Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Interleukin-6: designing specific therapeutics for a complex cytokine

Abstract

Interleukin-6 (IL-6) is a pivotal cytokine with a diverse repertoire of physiological functions that include regulation of immune cell proliferation and differentiation. Dysregulation of IL-6 signalling is associated with inflammatory and lymphoproliferative disorders such as rheumatoid arthritis and Castleman disease, and several classes of therapeutics have been developed that target components of the IL-6 signalling pathway. So far, monoclonal antibodies against IL-6 or IL-6 receptor (IL-6R) and Janus kinases (JAK) inhibitors have been successfully developed for the treatment of autoimmune diseases such as rheumatoid arthritis. However, clinical trials of agents targeting IL-6 signalling have also raised questions about the diseases and patient populations for which such agents have an appropriate benefit–risk profile. Knowledge from clinical trials and advances in our understanding of the complexities of IL-6 signalling, including the potential to target an IL-6 trans-signalling pathway, are now indicating novel opportunities for therapeutic intervention. In this Review, we overview the roles of IL-6 in health and disease and analyse progress with several approaches of inhibiting IL-6-signalling, with the aim of illuminating when and how to apply IL-6 blockade.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Three different modes of IL-6 signalling.
Figure 2: Important biological activities of IL-6.
Figure 3: Role of IL-6 in the differentiation of T cell subsets.
Figure 4: Therapeutic intervention to inhibit IL-6 signalling.

Similar content being viewed by others

References

  1. Elliott, M. J. et al. Randomised double-blind comparison of chimeric monoclonal antibody to tumour necrosis factor alpha (cA2) versus placebo in rheumatoid arthritis. Lancet 344, 1105–1110 (1994).

    Article  CAS  PubMed  Google Scholar 

  2. Grau, G. E. & Maennel, D. N. TNF inhibition and sepsis — sounding a cautionary note. Nat. Med. 3, 1193–1195 (1997).

    Article  CAS  PubMed  Google Scholar 

  3. Feldmann, M. Development of anti-TNF therapy for rheumatoid arthritis. Nat. Rev. Immunol. 2, 364–371 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Aggarwal, B. B., Gupta, S. C. & Kim, J. H. Historical perspectives on tumor necrosis factor and its superfamily: 25 years later, a golden journey. Blood 119, 651–665 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lu, Z. Y. et al. High amounts of circulating interleukin (IL)-6 in the form of monomeric immune complexes during anti-IL-6 therapy. Towards a new methodology for measuring overall cytokine production in human in vivo. Eur. J. Immunol. 22, 2819–2824 (1992).

    Article  CAS  PubMed  Google Scholar 

  6. Alonzi, T. et al. Interleukin 6 is required for the development of collagen-induced arthritis. J. Exp. Med. 187, 461–468 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ohshima, S. et al. Interleukin 6 plays a key role in the development of antigen-induced arthritis. Proc. Natl Acad. Sci. USA 95, 8222–8226 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tanaka, T., Narazaki, M. & Kishimoto, T. Therapeutic targeting of the interleukin-6 receptor. Annu. Rev. Pharmacol. Toxicol. 52, 199–219 (2012).

    Article  CAS  PubMed  Google Scholar 

  9. Tanaka, T., Narazaki, M. & Kishimoto, T. IL-6 in inflammation, immunity, and disease. Cold Spring Harb. Perspect. Biol. 6, a016295 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Reynolds, A., Koenig, A. S., Bananis, E. & Singh, A. When is switching warranted among biologic therapies in rheumatoid arthritis? Expert Rev. Pharmacoecon. Outcomes Res. 12, 319–333 (2012).

    Article  PubMed  Google Scholar 

  11. Rose-John, S., Winthrop, K. & Calabrese, L. The role of IL-6 in host defence against infections: immunobiology and clinical implications. Nat. Rev. Rheumatol. 13, 399–409 (2017).

    Article  CAS  PubMed  Google Scholar 

  12. Bingham, C. O. 3rd et al. Humoral immune response to vaccines in patients with rheumatoid arthritis treated with tocilizumab: results of a randomised controlled trial (VISARA). Ann. Rheum. Dis. 74, 818–822 (2015).

    Article  CAS  PubMed  Google Scholar 

  13. Kishimoto, T. IL-6: from its discovery to clinical applications. Int. Immunol. 22, 347–352 (2010). This is an impressive summary of the history of the discovery of IL-6, IL-6R, gp130, STAT3 and SOCS3 by Kishimoto and the development of the antibody tocilizumab, which is now approved in more than 100 countries for the treatment of autoimmune diseases.

    Article  CAS  PubMed  Google Scholar 

  14. Heinrich, P. C., Castell, J. V. & Andus, T. Interleukin-6 and the acute phase response. Biochem. J. 265, 621–636 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cressman, D. E. et al. Liver failure and defective hepatocyte regeneration in interleukin-6-deficient mice. Science 274, 1379–1383 (1996).

    Article  CAS  PubMed  Google Scholar 

  16. Calabrese, L. H. & Rose-John, S. IL-6 biology: implications for clinical targeting in rheumatic disease. Nat. Rev. Rheumatol. 10, 720–727 (2014).

    Article  CAS  PubMed  Google Scholar 

  17. Scheller, J., Chalaris, A., Schmidt-Arras, D. & Rose-John, S. The pro- and anti-inflammatory properties of the cytokine interleukin-6. Biochim. Biophys. Acta 1813, 878–888 (2011). This article summarizes the evidence that IL-6 trans -signalling via the soluble IL-6R is mainly pro-inflammatory signalling, whereas signalling via the membrane-bound IL-6R is rather regenerative and protective.

    Article  CAS  PubMed  Google Scholar 

  18. Waage, A., Brandtzaeg, P., Halstensen, A., Kierulf, P. & Espevik, T. The complex pattern of cytokines in serum from patients with meningococcal septic shock. Association between interleukin 6, interleukin 1, and fatal outcome. J. Exp. Med. 169, 333–338 (1989).

    Article  CAS  PubMed  Google Scholar 

  19. Campbell, I. L. et al. Neurologic disease induced in transgenic mice by cerebral overexpression of interleukin 6. Proc. Natl Acad. Sci. USA 90, 10061–10065 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Schaper, F. & Rose-John, S. Interleukin-6: Biology, signaling and strategies of blockade. Cytokine Growth Factor Rev. 26, 475–487 (2015).

    Article  CAS  PubMed  Google Scholar 

  21. Rose-John, S. & Heinrich, P. C. Soluble receptors for cytokines and growth factors: generation and biological function. Biochem. J. 300, 281–290 (1994). In this article, the paradigm of IL-6 trans -signalling for IL-6 activities via sIL-6R is used for the first time.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rose-John, S., Scheller, J. & Schaper, F. “Family reunion” — a structured view on the composition of the receptor complexes of interleukin-6-type and interleukin-12-type cytokines. Cytokine Growth Factor Rev. 26, 471–474 (2015).

    Article  CAS  PubMed  Google Scholar 

  23. Garbers, C. et al. Plasticity and cross-talk of interleukin 6-type cytokines. Cytokine Growth Factor Rev. 23, 85–97 (2012).

    Article  CAS  PubMed  Google Scholar 

  24. Riethmueller, S. et al. Proteolytic origin of the soluble human IL-6R in vivo and a decisive role of N-glycosylation. PLoS Biol. 15, e2000080 (2017). This is the first direct demonstration that sIL-6R found in human serum is generated by limited proteolysis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lust, J. et al. Isolation of an mRNA encoding a soluble form of the human interleukin-6 receptor. Cytokine 4, 96–100 (1992).

    Article  CAS  PubMed  Google Scholar 

  26. Jostock, T. et al. Soluble gp130 is the natural inhibitor of soluble IL-6R transsignaling responses. Eur. J. Biochem. 268, 160–167 (2001). This paper demonstrates that the soluble form of gp130, which is found at high concentration in human serum, specifically neutralizes IL-6 trans -signalling via sIL-6R.

    Article  CAS  PubMed  Google Scholar 

  27. Jones, S. A., Scheller, J. & Rose-John, S. Therapeutic strategies for the clinical blockade of IL-6/gp130 signaling. J. Clin. Invest. 121, 3375–3383 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rafiq, S. et al. A common variant of the interleukin 6 receptor (IL-6r) gene increases IL-6r and IL-6 levels, without other inflammatory effects. Genes Immun. 8, 552–559 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Garbers, C. et al. The interleukin-6 receptor Asp358Ala single nucleotide polymorphism rs2228145 confers increased proteolytic conversion rates by ADAM proteases. Biochim. Biophys. Acta 1842, 1485–1494 (2014).

    Article  CAS  PubMed  Google Scholar 

  30. Interleukin-6 Receptor Mendelian Randomisation Analysis (IL6R MR) Consortium et al. The interleukin-6 receptor as a target for prevention of coronary heart disease: a mendelian randomisation analysis. Lancet 379, 1214–1224 (2012).

  31. IL6R Genetics Consortium Emerging Risk Factors Collaboration et al. Interleukin-6 receptor pathways in coronary heart disease: a collaborative meta-analysis of 82 studies. Lancet 379, 1205–1213 (2012).

  32. Scheller, J. & Rose-John, S. The interleukin 6 pathway and atherosclerosis. Lancet 380, 338 (2012).

    Article  PubMed  Google Scholar 

  33. Heink, S. et al. Trans-presentation of IL-6 by dendritic cells is required for the priming of pathogenic TH17 cells. Nat. Immunol. 18, 74–85 (2017). This study identifies IL-6 trans -presentation as a signalling mode of IL-6 essential during the priming of pathogenic T H 17 cells in autoimmune disease of the central nervous system.

    Article  CAS  PubMed  Google Scholar 

  34. Carpenter, R. L. & Lo, H. W. STAT3 target genes relevant to human cancers. Cancers 6, 897–925 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rebouissou, S. et al. Frequent in-frame somatic deletions activate gp130 in inflammatory hepatocellular tumours. Nature 457, 200–204 (2009). This study is the first to report somatic activating mutations in gp130, which are associated with liver inflammatory adenomas and hepatocellular tumours.

    Article  CAS  PubMed  Google Scholar 

  36. Taniguchi, K. et al. YAP-IL-6ST autoregulatory loop activated on APC loss controls colonic tumorigenesis. Proc. Natl Acad. Sci. USA 114, 1643–1648 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Taniguchi, K. et al. A gp130-Src-YAP module links inflammation to epithelial regeneration. Nature 519, 57–62 (2015). This study describes gp130–SRC–YAP signalling, which is independent of STAT3 activation, in regeneration and inflammation in the intestine and in the liver.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hunter, C. A. & Jones, S. A. IL-6 as a keystone cytokine in health and disease. Nat. Immunol. 16, 448–457 (2015).

    Article  CAS  PubMed  Google Scholar 

  39. Carey, A. L. et al. Interleukin-6 increases insulin-stimulated glucose disposal in humans and glucose uptake and fatty acid oxidation in vitro via AMP-activated protein kinase. Diabetes 55, 2688–2697 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Steensberg, A. et al. Production of interleukin-6 in contracting human skeletal muscles can account for the exercise-induced increase in plasma interleukin-6. J. Physiol. 529, 237–242 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Strang, A. C. et al. Pro-atherogenic lipid changes and decreased hepatic LDL receptor expression by tocilizumab in rheumatoid arthritis. Atherosclerosis 229, 174–181 (2013).

    Article  CAS  PubMed  Google Scholar 

  42. Tournadre, A. et al. Management of dyslipidaemia in high-risk patients with recent-onset rheumatoid arthritis: targets still not met despite specific recommendations. Results from the ESPOIR cohort during the first five years of follow-up. Clin. Exp. Rheumatol. 35, 296–302 (2017).

    PubMed  Google Scholar 

  43. Bastard, J. P. et al. Elevated levels of interleukin 6 are reduced in serum and subcutaneous adipose tissue of obese women after weight loss. J. Clin. Endocrinol. Metab. 85, 3338–3342 (2000).

    CAS  PubMed  Google Scholar 

  44. Nicklas, B. J., You, T. & Pahor, M. Behavioural treatments for chronic systemic inflammation: effects of dietary weight loss and exercise training. CMAJ 172, 1199–1209 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Pradhan, A. D., Manson, J. E., Rifai, N., Buring, J. E. & Ridker, P. M. C-Reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus. JAMA 286, 327–334 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. Weisberg, S. P. et al. Obesity is associated with macrophage accumulation in adipose tissue. J. Clin. Invest. 112, 1796–1808 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Carey, A. L. et al. Interleukin-6 and tumor necrosis factor-alpha are not increased in patients with Type 2 diabetes: evidence that plasma interleukin-6 is related to fat mass and not insulin responsiveness. Diabetologia 47, 1029–1037 (2004).

    CAS  PubMed  Google Scholar 

  48. Wallenius, V. et al. Interleukin-6-deficient mice develop mature-onset obesity. Nat. Med. 8, 75–79 (2002). This is the first study to report mature-onset obesity in mice lacking a functional IL-6 gene.

    Article  CAS  PubMed  Google Scholar 

  49. Wunderlich, T. F. et al. Interleukin-6 signaling in liver-parenchymal cells suppresses hepatic inflammation and improves systemic insulin action. Cell Metab. 12, 237–249 (2010).

    Article  CAS  PubMed  Google Scholar 

  50. Xu, E. et al. Temporal and tissue-specific requirements for T-lymphocyte IL-6 signalling in obesity-associated inflammation and insulin resistance. Nat. Commun. 8, 14803 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Matthews, V. B., Allen, T. L., Risis, S. & Chan, M. H. S. Interleukin-6-deficient mice develop hepatic inflammation and systemic insulin resistance. Diabetologia 53, 2431–2441 (2010).

    Article  CAS  PubMed  Google Scholar 

  52. Kraakman, M. J. et al. Blocking IL-6 trans-signaling prevents high-fat diet-induced adipose tissue macrophage recruitment but does not improve insulin resistance. Cell Metab. 21, 403–416 (2015). This paper provides evidence that IL-6 trans -signalling via sIL-6R is responsible for high-fat diet-induced recruitment of macrophages into adipose tissue.

    Article  CAS  PubMed  Google Scholar 

  53. Braune, J. et al. IL-6 regulates M2 polarization and local proliferation of adipose tissue macrophages in obesity. J. Immunol. 198, 2927–2934 (2017).

    Article  CAS  PubMed  Google Scholar 

  54. Mauer, J. et al. Signaling by IL-6 promotes alternative activation of macrophages to limit endotoxemia and obesity-associated resistance to insulin. Nat. Immunol. 15, 423–430 (2014). This study provides compelling mechanistic evidence that IL-6 drives alternative differentiation of macrophages by inducing the expression of the IL-4R and responsiveness to IL-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Muller, N. et al. IL-6 blockade by monoclonal antibodies inhibits apolipoprotein (a) expression and lipoprotein (a) synthesis in humans. J. Lipid Res. 56, 1034–1042 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kraakman, M. J. et al. Targeting gp130 to prevent inflammation and promote insulin action. Diabetes Obes. Metab. 15 (Suppl. 3), 170–175 (2013).

    Article  CAS  PubMed  Google Scholar 

  57. Nishimoto, N. et al. Humanized anti-interleukin-6 receptor antibody treatment of multicentric Castleman disease. Blood 106, 2627–2632 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Cheung, C.-L. L., Xiao, S.-M. M. & Kung, A. W. Genetic epidemiology of age-related osteoporosis and its clinical applications. Nat. Rev. Rheumatol. 6, 507–517 (2010).

    Article  PubMed  Google Scholar 

  59. De Benedetti, F. et al. Impaired skeletal development in interleukin-6-transgenic mice: a model for the impact of chronic inflammation on the growing skeletal system. Arthritis Rheum. 54, 3551–3563 (2006).

    Article  CAS  PubMed  Google Scholar 

  60. Poli, V. et al. Interleukin-6 deficient mice are protected from bone loss caused by estrogen depletion. EMBO J. 13, 1189–1196 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Carlsten, H. Immune responses and bone loss: the estrogen connection. Immunol. Rev. 208, 194–206 (2005).

    Article  CAS  PubMed  Google Scholar 

  62. Udagawa, N. et al. Interleukin (IL)-6 induction of osteoclast differentiation depends on IL-6 receptors expressed on osteoblastic cells but not on osteoclast progenitors. J. Exp. Med. 182, 1461–1468 (1995).

    Article  CAS  PubMed  Google Scholar 

  63. Prystaz, K. et al. Distinct effects of interleukin-6 classic and trans-signaling in bone fracture healing. Am. J. Pathol. 188, 474–490 (2018).

    Article  CAS  PubMed  Google Scholar 

  64. Edwards, C. J. & Williams, E. The role of interleukin-6 in rheumatoid arthritis-associated osteoporosis. Osteoporos. Int. 21, 1287–1293 (2010).

    Article  CAS  PubMed  Google Scholar 

  65. van Staa, T. P., Geusens, P., Bijlsma, J. W., Leufkens, H. G. & Cooper, C. Clinical assessment of the long-term risk of fracture in patients with rheumatoid arthritis. Arthritis Rheum. 54, 3104–3112 (2006).

    Article  CAS  PubMed  Google Scholar 

  66. Kume, K., Amano, K., Yamada, S. & Kanazawa, T. The effect of tocilizumab on bone mineral density in patients with methotrexate-resistant active rheumatoid arthritis. Rheumatology 53, 900–903 (2014).

    Article  CAS  PubMed  Google Scholar 

  67. Cray, C., Zaias, J. & Altman, N. H. Acute phase response in animals: a review. Comp. Med. 59, 517–526 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Gauldie, J., Richards, C., Harnish, D., Lansdorp, P. & Baumann, H. Interferon beta 2/B-cell stimulatory factor type 2 shares identity with monocyte-derived hepatocyte-stimulating factor and regulates the major acute phase protein response in liver cells. Proc. Natl Acad. Sci. USA 84, 7251–7255 (1987). This is the first report to describe the identity of hepatocyte-stimulating factor with IL-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kopf, M. et al. Impaired immune and acute-phase responses in interleukin-6-deficient mice. Nature 368, 339–342 (1994).

    Article  CAS  PubMed  Google Scholar 

  70. Hoge, J. et al. IL-6 controls the innate immune response against Listeria monocytogenes via classical IL-6 signaling. J. Immunol. 190, 703–711 (2013).

    Article  CAS  PubMed  Google Scholar 

  71. Smolen, J. S. et al. Effect of interleukin-6 receptor inhibition with tocilizumab in patients with rheumatoid arthritis (OPTION study): a double-blind, placebo-controlled, randomised trial. Lancet 371, 987–997 (2008).

    Article  CAS  PubMed  Google Scholar 

  72. Lang, V. R. et al. Risk of infections in rheumatoid arthritis patients treated with tocilizumab. Rheumatology 51, 852–857 (2012).

    Article  CAS  PubMed  Google Scholar 

  73. Gabay, C. et al. Tocilizumab monotherapy versus adalimumab monotherapy for treatment of rheumatoid arthritis (ADACTA): a randomised, double-blind, controlled phase 4 trial. Lancet 381, 1541–1550 (2013).

    Article  CAS  PubMed  Google Scholar 

  74. Burmester, G. R. & Pope, J. E. Novel treatment strategies in rheumatoid arthritis. Lancet 389, 2338–2348 (2017).

    Article  PubMed  Google Scholar 

  75. Suthaus, J. et al. HHV-8-encoded viral IL-6 collaborates with mouse IL-6 in the development of multicentric Castleman disease in mice. Blood 119, 5173–5181 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Song, S. N. et al. Down-regulation of hepcidin resulting from long-term treatment with an anti-IL-6 receptor antibody (tocilizumab) improves anemia of inflammation in multicentric Castleman disease. Blood 116, 3627–3634 (2010).

    Article  CAS  PubMed  Google Scholar 

  77. Liu, A. Y. et al. Idiopathic multicentric Castleman's disease: a systematic literature review. Lancet Haematol. 3, e163–e175 (2016).

    Article  PubMed  Google Scholar 

  78. Villiger, P. M. et al. Tocilizumab for induction and maintenance of remission in giant cell arteritis: a phase 2, randomised, double-blind, placebo-controlled trial. Lancet 387, 1921–1927 (2016).

    Article  CAS  PubMed  Google Scholar 

  79. Stone, J. H. et al. Trial of tocilizumab in giant-cell arteritis. N. Engl. J. Med. 377, 317–328 (2017). This study shows the efficacy of subcutaneous anti-IL-6R antibody administration in the management of giant cell arteritis, which enables avoidance of long-term corticoid treatment for this disease.

    Article  CAS  PubMed  Google Scholar 

  80. Chihara, N. et al. Interleukin 6 signaling promotes anti-aquaporin 4 autoantibody production from plasmablasts in neuromyelitis optica. Proc. Natl Acad. Sci. USA 108, 3701–3706 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Araki, M. et al. Efficacy of the anti-IL-6 receptor antibody tocilizumab in neuromyelitis optica: a pilot study. Neurology 82, 1302–1306 (2014). This is a case series that suggests that tocilizumab is an efficient treatment for NMO, an autoimmune disease of the central nervous system that is mediated by antibodies to the water channel AQP4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Kleiter, I. & Gold, R. Present and future therapies in neuromyelitis optica spectrum disorders. Neurotherapeutics 13, 70–83 (2016).

    Article  CAS  PubMed  Google Scholar 

  83. Diehl, S. et al. Inhibition of Th1 differentiation by IL-6 is mediated by SOCS1. Immunity 13, 805–815 (2000).

    Article  CAS  PubMed  Google Scholar 

  84. Diehl, S. & Rincon, M. The two faces of IL-6 on Th1/Th2 differentiation. Mol. Immunol. 39, 531–536 (2002).

    Article  CAS  PubMed  Google Scholar 

  85. Rincon, M., Anguita, J., Nakamura, T., Fikrig, E. & Flavell, R. A. Interleukin (IL)-6 directs the differentiation of IL-4-producing CD4+ T cells. J. Exp. Med. 185, 461–469 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Mendel, I., Katz, A., Kozak, N., Ben-Nun, A. & Revel, M. Interleukin-6 functions in autoimmune encephalomyelitis: a study in gene-targeted mice. Eur. J. Immunol. 28, 1727–1737 (1998).

    Article  CAS  PubMed  Google Scholar 

  87. Veldhoen, M., Hocking, R. J., Atkins, C. J., Locksley, R. M. & Stockinger, B. TGFβ in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 24, 179–189 (2006). This is the first paper to show that IL-6 is a differentiation factor of T H 17 cells.

    Article  CAS  PubMed  Google Scholar 

  88. Mangan, P. R. et al. Transforming growth factor-beta induces development of the TH17 lineage. Nature 441, 231–234 (2006).

    Article  CAS  PubMed  Google Scholar 

  89. Bettelli, E. et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441, 235–238 (2006). This is a key study to suggest that IL-6 may dictate whether naive T cells differentiate into pro-inflammatory T H 17 cells or FOXP3+ T reg cells during antigen-specific priming of T cells in the peripheral immune compartment.

    Article  CAS  PubMed  Google Scholar 

  90. Zhou, L. et al. TGF-beta-induced Foxp3 inhibits TH17 cell differentiation by antagonizing RORgammat function. Nature 453, 236–240 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Ciofani, M. et al. A validated regulatory network for Th17 cell specification. Cell 151, 289–303 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Liang, S. C. et al. Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. J. Exp. Med. 203, 2271–2279 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Zheng, Y. et al. Interleukin-22, a TH17 cytokine, mediates IL-23-induced dermal inflammation and acanthosis. Nature 445, 648–651 (2007).

    Article  CAS  PubMed  Google Scholar 

  94. Kreymborg, K. et al. IL-22 is expressed by Th17 cells in an IL-23-dependent fashion, but not required for the development of autoimmune encephalomyelitis. J. Immunol. 179, 8098–8104 (2007).

    Article  CAS  PubMed  Google Scholar 

  95. Eyerich, S. et al. Th22 cells represent a distinct human T cell subset involved in epidermal immunity and remodeling. J. Clin. Invest. 119, 3573–3585 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Trifari, S., Kaplan, C. D., Tran, E. H., Crellin, N. K. & Spits, H. Identification of a human helper T cell population that has abundant production of interleukin 22 and is distinct from TH-17, TH1 and TH2 cells. Nat. Immunol. 10, 864–871 (2009).

    Article  CAS  PubMed  Google Scholar 

  97. Duhen, T., Geiger, R., Jarrossay, D., Lanzavecchia, A. & Sallusto, F. Production of interleukin 22 but not interleukin 17 by a subset of human skin-homing memory T cells. Nat. Immunol. 10, 857–863 (2009). This is a description of T H 22 cells as a subset of skin-homing T H cells that produce IL-22 and are induced in response to a combination of IL-6 and TNF.

    Article  CAS  PubMed  Google Scholar 

  98. Moyat, M. et al. IL-22-induced antimicrobial peptides are key determinants of mucosal vaccine-induced protection against H. pylori in mice. Mucosal Immunol. 10, 271–281 (2017).

    Article  CAS  PubMed  Google Scholar 

  99. Ghoreschi, K. et al. Generation of pathogenic TH17 cells in the absence of TGF-β signalling. Nature 467, 967–971 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Zielinski, C. E. et al. Pathogen-induced human TH17 cells produce IFN-γ or IL-10 and are regulated by IL-1β. Nature 484, 514–518 (2012).

    Article  CAS  PubMed  Google Scholar 

  101. Fischer, M. et al. I. A bioactive designer cytokine for human hematopoietic progenitor cell expansion. Nat. Biotechnol. 15, 142–145 (1997). This is the first description of the designer cytokine hyper-IL-6 consisting of sIL-6R covalently linked to IL-6, which is widely used as a mimic of IL-6 trans -signalling.

    Article  CAS  PubMed  Google Scholar 

  102. Briso, E., Dienz, O. & Rincon, M. Cutting edge: soluble IL-6R is produced by IL-6R ectodomain shedding in activated CD4 T cells. J. Immunol. 180, 7102–7106 (2008).

    Article  CAS  PubMed  Google Scholar 

  103. Jones, G. W. et al. Loss of CD4+ T cell IL-6R expression during inflammation underlines a role for IL-6 trans signaling in the local maintenance of Th17 cells. J. Immunol. 184, 2130–2139 (2010).

    Article  CAS  PubMed  Google Scholar 

  104. Scheller, J., Chalaris, A., Garbers, C. & Rose-John, S. ADAM17: a molecular switch to control inflammation and tissue regeneration. Trends Immunol. 32, 380–387 (2011).

    Article  CAS  PubMed  Google Scholar 

  105. Hirota, K. et al. T cell self-reactivity forms a cytokine milieu for spontaneous development of IL-17+ Th cells that cause autoimmune arthritis. J. Exp. Med. 204, 41–47 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Michel, M. L. et al. Critical role of ROR-gammat in a new thymic pathway leading to IL-17-producing invariant NKT cell differentiation. Proc. Natl Acad. Sci. USA 105, 19845–19850 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Lochner, M. et al. In vivo equilibrium of proinflammatory IL-17+ and regulatory IL-10+ Foxp3+ RORγt+ T cells. J. Exp. Med. 205, 1381–1393 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Satoh-Takayama, N. et al. Microbial flora drives interleukin 22 production in intestinal NKp46+ cells that provide innate mucosal immune defense. Immunity 29, 958–970 (2008).

    Article  CAS  PubMed  Google Scholar 

  109. Grivennikov, S. et al. IL-6 and Stat3 are required for survival of intestinal epithelial cells and development of colitis-associated cancer. Cancer Cell 15, 103–113 (2009). This is a demonstration of regenerative and anti-inflammatory properties of IL-6 in intestinal regeneration.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Tsantikos, E. et al. Autoimmune disease in Lyn-deficient mice is dependent on an inflammatory environment established by IL-6. J. Immunol. 184, 1348–1360 (2010).

    Article  CAS  PubMed  Google Scholar 

  111. Tsantikos, E. et al. Interleukin-6 trans-signaling exacerbates inflammation and renal pathology in lupus-prone mice. Arthritis Rheum. 65, 2691–2702 (2013).

    CAS  PubMed  Google Scholar 

  112. Happel, K. I. et al. Divergent roles of IL-23 and IL-12 in host defense against Klebsiella pneumoniae. J. Exp. Med. 202, 761–769 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Igyarto, B. Z. et al. Skin-resident murine dendritic cell subsets promote distinct and opposing antigen-specific T helper cell responses. Immunity 35, 260–272 (2011).

    Article  CAS  PubMed  Google Scholar 

  114. Vinuesa, C. G., Linterman, M. A., Yu, D. & MacLennan, I. C. Follicular helper T cells. Annu. Rev. Immunol. 34, 335–368 (2016).

    Article  CAS  PubMed  Google Scholar 

  115. Crotty, S. Follicular helper CD4 T cells (TFH). Annu. Rev. Immunol. 29, 621–663 (2011).

    Article  CAS  PubMed  Google Scholar 

  116. Karnowski, A. et al. B and T cells collaborate in antiviral responses via IL-6, IL-21, and transcriptional activator and coactivator, Oct2 and OBF-1. J. Exp. Med. 209, 2049–2064 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Chavele, K. M., Merry, E. & Ehrenstein, M. R. Cutting edge: circulating plasmablasts induce the differentiation of human T follicular helper cells via IL-6 production. J. Immunol. 194, 2482–2485 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Harker, J. A., Lewis, G. M., Mack, L. & Zuniga, E. I. Late interleukin-6 escalates T follicular helper cell responses and controls a chronic viral infection. Science 334, 825–829 (2011). In this study, IL-6 produced by FDCs is identified as indispensable for the generation of T FH cells, the generation of neutralizing antibodies and virus control in late phases of chronic viral infection.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Nakayamada, S. et al. Early Th1 cell differentiation is marked by a Tfh cell-like transition. Immunity 35, 919–931 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Nakayamada, S. et al. Type I IFN induces binding of STAT1 to Bcl6: divergent roles of STAT family transcription factors in the T follicular helper cell genetic program. J. Immunol. 192, 2156–2166 (2014).

    Article  CAS  PubMed  Google Scholar 

  121. Choi, Y. S., Eto, D., Yang, J. A., Lao, C. & Crotty, S. Cutting edge: STAT1 is required for IL-6-mediated Bcl6 induction for early follicular helper cell differentiation. J. Immunol. 190, 3049–3053 (2013).

    Article  CAS  PubMed  Google Scholar 

  122. Schooltink, H. & Rose-John, S. Cytokines as therapeutic drugs. J. Interferon Cytokine Res. 22, 505–516 (2002).

    Article  CAS  PubMed  Google Scholar 

  123. Boulanger, M. J., Chow, D. C., Brevnova, E. E. & Garcia, K. C. Hexameric structure and assembly of the interleukin-6/IL-6 alpha-receptor/gp130 complex. Science 300, 2101–2104 (2003).

    Article  CAS  PubMed  Google Scholar 

  124. Skiniotis, G., Boulanger, M. J., Garcia, K. C. & Walz, T. Signaling conformations of the tall cytokine receptor gp130 when in complex with IL-6 and IL-6 receptor. Nat. Struct. Mol. Biol. 12, 545–551 (2005).

    Article  CAS  PubMed  Google Scholar 

  125. van Rhee, F. et al. Siltuximab for multicentric Castleman's disease: a randomised, double-blind, placebo-controlled trial. Lancet Oncol. 15, 966–974 (2014).

    Article  CAS  PubMed  Google Scholar 

  126. Aletaha, D. et al. Efficacy and safety of sirukumab in patients with active rheumatoid arthritis refractory to anti-TNF therapy (SIRROUND-T): a randomised, double-blind, placebo-controlled, parallel-group, multinational, phase 3 study. Lancet 389, 1206–1217 (2017).

    Article  CAS  PubMed  Google Scholar 

  127. Mease, P. et al. A phase II, double-blind, randomised, placebo-controlled study of BMS945429 (ALD518) in patients with rheumatoid arthritis with an inadequate response to methotrexate. Ann. Rheum. Dis. 71, 1183–1189 (2012).

    Article  CAS  PubMed  Google Scholar 

  128. Weinblatt, M. E. et al. The efficacy and safety of subcutaneous clazakizumab in patients with moderate-to-severe rheumatoid arthritis and an inadequate response to methotrexate: results from a multinational, phase Iib, randomized, double-blind, placebo/active-controlled, dose-ranging study. Arthritis Rheumatol. 67, 2591–2600 (2015).

    Article  PubMed  Google Scholar 

  129. Mease, P. J. et al. The efficacy and safety of clazakizumab, an anti-interleukin-6 monoclonal antibody, in a phase Iib study of adults with active psoriatic arthritis. Arthritis Rheumatol. 68, 2163–2173 (2016).

    Article  CAS  PubMed  Google Scholar 

  130. Shaw, S. et al. Discovery and characterization of olokizumab: a humanized antibody targeting interleukin-6 and neutralizing gp130-signaling. mAbs 6, 774–782 (2014).

    Article  PubMed  Google Scholar 

  131. Kretsos, K. et al. Safety and pharmacokinetics of olokizumab, an anti-IL-6 monoclonal antibody, administered to healthy male volunteers: A randomized phase I study. Clin. Pharmacol. Drug Dev. 3, 388–395 (2014).

    Article  CAS  PubMed  Google Scholar 

  132. Genovese, M. C. et al. Efficacy and safety of olokizumab in patients with rheumatoid arthritis with an inadequate response to TNF inhibitor therapy: outcomes of a randomised phase Iib study. Ann. Rheum. Dis. 73, 1607–1615 (2014).

    Article  CAS  PubMed  Google Scholar 

  133. Klein, B., Lu, Z. Y., Gaillard, J. P., Harousseau, J. L. & Bataille, R. Inhibiting IL-6 in human multiple myeloma. Curr. Top. Microbiol. Immunol. 182, 237–244 (1992).

    CAS  PubMed  Google Scholar 

  134. Klein, B. et al. Murine anti-interleukin-6 monoclonal antibody therapy for a patient with plasma cell leukemia. Blood 78, 1198–1204 (1991).

    CAS  PubMed  Google Scholar 

  135. Nishimoto, N. et al. Mechanisms and pathologic significances in increase in serum interleukin-6 (IL-6) and soluble IL-6 receptor after administration of an anti-IL-6 receptor antibody, tocilizumab, in patients with rheumatoid arthritis and Castleman disease. Blood 112, 3959–3964 (2008).

    Article  CAS  PubMed  Google Scholar 

  136. Moots, R. J. et al. Effect of tocilizumab on neutrophils in adult patients with rheumatoid arthritis: pooled analysis of data from phase 3 and 4 clinical trials. Rheumatology 56, 541–549 (2017).

    Article  CAS  PubMed  Google Scholar 

  137. Schuster, B. et al. Signaling of human ciliary neurotrophic factor (CNTF) revisited. The interleukin-6 receptor can serve as an alpha-receptor for CTNF. J. Biol. Chem. 278, 9528–9535 (2003).

    Article  CAS  PubMed  Google Scholar 

  138. Garbers, C. et al. An interleukin-6 receptor-dependent molecular switch mediates signal transduction of the IL-27 cytokine subunit p28 (IL-30) via a gp130 Protein receptor homodimer. J. Biol. Chem. 288, 4346–4354 (2013).

    Article  CAS  PubMed  Google Scholar 

  139. Van Roy, M. et al. The preclinical pharmacology of the high affinity anti-IL-6R Nanobody(R) ALX-0061 supports its clinical development in rheumatoid arthritis. Arthritis Res. Ther. 17, 135 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Lacroix, M. et al. Novel insights into interleukin 6 (IL-6) cis- and trans-signaling pathways by differentially manipulating the assembly of the IL-6 signaling complex. J. Biol. Chem. 290, 26943–26953 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Grupp, S. A. et al. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N. Engl. J. Med. 368, 1509–1518 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Maude, S. L. et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N. Engl. J. Med. 371, 1507–1517 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Davila, M. L. et al. Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci. Transl Med. 6, 224ra25 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Lee, D. W. et al. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet 385, 517–528 (2015).

    Article  CAS  PubMed  Google Scholar 

  145. Teachey, D. T. et al. Identification of predictive biomarkers for cytokine release syndrome after chimeric antigen receptor T cell therapy for acute lymphoblastic leukemia. Cancer Discov. 6, 664–679 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Atreya, R. et al. Blockade of interleukin 6 trans signaling suppresses T-cell resistance against apoptosis in chronic intestinal inflammation: evidence in crohn disease and experimental colitis in vivo. Nat. Med. 6, 583–588 (2000).

    Article  CAS  PubMed  Google Scholar 

  147. Rabe, B. et al. Transgenic blockade of interleukin 6 transsignaling abrogates inflammation. Blood 111, 1021–1028 (2008).

    Article  CAS  PubMed  Google Scholar 

  148. Lesina, M. et al. Stat3/Socs3 activation by IL-6 transsignaling promotes progression of pancreatic intraepithelial neoplasia and development of pancreatic cancer. Cancer Cell 19, 456–469 (2011).

    Article  CAS  PubMed  Google Scholar 

  149. Zhang, H. et al. IL-6 trans-signaling promotes pancreatitis-associated lung injury and lethality. J. Clin. Invest. 123, 1019–1031 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Bergmann, J. et al. IL-6 trans-signaling is essential for the development of hepatocellular carcinoma in mice. Hepatology 65, 89–103 (2017).

    Article  CAS  PubMed  Google Scholar 

  151. Sodenkamp, J. et al. Therapeutic targeting of interleukin-6 trans-signaling does not affect the outcome of experimental tuberculosis. Immunobiology 217, 996–1004 (2012).

    Article  CAS  PubMed  Google Scholar 

  152. German Clinical Trials Register. A multi-centre, exploratory trial to assess the mechanisms of molecular activity, safety and tolerability of one dose level of FE 999301 by intravenous infusions in patients with active inflammatory bowel disease (IBD). http://www.drks.de/drks_web/navigate.do?navigationId=trial.HTML&TRIAL_ID=DRKS00010101 German Clinical Trials Register (2017).

  153. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT03235752 (2018).

  154. Taga, T. et al. Functional inhibition of hematopoietic and neurotrophic cytokines by blocking the interleukin 6 signal transducer gp130. Proc. Natl Acad. Sci. USA 89, 10998–11001 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Gu, Z. J. et al. Anti-gp130 transducer monoclonal antibodies specifically inhibiting ciliary neurotrophic factor, interleukin-6, interleukin-11, leukemia inhibitory factor or oncostatin M. J. Immunol. Methods 190, 21–27 (1996).

    Article  CAS  PubMed  Google Scholar 

  156. Yoshida, K., Taga, T. & Saito, M. Targeted disruption of gp130, a common signal transducer for the interleukin 6 family of cytokines, leads to myocardial and hematological disorders. Proc. Natl Acad. Sci. USA 93, 407–411 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Hirota, H. et al. Loss of a gp130 cardiac muscle cell survival pathway is a critical event in the onset of heart failure during biomechanical stress. Cell 97, 189–198 (1999).

    Article  CAS  PubMed  Google Scholar 

  158. Stark, G. & Darnell, J. The JAK-STAT pathway at twenty. Immunity 36, 503–514 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. O'Shea, J. & Plenge, R. JAK and STAT signaling molecules in immunoregulation and immune-mediated disease. Immunity 36, 542–550 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Yamaoka, K. et al. The Janus kinases (Jaks). Genome Biol. 5, 253 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Stahl, N. et al. Association and activation of Jak-Tyk kinases by CNTF-LIF-OSM-IL-6 beta receptor components. Science 263, 92–95 (1994).

    Article  CAS  PubMed  Google Scholar 

  162. Guschin, D. et al. A major role for the protein tyrosine kinase JAK1 in the JAK/STAT signal transduction pathway in response to interleukin-6. EMBO J. 14, 1421–1429 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Rodig, S. J. et al. Disruption of the Jak1 gene demonstrates obligatory and nonredundant roles of the Jaks in cytokine-induced biologic responses. Cell 93, 373–383 (1998).

    Article  CAS  PubMed  Google Scholar 

  164. Baxter, E. J. et al. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet 365, 1054–1061 (2005).

    Article  CAS  PubMed  Google Scholar 

  165. James, C. et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature 434, 1144–1148 (2005).

    Article  CAS  PubMed  Google Scholar 

  166. Levine, R. L. et al. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell 7, 387–397 (2005).

    Article  CAS  PubMed  Google Scholar 

  167. Kralovics, R. et al. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N. Engl. J. Med. 352, 1779–1790 (2005).

    Article  CAS  PubMed  Google Scholar 

  168. Meyer, S. C. & Levine, R. L. Molecular pathways: molecular basis for sensitivity and resistance to JAK kinase inhibitors. Clin. Cancer Res. 20, 2051–2059 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Ghoreschi, K. et al. Modulation of innate and adaptive immune responses by tofacitinib (CP-690,550). J. Immunol. 186, 4234–4243 (2011).

    Article  CAS  PubMed  Google Scholar 

  170. Winthrop, K. L. The emerging safety profile of JAK inhibitors in rheumatic disease. Nat. Rev. Rheumatol. 13, 320 (2017).

    Article  PubMed  Google Scholar 

  171. O'Shea, J., Kontzias, A., Yamaoka, K., Tanaka, Y. & Laurence, A. Janus kinase inhibitors in autoimmune diseases. Ann. Rheum. Dis. 72 (Suppl. 2), ii111–ii115 (2013).

    Article  CAS  PubMed  Google Scholar 

  172. Fleischmann, R. et al. Placebo-controlled trial of tofacitinib monotherapy in rheumatoid arthritis. N. Engl. J. Med. 367, 495–507 (2012).

    Article  CAS  PubMed  Google Scholar 

  173. van Vollenhoven, R. F. et al. Tofacitinib or adalimumab versus placebo in rheumatoid arthritis. N. Engl. J. Med. 367, 508–519 (2012).

    Article  CAS  PubMed  Google Scholar 

  174. Fleischmann, R. et al. Efficacy and safety of tofacitinib monotherapy, tofacitinib with methotrexate, and adalimumab with methotrexate in patients with rheumatoid arthritis (ORAL Strategy): a phase 3b/4, double-blind, head-to-head, randomised controlled trial. Lancet 390, 457–468 (2017).

    Article  CAS  PubMed  Google Scholar 

  175. Dougados, M. et al. Baricitinib in patients with inadequate response or intolerance to conventional synthetic DMARDs: results from the RA-BUILD study. Ann. Rheum. Dis. 76, 88–95 (2017).

    Article  CAS  PubMed  Google Scholar 

  176. Fleischmann, R. et al. Baricitinib, methotrexate, or combination in patients with rheumatoid arthritis and no or limited prior disease-modifying antirheumatic drug treatment. Arthritis Rheumatol. 69, 506–517 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Taylor, P. C. et al. Baricitinib versus placebo or adalimumab in rheumatoid arthritis. N. Engl. J. Med. 376, 652–662 (2017).

    Article  CAS  PubMed  Google Scholar 

  178. Schwartz, D. M. et al. JAK inhibition as a therapeutic strategy for immune and inflammatory diseases. Nat. Rev. Drug Discov. 17, 78 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Wu, P., Nielsen, T. E. & Clausen, M. H. FDA-approved small-molecule kinase inhibitors. Trends Pharmacol. Sci. 36, 422–439 (2015).

    Article  CAS  PubMed  Google Scholar 

  180. Chrencik, J. E. et al. Structural and thermodynamic characterization of the TYK2 and JAK3 kinase domains in complex with CP-690550 and CMP-6. J. Mol. Biol. 400, 413–433 (2010).

    Article  CAS  PubMed  Google Scholar 

  181. Williams, N. K. et al. Dissecting specificity in the Janus kinases: the structures of JAK-specific inhibitors complexed to the JAK1 and JAK2 protein tyrosine kinase domains. J. Mol. Biol. 387, 219–232 (2009).

    Article  CAS  PubMed  Google Scholar 

  182. Clark, J. D., Flanagan, M. E. & Telliez, J. B. Discovery and development of Janus kinase (JAK) inhibitors for inflammatory diseases. J. Med. Chem. 57, 5023–5038 (2014).

    Article  CAS  PubMed  Google Scholar 

  183. Genovese, M. C. et al. Efficacy and safety of ABT-494, a selective JAK-1 inhibitor, in a phase IIb study in patients with rheumatoid arthritis and an inadequate response to methotrexate. Arthritis Rheumatol. 68, 2857–2866 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Van Rompaey, L. et al. Preclinical characterization of GLPG0634, a selective inhibitor of JAK1, for the treatment of inflammatory diseases. J. Immunol. 191, 3568–3577 (2013).

    Article  CAS  PubMed  Google Scholar 

  185. Vermeire, S. et al. Clinical remission in patients with moderate-to-severe Crohn's disease treated with filgotinib (the FITZROY study): results from a phase 2, double-blind, randomised, placebo-controlled trial. Lancet 389, 266–275 (2017).

    Article  CAS  PubMed  Google Scholar 

  186. Kremer, J. M. et al. A phase IIb study of ABT-494, a selective JAK-1 inhibitor, in patients with rheumatoid arthritis and an inadequate response to anti-tumor necrosis factor therapy. Arthritis Rheumatol. 68, 2867–2877 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. US National Library of Medicine. ClinicalTrials.govhttps://clinicaltrials.gov/ct2/show/NCT02365649 (2017).

  188. US National Library of Medicine. ClinicalTrials.govhttps://clinicaltrials.gov/ct2/show/NCT02780167 (2017).

  189. Miklossy, G., Hilliard, T. S. & Turkson, J. Therapeutic modulators of STAT signalling for human diseases. Nat. Rev. Drug Discov. 12, 611–629 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Schust, J., Sperl, B., Hollis, A., Mayer, T. U. & Berg, T. Stattic: a small-molecule inhibitor of STAT3 activation and dimerization. Chem. Biol. 13, 1235–1242 (2006).

    Article  CAS  PubMed  Google Scholar 

  191. Pan, Y., Zhou, F., Zhang, R. & Claret, F. X. Stat3 inhibitor stattic exhibits potent antitumor activity and induces chemo- and radio-sensitivity in nasopharyngeal carcinoma. PLoS ONE 8, e54565 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. O'Shea, J. J., Gadina, M. & Schreiber, R. D. Cytokine signaling in 2002: new surprises in the Jak/Stat pathway. Cell 109 (Suppl.), S121–S131 (2002).

    Article  CAS  PubMed  Google Scholar 

  193. Song, H., Wang, R., Wang, S. & Lin, J. A low-molecular-weight compound discovered through virtual database screening inhibits Stat3 function in breast cancer cells. Proc. Natl Acad. Sci. USA 102, 4700–4705 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Kortylewski, M. et al. TLR agonist–Stat3 siRNA conjugates: cell-specific gene silencing and enhanced antitumor immune responses. Nat. Biotechnol. 27, 925–932 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Kortylewski, M. & Moreira, D. Myeloid cells as a target for oligonucleotide therapeutics: turning obstacles into opportunities. Cancer Immunol. Immunother. 66, 979–988 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Yoshizaki, K. et al. Isolation and characterization of B cell differentiation factor (BCDF) secreted from a human B lymphoblastoid cell line. J. Immunol. 132, 2948–2954 (1984).

    CAS  PubMed  Google Scholar 

  197. Hirano, T. et al. Purification to homogeneity and characterization of human B-cell differentiation factor (BCDF or BSFp-2). Proc. Natl Acad. Sci. USA 82, 5490–5494 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Hirano, T. et al. Complementary DNA for a novel human interleukin (BSF-2) that induces B lymphocytes to produce immunoglobulin. Nature 324, 73–76 (1986). This is a landmark paper that first reported the cDNA sequence and basic characterization of IL-6.

    Article  CAS  PubMed  Google Scholar 

  199. Van Damme, J., Cayphas, S., Opdenakker, G., Billiau, A. & Van Snick, J. Interleukin 1 and poly(rI).poly(rC) induce production of a hybridoma growth factor by human fibroblasts. Eur. J. Immunol. 17, 1–7 (1987).

    Article  CAS  PubMed  Google Scholar 

  200. Jego, G., Bataille, R. & Pellat-Deceunynck, C. Interleukin-6 is a growth factor for nonmalignant human plasmablasts. Blood 97, 1817–1822 (2001).

    Article  CAS  PubMed  Google Scholar 

  201. Jego, G. et al. Reactive plasmacytoses are expansions of plasmablasts retaining the capacity to differentiate into plasma cells. Blood 94, 701–712 (1999).

    CAS  PubMed  Google Scholar 

  202. van Zaanen, H. C. et al. Endogenous interleukin 6 production in multiple myeloma patients treated with chimeric monoclonal anti-IL6 antibodies indicates the existence of a positive feed-back loop. J. Clin. Invest. 98, 1441–1448 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Belnoue, E. et al. Homing and adhesion patterns determine the cellular composition of the bone marrow plasma cell niche. J. Immunol. 188, 1283–1291 (2012).

    Article  CAS  PubMed  Google Scholar 

  204. Rodriguez-Bayona, B., Ramos-Amaya, A., Lopez-Blanco, R., Campos-Caro, A. & Brieva, J. A. STAT-3 activation by differential cytokines is critical for human in vivo-generated plasma cell survival and Ig secretion. J. Immunol. 191, 4996–5004 (2013).

    Article  CAS  PubMed  Google Scholar 

  205. Shapiro-Shelef, M. & Calame, K. Regulation of plasma-cell development. Nat. Rev. Immunol. 5, 230–242 (2005).

    Article  CAS  PubMed  Google Scholar 

  206. Shapiro-Shelef, M., Lin, K. I., Savitsky, D., Liao, J. & Calame, K. Blimp-1 is required for maintenance of long-lived plasma cells in the bone marrow. J. Exp. Med. 202, 1471–1476 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Shaffer, A. L. et al. XBP1, downstream of Blimp-1, expands the secretory apparatus and other organelles, and increases protein synthesis in plasma cell differentiation. Immunity 21, 81–93 (2004).

    Article  CAS  PubMed  Google Scholar 

  208. Mesin, L., Di Niro, R., Thompson, K. M., Lundin, K. E. & Sollid, L. M. Long-lived plasma cells from human small intestine biopsies secrete immunoglobulins for many weeks in vitro. J. Immunol. 187, 2867–2874 (2011).

    Article  CAS  PubMed  Google Scholar 

  209. Yan, Y., Wang, Y. H. & Diamond, B. IL-6 contributes to an immune tolerance checkpoint in post germinal center B cells. J. Autoimmun. 38, 1–9 (2012).

    Article  CAS  PubMed  Google Scholar 

  210. Hillion, S., Dueymes, M., Youinou, P. & Jamin, C. IL-6 contributes to the expression of RAGs in human mature B cells. J. Immunol. 179, 6790–6798 (2007).

    Article  CAS  PubMed  Google Scholar 

  211. Rosser, E. C. et al. Regulatory B cells are induced by gut microbiota-driven interleukin-1beta and interleukin-6 production. Nat. Med. 20, 1334–1339 (2014).

    Article  CAS  PubMed  Google Scholar 

  212. Bommert, K., Bargou, R. C. & Stuhmer, T. Signalling and survival pathways in multiple myeloma. Eur. J. Cancer 42, 1574–1580 (2006).

    Article  CAS  PubMed  Google Scholar 

  213. Podar, K., Chauhan, D. & Anderson, K. C. Bone marrow microenvironment and the identification of new targets for myeloma therapy. Leukemia 23, 10–24 (2009).

    Article  CAS  PubMed  Google Scholar 

  214. Voorhees, P. M. et al. A phase 2 multicentre study of siltuximab, an anti-interleukin-6 monoclonal antibody, in patients with relapsed or refractory multiple myeloma. Br. J. Haematol. 161, 357–366 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Shah, J. J. et al. Siltuximab (CNTO 328) with lenalidomide, bortezomib and dexamethasone in newly-diagnosed, previously untreated multiple myeloma: an open-label phase I trial. Blood Cancer J. 6, e396 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Kopf, M., Herren, S., Wiles, M. V., Pepys, M. B. & Kosco-Vilbois, M. H. Interleukin 6 influences germinal center development and antibody production via a contribution of C3 complement component. J. Exp. Med. 188, 1895–1906 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Wu, Y. et al. IL-6 produced by immune complex-activated follicular dendritic cells promotes germinal center reactions, IgG responses and somatic hypermutation. Int. Immunol. 21, 745–756 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Nagafuchi, H., Suzuki, N., Mizushima, Y. & Sakane, T. Constitutive expression of IL-6 receptors and their role in the excessive B cell function in patients with systemic lupus erythematosus. J. Immunol. 151, 6525–6534 (1993).

    CAS  PubMed  Google Scholar 

  219. Lee, Y. H., Lee, H. S., Choi, S. J., Ji, J. D. & Song, G. G. The association between interleukin-6 polymorphisms and systemic lupus erythematosus: a meta-analysis. Lupus 21, 60–67 (2012).

    Article  CAS  PubMed  Google Scholar 

  220. Rovin, B. H. et al. A multicenter, randomized, double-blind, placebo-controlled study to evaluate the efficacy and safety of treatment with sirukumab (CNTO 136) in patients with active lupus nephritis. Arthritis Rheumatol. 68, 2174–2183 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Illei, G. G. et al. Tocilizumab in systemic lupus erythematosus: data on safety, preliminary efficacy, and impact on circulating plasma cells from an open-label phase I dosage-escalation study. Arthritis Rheum. 62, 542–552 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Shirota, Y. et al. Impact of anti-interleukin-6 receptor blockade on circulating T and B cell subsets in patients with systemic lupus erythematosus. Ann. Rheum. Dis. 72, 118–128 (2013).

    Article  CAS  PubMed  Google Scholar 

  223. Narazaki, M., Tanaka, T. & Kishimoto, T. The role and therapeutic targeting of IL-6 in rheumatoid arthritis. Expert Rev. Clin. Immunol. 13, 535–551 (2017).

    Article  CAS  PubMed  Google Scholar 

  224. Kang, S., Tanaka, T. & Kishimoto, T. Therapeutic uses of anti-interleukin-6 receptor antibody. Int. Immunol. 27, 21–29 (2015).

    Article  CAS  PubMed  Google Scholar 

  225. Berti, A. et al. Tocilizumab in patients with multisystem Erdheim-Chester disease. Oncoimmunology 6, e1318237 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  226. Tanaka, T., Narazaki, M. & Kishimoto, T. Immunotherapeutic implications of IL-6 blockade for cytokine storm. Immunotherapy 8, 959–970 (2016).

    Article  CAS  PubMed  Google Scholar 

  227. Kampan, N. C. et al. Immunotherapeutic Interleukin-6 or Interleukin-6 receptor blockade in cancer: challenges and opportunities. Curr. Med. Chem. https://doi.org/10.2174/0929867324666170712160621 (2017).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

T.K. was supported by the Deutsche Forschungsgemeinschaft, Bonn, Germany (TRR128, SFB1054-B07 and SyNergy), by the European Research Council (ERC) (EXODUS, CoG 647215) and the German Ministry of Education and Research (T-B interaction in neuromyelitis optica). C.G. was supported by the Deutsche Forschungsgemeinschaft, Bonn, Germany (SFB877-A10 and Cluster of Excellence 'Inflammation at Interfaces'), and the German Ministry of Education and Research (grant “InTraSig”, project B). S.R.-J. was supported by the Deutsche Forschungsgemeinschaft, Bonn, Germany (SFB841-C01, SFB877-A1 and Cluster of Excellence 'Inflammation at Interfaces'), and the German Ministry of Education and Research (grant “InTraSig”, project B).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Christoph Garbers, Thomas Korn or Stefan Rose-John.

Ethics declarations

Competing interests

S.R.-J. has acted as a consultant and speaker for AbbVie, Chugai, Genentech Roche, Pfizer and Sanofi. He also declares that he is an inventor on patents owned by CONARIS Research Institute, which develops the sgp130Fc protein olamkicept together with the company I-Mab. S.R.-J. has stock ownership in CONARIS. All other authors declare no competing interests.

Related links

PowerPoint slides

Glossary

Multiple myeloma

A malignancy of terminally differentiated B lymphocytes associated with elevated immunoglobulin levels secreted by malignant plasma cell clones.

Castleman disease

A spectrum of heterogeneous lymphoproliferative disorders characterized by common lymph node histopathological features (including abnormal germinal centre architecture with prominent follicular dendritic cells) with interleukin-6 (IL-6) overproduction considered as a key mechanism,particularly for the entity multicentric Castleman disease.

Giant cell arteritis

A systemic vasculitis of large and medium vessels with non-necrotizing granulomatous changes (activated macrophages forming multinucleated giant cells and T helper cell infiltration) that occur most frequently in the aorta and the extracranial branches of the external carotid arteries. It is a polygenic and multifactorial disease, and it is characterized by substantially elevated interleukin-6 (IL-6) serum levels.

Neuromyelitis optica

(NMO). An autoimmune disease of the central nervous system distinct from multiple sclerosis. In this disease, astrocytes, which express the water channel protein aquaporin 4 (AQP4), are targeted by an autoantibody to this protein.

Erdheim–Chester disease

Also known as non-Langerhans' cell histiocytosis. A rare, inflammatory myeloid neoplasia characterized by increased production of spumous histiocytes that infiltrate multiple tissues and organs (including bones, heart, lungs and brain) that are frequently surrounded by fibrosis.

Secondary demyelination

The destruction of astrocytes through anti-aquaporin 4 (AQP4) antibodies leads to secondary affection of oligodendrocytes through not entirely understood mechanisms. Oligodendrocytes produce the myelin sheath that surrounds axons in the central nervous system.

Invariant natural killer T cells

(iNKT cells). Innate-like T lymphocytes expressing natural killer (NK) cell surface antigens and an invariant T cell receptor recognizing glycolipid antigens that, upon activation, secrete a variety of cytokines modulating dendritic cells, macrophages, neutrophils and NK cells as well as B and T lymphocytes, therefore orchestrating immune responses in autoimmunity, tumour surveillance and infections.

γδ T cells

Functionally distinct subsets of unconventional T lymphocytes with an invariant γδ T cell receptor that are localized in the liver or at epithelial (digestive tract, respiratory tract and reproductive tract) barriers and possess features of both innate and adaptive immune cells as they secrete various inflammatory cytokines (interferon-γ and interleukin-17) upon sensing of alarm signals (for example, via Toll-like receptors).

Lymphocytic choriomeningitis virus (LCMV) infection

A well-studied rodent viral infectious model that uses different strains to elicit acute or chronic disease. The LCMV model is used to analyse vigorous cytotoxic T cell effector functions, the interplay with other immune cells to eradicate the virus and the generation of immunological memory or T cell exhaustion.

ACR20

The American College of Rheumatology (ACR) clinical score used in patients with rheumatoid arthritis; the score includes physician and patient assessment items. An improvement of the score by 20% is referred to as ACR20; an improvement of the score by 50% is ACR50.

Nanobody

Also known as single-domain antibody. An antibody fragment consisting of a single monomeric variable domain (VH) naturally occurring in the Camelidae family or synthetically derived from the heavy chain of an antibody, combining high antigen affinity in the absence of complement-dependent or cell-mediated cytotoxicity due to the lack of a constant (Fc) region.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garbers, C., Heink, S., Korn, T. et al. Interleukin-6: designing specific therapeutics for a complex cytokine. Nat Rev Drug Discov 17, 395–412 (2018). https://doi.org/10.1038/nrd.2018.45

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd.2018.45

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research