google Scholar 

  133. Ridker, P. M., Wilson, P. W. & Grundy, S. M. Should C-reactive protein be added to metabolic syndrome and to assessment of global cardiovascular risk? Circulation 109, 2818–2825 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

During the past 5 years, S.M.G. has been an investigator on research grants awarded to the University of Texas Southwestern Medical Center, Dallas, Texas, USA, from Merck, Abbott and Kos Pharmaceuticals. He has also served as a consultant for Merck, Merck Schering Plough, Kos, Abbott, Fournier, Bristol-Myers Squibb, Sankyo, AstraZeneca and Sanofi-Aventis.

Related links

Related links

DATABASES

OMIM

Type 2 diabetes

Glossary

Atherogenic dyslipidaemia

Atherogenic dyslipidaemia consists of elevations of lipoproteins containing apolipoprotein B (apo B), which include very-low-density lipoprotein (VLDL) and low-density lipoprotein (LDL), elevations of VLDL triglycerides (and VLDL remnants), increased small LDL particles, and low levels of high-density lipoprotein (HDL).

Adiponectin

A product of adipose tissue shown to reduce systemic insulin resistance.

Renin–angiotensin–aldosterone system

(RAAS). The renin–angiotensin–aldosterone system is a key regulator of blood pressure. It involves the enzymes renin and angiotensin-converting enzyme, which are part of a pathway that converts angiotensinogen to angiotensin II. This acts on the angiotensin II type 1 receptor, leading to various effects that influence blood pressure, including aldosterone release.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grundy, S. Drug therapy of the metabolic syndrome: minimizing the emerging crisis in polypharmacy. Nat Rev Drug Discov 5, 295–309 (2006). https://doi.org/10.1038/nrd2005

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd2005

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing