Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Kinase inhibitors: the road ahead

Abstract

Receptor tyrosine kinase signalling pathways have been successfully targeted to inhibit proliferation and angiogenesis for cancer therapy. However, kinase deregulation has been firmly demonstrated to play an essential role in virtually all major disease areas. Kinase inhibitor drug discovery programmes have recently broadened their focus to include an expanded range of kinase targets and therapeutic areas. In this Review, we provide an overview of the novel targets, biological processes and disease areas that kinase-targeting small molecules are being developed against, highlight the associated challenges and assess the strategies and technologies that are enabling efficient generation of highly optimized kinase inhibitors.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Kinase inhibitors in diverse biological processes and new therapeutic areas.
Figure 2: Opportunities for modulating transcription via inhibition of kinases in the basal transcriptional machinery.
Figure 3: US Food and Drug Administration-approved kinase inhibitors for oncology and non-oncology indications (autoimmune and inflammatory disease) over time.
Figure 4: Chemical methods of inducing kinase degradation.

Similar content being viewed by others

References

  1. U.S. Food & Drug Administration. New drugs at FDA: CDER's new molecular entities and new therapeutic biological products. FDA https://www.fda.gov/Drugs/DevelopmentApprovalProcess/DrugInnovation/default.htm (2017).

  2. Cohen, P. & Alessi, D. R. Kinase drug discovery — what's next in the field? ACS Chem. Biol. 8, 96–104 (2013).

    Article  CAS  PubMed  Google Scholar 

  3. Ficarro, S. B. et al. Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae. Nat. Biotechnol. 20, 301–305 (2002).

    CAS  PubMed  Google Scholar 

  4. Cohen, P. The regulation of protein function by multisite phosphorylation — a 25 year update. Trends Biochem. Sci. 25, 596–601 (2000).

    CAS  PubMed  Google Scholar 

  5. Manning, G., Whyte, D. B., Martinez, R., Hunter, T. & Sudarsanam, S. The protein kinase complement of the human genome. Science 298, 1912–1934 (2002).

    CAS  PubMed  Google Scholar 

  6. Muller, S., Chaikuad, A., Gray, N. S. & Knapp, S. The ins and outs of selective kinase inhibitor development. Nat. Chem. Biol. 11, 818–821 (2015).

    CAS  PubMed  Google Scholar 

  7. Levitzki, A. Protein kinase inhibitors as a therapeutic modality. Acc. Chem. Res. 36, 462–469 (2003).

    CAS  PubMed  Google Scholar 

  8. National Institutes of Health Office of Strategic Coordination - The Common Fund. Understudied proteins. NIH https://commonfund.nih.gov/idg/understudiedproteins (2017).

  9. Fedorov, O., Muller, S. & Knapp, S. The (un)targeted cancer kinome. Nat. Chem. Biol. 6, 166–169 (2010).

    CAS  PubMed  Google Scholar 

  10. Botta, M. New frontiers in kinases: special issue. ACS Med. Chem. Lett. 5, 270 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhao, Q. et al. Broad-spectrum kinase profiling in live cells with lysine-targeted sulfonyl fluoride probes. J. Am. Chem. Soc. 139, 680–685 (2017). This paper describes an in cell competition assay to discern kinase inhibitor selectivity in a physiological context.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Savitski, M. M. et al. Tracking cancer drugs in living cells by thermal profiling of the proteome. Science 346, 1255784 (2014). This paper describes a proteome-wide profiling technique based on the CETSA assay.

    Article  PubMed  Google Scholar 

  13. Aldeghi, M., Heifetz, A., Bodkin, M. J., Knapp, S. & Biggin, P. C. Predictions of ligand selectivity from absolute binding free energy calculations. J. Am. Chem. Soc. 139, 946–957 (2017). This article describes an unusually accurate computational method to determine inhibitor selectivity.

    CAS  PubMed  Google Scholar 

  14. Dale, T. et al. A selective chemical probe for exploring the role of CDK8 and CDK19 in human disease. Nat. Chem. Biol. 11, 973–980 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Alexander, P. B. & Wang, X. F. Resistance to receptor tyrosine kinase inhibition in cancer: molecular mechanisms and therapeutic strategies. Front. Med. 9, 134–138 (2015).

    PubMed  PubMed Central  Google Scholar 

  16. Villicana, C., Cruz, G. & Zurita, M. The basal transcription machinery as a target for cancer therapy. Cancer Cell. Int. 14, 18 (2014).

    PubMed  PubMed Central  Google Scholar 

  17. Bradner, J. E., Hnisz, D. & Young, R. A. Transcriptional addiction in cancer. Cell 168, 629–643 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Nie, Z. et al. c-Myc is a universal amplifier of expressed genes in lymphocytes and embryonic stem cells. Cell 151, 68–79 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Kwiatkowski, N. et al. Targeting transcription regulation in cancer with a covalent CDK7 inhibitor. Nature 511, 616–620 (2014). This paper demonstrates effective targeting of transcriptional vulnerabilities in cancer via a covalent CDK7 kinase inhibitor.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Christensen, C. L. et al. Targeting transcriptional addictions in small cell lung cancer with a covalent CDK7 inhibitor. Cancer Cell 26, 909–922 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Chipumuro, E. et al. CDK7 inhibition suppresses super-enhancer-linked oncogenic transcription in MYCN-driven cancer. Cell 159, 1126–1139 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Bywater, M. J., Pearson, R. B., McArthur, G. A. & Hannan, R. D. Dysregulation of the basal RNA polymerase transcription apparatus in cancer. Nat. Rev. Cancer 13, 299–314 (2013).

    CAS  PubMed  Google Scholar 

  23. Hnisz, D. et al. Super-enhancers in the control of cell identity and disease. Cell 155, 934–947 (2013).

    CAS  PubMed  Google Scholar 

  24. Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    CAS  PubMed  Google Scholar 

  25. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    CAS  PubMed  Google Scholar 

  26. Loven, J. et al. Selective inhibition of tumor oncogenes by disruption of super-enhancers. Cell 153, 320–334 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Hann, S. R. & Eisenman, R. N. Proteins encoded by the human c-myc oncogene: differential expression in neoplastic cells. Mol. Cell. Biol. 4, 2486–2497 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Herrick, D. J. & Ross, J. The half-life of c-myc mRNA in growing and serum-stimulated cells: influence of the coding and 3' untranslated regions and role of ribosome translocation. Mol. Cell. Biol. 14, 2119–2128 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Posternak, V. & Cole, M. D. Strategically targeting MYC in cancer. F1000Res. 5, 408 (2016).

    Google Scholar 

  30. Gonda, T. J. & Ramsay, R. G. Directly targeting transcriptional dysregulation in cancer. Nat. Rev. Cancer 15, 686–694 (2015).

    CAS  PubMed  Google Scholar 

  31. Di Vona, C. et al. Chromatin-wide profiling of DYRK1A reveals a role as a gene-specific RNA polymerase II CTD kinase. Mol. Cell 57, 506–520 (2015).

    CAS  PubMed  Google Scholar 

  32. Ionescu, A. et al. DYRK1A kinase inhibitors with emphasis on cancer. Mini Rev. Med. Chem. 12, 1315–1329 (2012).

    CAS  PubMed  Google Scholar 

  33. Zhou, Y., Shen, J. K., Hornicek, F. J., Kan, Q. & Duan, Z. The emerging roles and therapeutic potential of cyclin-dependent kinase 11 (CDK11) in human cancer. Oncotarget 7, 40846–40859 (2016).

    PubMed  PubMed Central  Google Scholar 

  34. Schachter, M. M. & Fisher, R. P. The CDK-activating kinase Cdk7: taking yes for an answer. Cell Cycle 12, 3239–3240 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Guo, J. & Price, D. H. RNA polymerase II transcription elongation control. Chem. Rev. 113, 8583–8603 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT03269669 (2018).

  37. Lovén, J. et al. Selective inhibition of tumor oncogenes by disruption of super-enhancers. Cell 153, 320–334 (2013).

    PubMed  PubMed Central  Google Scholar 

  38. Pelish, H. E. et al. Mediator kinase inhibition further activates super-enhancer-associated genes in AML. Nature 526, 273–276 (2015). This paper describes a highly selective natural product inhibitor of CDK8, cortistatin A, which downregulates SE-associated genes in AML. This study also introduces the concept that cancer cells are highly sensitive to SE-controlled gene dosage; both upregulation and downregulation of these genes is toxic.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Clarke, P. et al. Discovery of preclinical development candidate inhibitors of the mediator complex-associated kinases CDK8 and CDK19 and evaluation of their therapeutic potential [abstract]. Cancer Res. 76 (Suppl.), 3025 (2016).

    Google Scholar 

  40. Bahr, B. L. et al. Combination strategies to target super enhancer transcriptional activity by CDK9 and BRD4 inhibition in acute myeloid leukemia [abstract]. Cancer Res. 75 (Suppl.), 2698 (2015).

    Google Scholar 

  41. Sonawane, Y. A. et al. Cyclin dependent kinase 9 inhibitors for cancer therapy. J. Med. Chem. 59, 8667–8684 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Yin, T. et al. B.; de Dios, A. ; Du, J., A novel CDK9 inhibitor shows potent antitumor efficacy in preclinical hematologic tumor models. Mol. Cancer Ther. 13, 1442–1456 (2014).

    CAS  PubMed  Google Scholar 

  43. Morales, F. & Giordano, A. Overview of CDK9 as a target in cancer research. Cell Cycle 15, 519–527 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Lu, H. et al. Compensatory induction of MYC expression by sustained CDK9 inhibition via a BRD4-dependent mechanism. eLife 4, e06535 (2015).

    PubMed  PubMed Central  Google Scholar 

  45. Barsanti, P. A. et al. Pyridine and pyrazine derivatives as protein kinase modulators. US Patent WO2011012661 A1 (2010).

  46. Liang, K. et al. Characterization of human cyclin-dependent kinase 12 (CDK12) and CDK13 complexes in C-terminal domain phosphorylation, gene transcription, and RNA processing. Mol. Cell. Biol. 35, 928–938 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhang, T. et al. Covalent targeting of remote cysteine residues to develop CDK12 and CDK13 inhibitors. Nat. Chem. Biol. 12, 876–884 (2016). This paper describes an inhibitor that induces a loop rearrangement, enabling covalent inhibition of a distal cysteine by an ATP-competitive inhibitor.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Hamman, K. et al. Targeting the transcriptional kinases CDK12 and CDK13 in breast and ovarian cancer [abstract]. FASEB J. 31 (Suppl. 1), 938.9 (2017).

    Google Scholar 

  49. Johnson, S. F. et al. CDK12 inhibition reverses de novo and acquired PARP inhibitor resistance in BRCA wild-type and mutated models of triple-negative breast cancer. Cell Rep. 17, 2367–2381 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Bao, Z. et al. Effectiveness and safety of poly (ADP-ribose) polymerase inhibitors in cancer therapy: a systematic review and meta-analysis. Oncotarget 7, 7629–7639 (2016).

    PubMed  Google Scholar 

  51. Vinay, D. S. et al. Immune evasion in cancer: mechanistic basis and therapeutic strategies. Semin. Cancer Biol. 35 (Suppl.), S185–S198 (2015).

    PubMed  Google Scholar 

  52. Quail, D. F. & Joyce, J. A. Microenvironmental regulation of tumor progression and metastasis. Nat. Med. 19, 1423–1437 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Sukari, A., Nagasaka, M., Al-Hadidi, A. & Lum, L. G. Cancer Immunology and immunotherapy. Anticancer Res. 36, 5593–5606 (2016).

    CAS  PubMed  Google Scholar 

  54. Lemke, G. & Rothlin, C. V. Immunobiology of the TAM receptors. Nat. Rev. Immunol. 8, 327–336 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Seitz, H. M., Camenisch, T. D., Lemke, G., Earp, H. S. & Matsushima, G. K. Macrophages and dendritic cells use different Axl/Mertk/Tyro3 receptors in clearance of apoptotic cells. J. Immunol. 178, 5635–5642 (2007).

    CAS  PubMed  Google Scholar 

  56. Caraux, A. et al. Natural killer cell differentiation driven by Tyro3 receptor tyrosine kinases. Nat. Immunol. 7, 747–754 (2006).

    CAS  PubMed  Google Scholar 

  57. Zhang, Z. et al. Activation of the AXL kinase causes resistance to EGFR-targeted therapy in lung cancer. Nat. Genet. 44, 852–860 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Postel-Vinay, S. & Ashworth, A. AXL and acquired resistance to EGFR inhibitors. Nat. Genet. 44, 835–836 (2012).

    CAS  PubMed  Google Scholar 

  59. [No authors listed.] Clinical trials. BerGenBio http://www.bergenbio.com/pipeline/ongoing-clinical-trials/ (2017).

  60. Myers, S. H., Brunton, V. G. & Unciti-Broceta, A. AXL inhibitors in cancer: a medicinal chemistry perspective. J. Med. Chem. 59, 3593–3608 (2016).

    CAS  PubMed  Google Scholar 

  61. Paolino, M. et al. The E3 ligase Cbl-b and TAM receptors regulate cancer metastasis via natural killer cells. Nature 507, 508–512 (2014). This paper validates TAM kinases as therapeutic targets in cancer, demonstrating that their pharmacological inhibition enhances anti-metastatic NK cell activity.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Putz, E. M. et al. CDK8-mediated STAT1-S727 phosphorylation restrains NK cell cytotoxicity and tumor surveillance. Cell Rep. 4, 437–444 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Johannessen, L. et al. Small-molecule studies identify CDK8 as a regulator of IL-10 in myeloid cells. Nature Chem. Biol. 13, 1102–1108 (2017).

    CAS  Google Scholar 

  64. Pyonteck, S. M. et al. CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat. Med. 19, 1264–1272 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Quail, D. F. et al. The tumor microenvironment underlies acquired resistance to CSF-1R inhibition in gliomas. Science 352, aad3018 (2016). References 64 and 65 describe CSF-1R, an anti-inflammatory target in glioma, and demonstrate that tumour microenvironment-mediated resistance can be overcome by combination with IGF-1R or PI3K inhibitors.

    PubMed  PubMed Central  Google Scholar 

  66. Rommel, C. Taking PI3Kdelta and PI3Kgamma one step ahead: dual active PI3Kdelta/gamma inhibitors for the treatment of immune-mediated inflammatory diseases. Curr. Top. Microbiol. Immunol. 346, 279–299 (2010).

    CAS  PubMed  Google Scholar 

  67. Furman, R. R. et al. Idelalisib and rituximab in relapsed chronic lymphocytic leukemia. N. Engl. J. Med. 370, 997–1007 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Ali, K. et al. Inactivation of PI(3)K p110delta breaks regulatory T-cell-mediated immune tolerance to cancer. Nature 510, 407–411 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Ferguson, F. M. et al. Discovery of a Series of 5,11-Dihydro-6H-benzo[e]pyrimido[5,4-b][1,4]diazepin-6-ones as Selective PI3K-delta/gamma Inhibitors. ACS Med. Chem. Lett. 7, 908–912 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. O'Brien, S. et al. Duvelisib (IPI-145), a PI3K-δ, γ inhibitor, is clinically active in patients with relapsed/refractory chronic lymphocytic leukemia. Blood 124, 3334–3334 (2014).

    Google Scholar 

  71. Horwitz, S. M. et al. Activity of the PI3K-delta, gamma inhibitor duvelisib in a phase I trial and preclinical models of T-cell lymphoma. Blood https://doi.org/10.1182/blood-2017-08-802470 (2017).

    PubMed  Google Scholar 

  72. Brahmer, J. R. et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N. Engl. J. Med. 366, 2455–2465 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Phan, G. Q. et al. Cancer regression and autoimmunity induced by cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma. Proc. Natl Acad. Sci. USA 100, 8372–8377 (2003).

    CAS  PubMed  Google Scholar 

  74. Gong, Y. & Pao, W. EGFR mutant lung cancer. Curr. Top. Microbiol. Immunol. 355, 59–81 (2012).

    CAS  PubMed  Google Scholar 

  75. Barouch-Bentov, R. & Sauer, K. Mechanisms of drug-resistance in kinases. Expert Opin. Investig. Drugs 20, 153–208 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Vanneman, M. & Dranoff, G. Combining immunotherapy and targeted therapies in cancer treatment. Nat. Rev. Cancer 12, 237–251 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Gainor, J. F. et al. EGFR mutations and ALK rearrangements are associated with low response rates to PD-1 pathway blockade in non-small cell lung cancer: a retrospective analysis. Clin. Cancer Res. 22, 4585–4593 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Shin, D. S. & Ribas, A. The evolution of checkpoint blockade as a cancer therapy: what's here, what's next? Curr. Opin. Immunol. 33, 23–35 (2015).

    CAS  PubMed  Google Scholar 

  79. Mahoney, K. M., Rennert, P. D. & Freeman, G. J. Combination cancer immunotherapy and new immuno-modulatory targets. Nat. Rev. Drug Discov. 14, 561–584 (2015).

    CAS  PubMed  Google Scholar 

  80. Tchekmedyian, N. et al. Propelling immunotherapy combinations into the clinic. Oncology 29, 990–1002 (2015).

    PubMed  Google Scholar 

  81. Kaneda, M. M. et al. PI3Kgamma is a molecular switch that controls immune suppression. Nature 539, 437–442 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Schmid, M. C. et al. Receptor tyrosine kinases and TLR/IL1Rs unexpectedly activate myeloid cell PI3kgamma, a single convergent point promoting tumor inflammation and progression. Cancer Cell 19, 715–727 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Diaz-Montero, C. M., Finke, J. & Montero, A. J. Myeloid-derived suppressor cells in cancer: therapeutic, predictive, and prognostic implications. Semin. Oncol. 41, 174–184 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Gebhardt, C. et al. Myeloid cells and related chronic inflammatory factors as novel predictive markers in melanoma treatment with ipilimumab. Clin. Cancer Res. 21, 5453–5459 (2015).

    CAS  PubMed  Google Scholar 

  85. De Henau, O. et al. Overcoming resistance to checkpoint blockade therapy by targeting PI3Kgamma in myeloid cells. Nature 539, 443–447 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Evans, C. A. et al. Discovery of a selective phosphoinositide-3-kinase (PI3K)-gamma inhibitor (IPI-549) as an immuno-oncology clinical candidate. ACS Med. Chem. Lett. 7, 862–867 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Ebert, P. J. et al. MAP kinase inhibition promotes T cell and anti-tumor activity in combination with PD-L1 checkpoint blockade. Immunity 44, 609–621 (2016).

    CAS  PubMed  Google Scholar 

  88. Serrels, A. et al. Nuclear FAK controls chemokine transcription, Tregs, and evasion of anti-tumor immunity. Cell 163, 160–173 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Stokes, J. B. et al. Inhibition of focal adhesion kinase by PF-562,271 inhibits the growth and metastasis of pancreatic cancer concomitant with altering the tumor microenvironment. Mol. Cancer Ther. 10, 2135–2145 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Jiang, H. et al. Targeting focal adhesion kinase renders pancreatic cancers responsive to checkpoint immunotherapy. Nat. Med. 22, 851–860 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Huang, S. H., Li, Y., Zhang, J., Rong, J. & Ye, S. Epidermal growth factor receptor-containing exosomes induce tumor-specific regulatory T cells. Cancer Invest. 31, 330–335 (2013).

    CAS  PubMed  Google Scholar 

  92. Ahn, M. J., Sun, J. M., Lee, S. H., Ahn, J. S. & Park, K. EGFR TKI combination with immunotherapy in non-small cell lung cancer. Expert Opin. Drug Safety 16, 465–469 (2017).

    CAS  Google Scholar 

  93. Akbay, E. A. et al. Activation of the PD-1 pathway contributes to immune escape in EGFR-driven lung tumors. Cancer Discov. 3, 1355–1363 (2013). This paper describes the immunosuppressive functions of oncogenic EGFR and demonstrates synergy between EGFR inhibitors and T cell checkpoint inhibitors.

    CAS  PubMed  Google Scholar 

  94. Goel, S. et al. CDK4/6 inhibition triggers anti-tumour immunity. Nature 548, 471–475 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Deng, J. et al. CDK4/6 inhibition augments anti-tumor immunity by enhancing T cell activation. Cancer Discov. https://doi.org/10.1158/2159-8290.CD-17-0915 (2017).

    PubMed  PubMed Central  Google Scholar 

  96. Vladimer, G. I. et al. Global survey of the immuno-modulatory potential of common drugs. Nat. Chem. Biol. 13, 681–690 (2017). This paper characterizes the 1,024 FDA-approved drugs in a cell–cell interaction assay and demonstrates that up to 10% have effects on the immune system.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Gould, S. E., Junttila, M. R. & de Sauvage, F. J. Translational value of mouse models in oncology drug development. Nat. Med. 21, 431–439 (2015).

    CAS  PubMed  Google Scholar 

  98. Fleischmann, R. et al. Placebo-controlled trial of tofacitinib monotherapy in rheumatoid arthritis. N. Engl. J. Med. 367, 495–507 (2012).

    CAS  PubMed  Google Scholar 

  99. Wollenhaupt, J. et al. Safety and efficacy of tofacitinib, an oral janus kinase inhibitor, for the treatment of rheumatoid arthritis in open-label, longterm extension studies. J. Rheumatol. 41, 837–852 (2014).

    CAS  PubMed  Google Scholar 

  100. Kawasaki, T. & Kawai, T. Toll-like receptor signaling pathways. Front. Immunol. 5, 461 (2014).

    PubMed  PubMed Central  Google Scholar 

  101. Hernandez-Florez, D. & Valor, L. Protein-kinase inhibitors: a new treatment pathway for autoimmune and inflammatory diseases? Rheumatol. Clin. 12, 91–99 (2016).

    Google Scholar 

  102. Patterson, H., Nibbs, R., McInnes, I. & Siebert, S. Protein kinase inhibitors in the treatment of inflammatory and autoimmune diseases. Clin. Exp. Immunol. 176, 1–10 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Villarino, A. V., Kanno, Y. & O'Shea, J. J. Mechanisms and consequences of Jak-STAT signaling in the immune system. Nat. Immunol. 18, 374–384 (2017).

    CAS  PubMed  Google Scholar 

  104. Schwartz, D. M., Bonelli, M., Gadina, M. & O'Shea, J. J. Type I/II cytokines, JAKs, and new strategies for treating autoimmune diseases. Nat. Rev. Rheumatol. 12, 25–36 (2016). This Review summarizes the progress in the field of JAK inhibitors for inflammatory disease.

    CAS  PubMed  Google Scholar 

  105. Kontzias, A., Laurence, A., Gadina, M. & O'Shea, J. J. Kinase inhibitors in the treatment of immune-mediated disease. F1000 Med. Rep. 4, 5 (2012).

    PubMed  PubMed Central  Google Scholar 

  106. Cohen, P. Targeting protein kinases for the development of anti-inflammatory drugs. Curr. Opin. Cell Biol. 21, 317–324 (2009).

    CAS  PubMed  Google Scholar 

  107. Weinblatt, M. E. et al. An oral spleen tyrosine kinase (Syk) inhibitor for rheumatoid arthritis. N. Engl. J. Med. 363, 1303–1312 (2010).

    CAS  PubMed  Google Scholar 

  108. Bahjat, F. R. et al. An orally bioavailable spleen tyrosine kinase inhibitor delays disease progression and prolongs survival in murine lupus. Arthritis Rheum. 58, 1433–1444 (2008).

    CAS  PubMed  Google Scholar 

  109. Bajpai, M. Fostamatinib, a Syk inhibitor prodrug for the treatment of inflammatory diseases. IDrugs 12, 174–185 (2009).

    CAS  PubMed  Google Scholar 

  110. Gharwan, H. & Groninger, H. Kinase inhibitors and monoclonal antibodies in oncology: clinical implications. Nat. Rev. Clin. Oncol. 13, 209–227 (2016).

    CAS  PubMed  Google Scholar 

  111. Rankin, A. L. et al. Selective inhibition of BTK prevents murine lupus and antibody-mediated glomerulo-nephritis. J. Immunol. 191, 4540–4550 (2013).

    CAS  PubMed  Google Scholar 

  112. Evans, E. K. et al. Inhibition of Btk with CC-292 provides early pharmacodynamic assessment of activity in mice and humans. J. Pharmacol. Exp. Ther. 346, 219–228 (2013).

    CAS  PubMed  Google Scholar 

  113. Crofford, L. J., Nyhoff, L. E., Sheehan, J. H. & Kendall, P. L. The role of Bruton's tyrosine kinase in autoimmunity and implications for therapy. Expert Rev. Clin. Immunol. 12, 763–773 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Wu, H. et al. Irreversible inhibition of BTK kinase by a novel highly selective inhibitor CHMFL-BTK-11 suppresses inflammatory response in rheumatoid arthritis model. Sci. Rep. 7, 466 (2017).

    PubMed  PubMed Central  Google Scholar 

  115. Burger, J. A. Bruton's tyrosine kinase (BTK) inhibitors in clinical trials. Curr. Hematol. Malig. Rep. 9, 44–49 (2014).

    PubMed  Google Scholar 

  116. Dudhgaonkar, S. et al. Selective IRAK4 inhibition attenuates disease in murine lupus models and demonstrates steroid sparing activity. J. Immunol. 198, 1308–1319 (2017).

    CAS  PubMed  Google Scholar 

  117. McElroy, W. T. et al. Potent and selective amidopyrazole inhibitors of IRAK4. ACS Med. Chem. Lett. 6, 677–682 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Rhyasen, G. W. et al. Targeting IRAK1 as a therapeutic approach for myelodysplastic syndrome. Cancer Cell 24, 90–104 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Fiore, M., Forli, S. & Manetti, F. Targeting mitogen-activated protein kinase-activated protein kinase 2 (MAPKAPK2, MK2): medicinal chemistry efforts to lead small molecule inhibitors to clinical trials. J. Med. Chem. 59, 3609–3634 (2016).

    CAS  PubMed  Google Scholar 

  120. Rommel, C., Camps, M. & Ji, H. PI3K delta and PI3K gamma: partners in crime in inflammation in rheumatoid arthritis and beyond? Nat. Rev. Immunol. 7, 191–201 (2007).

    CAS  PubMed  Google Scholar 

  121. Boyle, D. L., Kim, H. R., Topolewski, K., Bartok, B. & Firestein, G. S. Novel phosphoinositide 3-kinase delta, gamma inhibitor: potent anti-inflammatory effects and joint protection in models of rheumatoid arthritis. J. Pharmacol. Exp. Ther. 348, 271–280 (2014).

    PubMed  Google Scholar 

  122. Winkler, D. G. et al. PI3K-delta and PI3K-gamma inhibition by IPI-145 abrogates immune responses and suppresses activity in autoimmune and inflammatory disease models. Chem. Biol. 20, 1364–1374 (2013).

    CAS  PubMed  Google Scholar 

  123. Olbrich, P. et al. Activated PI3Kdelta syndrome type 2: two patients, a novel mutation, and review of the literature. Pediatr. Allergy Immunol. 27, 640–644 (2016).

    PubMed  Google Scholar 

  124. Hoegenauer, K. et al. Discovery of CDZ173 (leniolisib), representing a structurally novel class of PI3K delta-selective inhibitors. ACS Med. Chem. Lett. 8, 975–980 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Rao, V. K. et al. Effective “activated PI3Kdelta syndrome”-targeted therapy with the PI3Kdelta inhibitor leniolisib. Blood 130, 2307–2316 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Borgel, D. et al. Elevated growth-arrest-specific protein 6 plasma levels in patients with severe sepsis. Crit. Care Med. 34, 219–222 (2006).

    CAS  PubMed  Google Scholar 

  127. Broad, A., Jones, D. E. & Kirby, J. A. Toll-like receptor (TLR) response tolerance: a key physiological “damage limitation” effect and an important potential opportunity for therapy. Curr. Med. Chem. 13, 2487–2502 (2006).

    CAS  PubMed  Google Scholar 

  128. Corbett, A. et al. Drug repositioning for Alzheimer's disease. Nat. Rev. Drug Discov. 11, 833–846 (2012).

    CAS  PubMed  Google Scholar 

  129. McGonigle, P. Animal models of CNS disorders. Biochem. Pharmacol. 87, 140–149 (2014).

    CAS  PubMed  Google Scholar 

  130. Horvath, P. et al. Screening out irrelevant cell-based models of disease. Nat. Rev. Drug Discov. 15, 751–769 (2016).

    CAS  PubMed  Google Scholar 

  131. Ghosh, R. et al. Allosteric inhibition of the IRE1alpha RNase preserves cell viability and function during endoplasmic reticulum stress. Cell 158, 534–548 (2014). This paper validates IRE1α kinase inhibition in models of retinitis pigmentosa and diabetes.

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Meredith, E. L. et al. Discovery of oral VEGFR-2 inhibitors with prolonged ocular retention that are efficacious in models of wet age-related macular degeneration. J. Med. Chem. 58, 9273–9286 (2015). This paper describes a successful preclinical study of a small-molecule VEGFR2 inhibitor for treatment of wet AMD.

    CAS  PubMed  Google Scholar 

  133. Credle, J. J., Finer-Moore, J. S., Papa, F. R., Stroud, R. M. & Walter, P. On the mechanism of sensing unfolded protein in the endoplasmic reticulum. Proc. Natl Acad. Sci. USA 102, 18773–18784 (2005).

    CAS  PubMed  Google Scholar 

  134. Zhou, J. et al. The crystal structure of human IRE1 luminal domain reveals a conserved dimerization interface required for activation of the unfolded protein response. Proc. Natl Acad. Sci. USA 103, 14343–14348 (2006).

    CAS  PubMed  Google Scholar 

  135. Calfon, M. et al. IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature 415, 92–96 (2002).

    CAS  PubMed  Google Scholar 

  136. Yoshida, H., Matsui, T., Yamamoto, A., Okada, T. & Mori, K. XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell 107, 881–891 (2001).

    CAS  PubMed  Google Scholar 

  137. Han, D. et al. IRE1alpha kinase activation modes control alternate endoribonuclease outputs to determine divergent cell fates. Cell 138, 562–575 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Shore, G. C., Papa, F. R. & Oakes, S. A. Signaling cell death from the endoplasmic reticulum stress response. Curr. Opin. Cell Biol. 23, 143–149 (2011).

    CAS  PubMed  Google Scholar 

  139. Harding, H. P. et al. An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol. Cell 11, 619–633 (2003).

    CAS  PubMed  Google Scholar 

  140. Moreno, J. A. et al. Oral treatment targeting the unfolded protein response prevents neurodegeneration and clinical disease in prion-infected mice. Sci. Transl Med. 5, 206ra138 (2013).

    PubMed  Google Scholar 

  141. Radford, H., Moreno, J. A., Verity, N., Halliday, M. & Mallucci, G. R. PERK inhibition prevents tau-mediated neurodegeneration in a mouse model of frontotemporal dementia. Acta Neuropathol. 130, 633–642 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Axten, J. M. et al. Discovery of 7-methyl-5-(1-{[3-(trifluoromethyl)phenyl]acetyl}-2,3-dihydro-1H-indol-5-yl)-7H-p yrrolo[2,3-d]pyrimidin-4-amine (GSK2606414), a potent and selective first-in-class inhibitor of protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK). J. Med. Chem. 55, 7193–7207 (2012).

    CAS  PubMed  Google Scholar 

  143. Larhammar, M. et al. Dual leucine zipper kinase-dependent PERK activation contributes to neuronal degeneration following insult. eLife 6, e20725 (2017).

    PubMed  PubMed Central  Google Scholar 

  144. Patel, S. et al. Scaffold-hopping and structure-based discovery of potent, selective, and brain penetrant N-(1H-Pyrazol-3-yl)pyridin-2-amine inhibitors of dual leucine zipper kinase (DLK. MAP3K12). J. Med. Chem. 58, 8182–8199 (2015).

    CAS  PubMed  Google Scholar 

  145. Patel, S. et al. Discovery of dual leucine zipper kinase (DLK, MAP3K12) inhibitors with activity in neurodegeneration models. J. Med. Chem. 58, 401–418 (2015).

    CAS  PubMed  Google Scholar 

  146. Ambati, J. & Fowler, B. J. Mechanisms of age-related macular degeneration. Neuron 75, 26–39 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Ishikawa, M., Jin, D., Sawada, Y., Abe, S. & Yoshitomi, T. Future therapies of wet age-related macular degeneration. J. Ophthalmol. 2015, 138070 (2015).

    PubMed  PubMed Central  Google Scholar 

  148. Appelmann, I., Liersch, R., Kessler, T., Mesters, R. M. & Berdel, W. E. Angiogenesis inhibition in cancer therapy: platelet-derived growth factor (PDGF) and vascular endothelial growth factor (VEGF) and their receptors: biological functions and role in malignancy. Recent results in cancer research. Recent Results Cancer Res. 180, 51–81 (2010).

    CAS  PubMed  Google Scholar 

  149. Diago, T. Jr. et al., Ranibizumab combined with low-dose sorafenib for exudative age-related macular degeneration. Mayo Clin. Proc. 83, 231–234 (2008).

    PubMed  PubMed Central  Google Scholar 

  150. Slakter, J. S. et al. Phase I/II study of oral pazopanib, a receptor tyrosine kinase inhibitor, in neovascular age related macular degeneration. Invest. Ophthalmol. Visual Sci. 53, 2038 (2012).

    Google Scholar 

  151. Liang, C., Brown, D., Chaudhry, N., Elman, M. & Heier, J. Rationale for treating wet AMD in human using an oral pill consisting of a VEGFR/PDGFR inhibitor X-82. Invest. Ophthalmol. Visual Sci. 54, 3272–3272 (2013).

    Google Scholar 

  152. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT02535286 (2017).

  153. Mainolfi, N., Karki, R., Liu, F. & Anderson, K. Evolution of a new class of VEGFR-2 inhibitors from scaffold morphing and redesign. ACS Med. Chem. Lett. 7, 363–367 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Artac, R. A. et al. Neutralization of vascular endothelial growth factor antiangiogenic isoforms is more effective than treatment with proangiogenic isoforms in stimulating vascular development and follicle progression in the perinatal rat ovary. Biol. Reprod. 81, 978–988 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Batson, J. et al. Development of Potent, Selective SRPK1 Inhibitors as Potential Topical Therapeutics for Neovascular Eye Disease. ACS Chem. Biol. 12, 825–832 (2017).

    CAS  PubMed  Google Scholar 

  156. Scott, J. D. et al. Discovery of a 3-(4-Pyrimidinyl) indazole (MLi-2), an orally available and selective leucine-rich repeat kinase 2 (LRRK2) inhibitor that reduces brain kinase activity. J. Med. Chem. 60, 2983–2992 (2017).

    CAS  PubMed  Google Scholar 

  157. Heffron, T. P. et al. Discovery of clinical development candidate GDC-0084, a brain penetrant inhibitor of PI3K and mTOR. ACS Med. Chem. Lett. 7, 351–356 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Baltussen, L., Rosianu, F. & Ultanir, S. Kinases in synaptic development and neurological diseases. Prog. Neuropsychopharmacol. Biol. Psychiatry https://doi.org/10.1016/j.pnpbp.2017.12.006 (2017).

    CAS  PubMed  Google Scholar 

  159. Switon, K., Kotulska, K., Janusz-Kaminska, A., Zmorzynska, J. & Jaworski, J. Molecular neurobiology of mTOR. Neuroscience 341, 112–153 (2017).

    CAS  PubMed  Google Scholar 

  160. Chan, S. L. & Tan, E. K. Targeting LRRK2 in Parkinson's disease: an update on recent developments. Expert Opin. Ther. Targets 21, 601–610 (2017).

    CAS  PubMed  Google Scholar 

  161. Lucet, I. S., Tobin, A., Drewry, D., Wilks, A. F. & Doerig, C. Plasmodium kinases as targets for new-generation antimalarials. Future Med. Chem. 4, 2295–2310 (2012).

    CAS  PubMed  Google Scholar 

  162. McNamara, C. W. et al. Targeting Plasmodium PI(4)K to eliminate malaria. Nature 504, 248–253 (2013). This thorough study validates PfPI(4)K as an antimalarial target.

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Crowther, G. J. et al. Biochemical screening of five protein kinases from Plasmodium falciparum against 14,000 cell-active compounds. PLoS ONE 11, e0149996 (2016).

    PubMed  PubMed Central  Google Scholar 

  164. Derbyshire, E. R. et al. Chemical interrogation of the malaria kinome. Chembiochem 15, 1920–1930 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Carr, J. M., Mahalingam, S., Bonder, C. S. & Pitson, S. M. Sphingosine kinase 1 in viral infections. Rev. Med. Virol. 23, 73–84 (2013).

    CAS  PubMed  Google Scholar 

  166. Eisa-Beygi, S. & Wen, X. Y. Could pharmacological curtailment of the RhoA/Rho-kinase pathway reverse the endothelial barrier dysfunction associated with Ebola virus infection? Antiviral Res. 114, 53–56 (2015).

    CAS  PubMed  Google Scholar 

  167. Clark, M. J. et al. GNF-2 inhibits dengue virus by targeting Abl kinases and the viral E protein. Cell Chem. Biol. 23, 443–452 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Schreiber, M., Res, I. & Matter, A. Protein kinases as antibacterial targets. Curr. Opin. Cell Biol. 21, 325–330 (2009).

    CAS  PubMed  Google Scholar 

  169. Gordon, S., Simithy, J., Goodwin, D. C. & Calderon, A. I. Selective Mycobacterium tuberculosis shikimate kinase inhibitors as potential antibacterials. Persp. Med. Chem. 7, 9–20 (2015).

    Google Scholar 

  170. Prisic, S. & Husson, R. N. Mycobacterium tuberculosis serine/threonine protein kinases. Microbiol Spectr. https://doi.org/10.1128/microbiolspec.MGM2-0006-2013 (2014).

  171. Wang, T. et al. Mtb PKNA/PKNB dual inhibition provides selectivity advantages for inhibitor design to minimize host kinase interactions. ACS Med. Chem. Lett. 8, 1224–1229 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Saleh, D. & Degterev, A. Emerging roles for RIPK1 and RIPK3 in Pathogen-induced cell death and host immunity. Curr. Top. Microbiol. Immunol. 403, 37–75 (2017).

    CAS  PubMed  Google Scholar 

  173. Volpe, G., Panuzzo, C., Ulisciani, S. & Cilloni, D. Imatinib resistance in CML. Cancer Lett. 274, 1–9 (2009).

    CAS  PubMed  Google Scholar 

  174. Niederst, M. J. & Engelman, J. A. Bypass mechanisms of resistance to receptor tyrosine kinase inhibition in lung cancer. Sci. Signal. 6, re6 (2013).

    PubMed  Google Scholar 

  175. Smyth, L. A. & Collins, I. Measuring and interpreting the selectivity of protein kinase inhibitors. J. Chem. Biol. 2, 131–151 (2009).

    PubMed  PubMed Central  Google Scholar 

  176. Miduturu, C. V. et al. High-Throughput Kinase Profiling: A More Efficient Approach towards the Discovery of New Kinase Inhibitors. Chem. Biol. 18, 868–879 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Cully, M. Rational drug design: Tuning kinase inhibitor residence time. Nat. Rev. Drug Discov. 14, 457 (2015).

    CAS  PubMed  Google Scholar 

  178. Zhang, J., Yang, P. L. & Gray, N. S. Targeting cancer with small molecule kinase inhibitors. Nat. Rev. Cancer 9, 28–39 (2009).

    PubMed  Google Scholar 

  179. Sang, J. et al. Targeted inhibition of the molecular chaperone Hsp90 overcomes ALK inhibitor resistance in non-small cell lung cancer. Cancer Discov. 3, 430–443 (2013). This paper describes EMAP4–ALK as a highly sensitive client of HSP90, which is preferentially degraded upon HSP90 inhibition.

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Katayama, R. et al. Therapeutic strategies to overcome crizotinib resistance in non-small cell lung cancers harboring the fusion oncogene EML4-ALK. Proc. Natl Acad. Sci. USA 108, 7535–7540 (2011).

    CAS  PubMed  Google Scholar 

  181. Richards, M. W. et al. Crystal structure of EML1 reveals the basis for Hsp90 dependence of oncogenic EML4-ALK by disruption of an atypical beta-propeller domain. Proc. Natl Acad. Sci. USA 111, 5195–5200 (2014).

    CAS  PubMed  Google Scholar 

  182. Workman, P. & van Montfort, R. EML4-ALK fusions: propelling cancer but creating exploitable chaperone dependence. Cancer Discov. 4, 642–645 (2014).

    CAS  PubMed  Google Scholar 

  183. Chen, Z. et al. Inhibition of ALK, PI3K/MEK, and HSP90 in murine lung adenocarcinoma induced by EML4-ALK fusion oncogene. Cancer Res. 70, 9827–9836 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Wang, M. et al. Development of heat shock protein (Hsp90) inhibitors to combat resistance to tyrosine kinase inhibitors through Hsp90-kinase interactions. J. Med. Chem. 59, 5563–5586 (2016).

    CAS  PubMed  Google Scholar 

  185. Kronke, J. et al. Lenalidomide induces ubiquitination and degradation of CK1alpha in del(5q) MDS. Nature 523, 183–188 (2015). This paper uncovers the mechanism of action of lenalidomide in myelodisplastic syndrome.

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Petzold, G., Fischer, E. S. & Thoma, N. H. Structural basis of lenalidomide-induced CK1alpha degradation by the CRL4(CRBN) ubiquitin ligase. Nature 532, 127–130 (2016). This paper characterizes the structural basis for small-molecule-induced CRBN–CKI-α dimerization, providing rationale for development of molecules hijacking this pathway for induced degradation approaches.

    CAS  PubMed  Google Scholar 

  187. Beke, L. et al. MELK-T1, a small-molecule inhibitor of protein kinase MELK, decreases DNA-damage tolerance in proliferating cancer cells. Biosci. Rep. 35, e00267 (2015).

    PubMed  PubMed Central  Google Scholar 

  188. Kii, I. et al. Selective inhibition of the kinase DYRK1A by targeting its folding process. Nat. Commun. 7, 11391 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Bondeson, D. P. et al. Catalytic in vivo protein knockdown by small-molecule PROTACs. Nat. Chem. Biol. 11, 611–617 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Kritzer, J. New Frontiers in Chemical Biology: Enabling Drug Discovery. Edited by Mark E. Bunnage. ChemMedChem 6, 1747–1748 (2011).

    CAS  Google Scholar 

  191. Buckley, D. L. & Crews, C. M. Small-molecule control of intracellular protein levels through modulation of the ubiquitin proteasome system. Angew. Chem. Int. Ed. 53, 2312–2330 (2014).

    CAS  Google Scholar 

  192. Lai, A. C. & Crews, C. M. Induced protein degradation: an emerging drug discovery paradigm. Nat. Rev. Drug Discov. 16, 101–114 (2017). This paper provides an extensive and up-to-date review of the PROTAC field.

    CAS  PubMed  Google Scholar 

  193. Toure, M. & Crews, C. M. Small-molecule PROTACS: new approaches to protein degradation. Angew. Chem. Int. Ed. 55, 1966–1973 (2016).

    CAS  Google Scholar 

  194. Henning, R. K. et al. Degradation of Akt using protein-catalyzed capture agents. J. Pept. Sci. 22, 196–200 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Lai, A. C. et al. Modular PROTAC design for the degradation of oncogenic BCR-ABL. Angew. Chem. Int. Ed. 55, 807–810 (2016).

    CAS  Google Scholar 

  196. Hines, J., Gough, J. D., Corson, T. W. & Crews, C. M. Posttranslational protein knockdown coupled to receptor tyrosine kinase activation with phosphoPROTACs. Proc. Natl Acad. Sci. USA 110, 8942–8947 (2013).

    CAS  PubMed  Google Scholar 

  197. Crew, A. P. et al. Identification and characterization of Von Hippel-Lindau-recruiting proteolysis targeting chimeras (PROTACs) of TANK-binding kinase 1. J. Med. Chem. 61, 583–598 (2018).

    CAS  PubMed  Google Scholar 

  198. Robb, C. M. et al. Chemically induced degradation of CDK9 by a proteolysis targeting chimera (PROTAC). Chem. Commun. 53, 7577–7580 (2017).

    CAS  Google Scholar 

  199. Olson, C. M. et al. Pharmacological perturbation of CDK9 using selective CDK9 inhibition or degradation. Nat. Chem. Biol. 14, 163–170 (2018).

    CAS  PubMed  Google Scholar 

  200. Xie, T. et al. Pharmacological targeting of the pseudokinase Her3. Nat. Chem. Biol. 10, 1006–1012 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  201. Chan, K. H., Zengerle, M., Testa, A. & Ciulli, A. Impact of target warhead and linkage vector on inducing protein degradation: comparison of bromodomain and extra-terminal (BET) degraders derived from triazolodiazepine (JQ1) and tetrahydroquinoline (I-BET726) BET inhibitor scaffolds. J. Med. Chem. 61, 504–513 (2018).

    CAS  PubMed  Google Scholar 

  202. Gadd, M. S. et al. Structural basis of PROTAC cooperative recognition for selective protein degradation. Nat. Chem. Biol. 13, 514–521 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  203. Matyskiela, M. E. et al. Cereblon modulator (CC-220) with improved degradation of Ikaros and Aiolos. J. Med. Chem. 61, 535–542 (2018).

    CAS  PubMed  Google Scholar 

  204. Hansen, J. D. et al. Protein degradation via CRL4CRBN ubiquitin ligase: discovery and structure-activity relationships of novel glutarimide analogs that promote degradation of Aiolos and/or GSPT1. J. Med. Chem. 61, 492–503 (2018).

    CAS  PubMed  Google Scholar 

  205. Huang, H. T. et al. Chemoproteomic approach to query the degradable kinome using a multi-kinase degrader. Cell Chem. Biol. 25, 88–99.e6 (2018).

    CAS  PubMed  Google Scholar 

  206. Bondeson, D. P. et al. Lessons in PROTAC design from selective degradation with a promiscuous warhead. Cell Chem. Biol. 25, 78–87.e5 (2018).

    CAS  PubMed  Google Scholar 

  207. Yang, C. et al. Acquired CDK6 amplification promotes breast cancer resistance to CDK4/6 inhibitors and loss of ER signaling and dependence. Oncogene 36, 2255–2264 (2017).

    CAS  PubMed  Google Scholar 

  208. Herrera-Abreu, M. T. et al. Early adaptation and acquired resistance to CDK4/6 inhibition in estrogen receptor-positive breast cancer. Cancer Res. 76, 2301–2313 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  209. Taavi, K. et al. An oral androgen receptor PROTAC degrader for prostate cancer [abstract]. J. Clin. Oncol. 35 (Suppl.), 273 (2017).

    Google Scholar 

  210. Leestemaker, Y. et al. Proteasome activation by small molecules. Cell Chem. Biol. 24, 725–736.e7 (2017).

    CAS  PubMed  Google Scholar 

  211. Liu, Q. et al. Developing irreversible inhibitors of the protein kinase cysteinome. Chem. Biol. 20, 146–159 (2013).

    PubMed  PubMed Central  Google Scholar 

  212. Chaikuad, A., Koch, P., Laufer, S. & Knapp, S. Targeting the protein kinases cysteinome. Angew. Chem. Int. Ed. https://doi.org/10.1002/anie.201707875 (2017).

    CAS  PubMed  Google Scholar 

  213. Fischer, P. M. Approved and experimental small-molecule oncology kinase inhibitor drugs: a mid-2016 overview. Med. Res. Rev. 37, 314–367 (2017).

    PubMed  Google Scholar 

  214. Strelow, J. M. A Perspective on the Kinetics of Covalent and Irreversible Inhibition. SLAS Discov. 22, 3–20 (2017).

    CAS  PubMed  Google Scholar 

  215. Copeland, R. A. Evaluation of enzyme inhibitors in drug discovery. A guide for medicinal chemists and pharmacologists. Methods Biochem. Anal. 46, 1–265 (2005).

    PubMed  Google Scholar 

  216. Mohutsky, M. & Hall, S. D. Irreversible enzyme inhibition kinetics and drug-drug interactions. Methods Mol. Biol. 1113, 57–91 (2014).

    CAS  PubMed  Google Scholar 

  217. Schwartz, P. A. et al. Covalent EGFR inhibitor analysis reveals importance of reversible interactions to potency and mechanisms of drug resistance. Proc. Natl Acad. Sci. USA 111, 173–178 (2014).

    CAS  PubMed  Google Scholar 

  218. Zaro, B. W., Whitby, L. R., Lum, K. M. & Cravatt, B. F. Metabolically Labile Fumarate Esters Impart Kinetic Selectivity to Irreversible Inhibitors. J. Am. Chem. Soc. 138, 15841–15844 (2016). This paper describes a novel cysteine targeting warhead with improved on-target selectivity.

    CAS  PubMed  PubMed Central  Google Scholar 

  219. Serafimova, I. M. et al. Reversible targeting of noncatalytic cysteines with chemically tuned electrophiles. Nat. Chem. Biol. 8, 471–476 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  220. Krishnan, S. et al. Design of reversible, cysteine-targeted Michael acceptors guided by kinetic and computational analysis. J. Am. Chem. Soc. 136, 12624–12630 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  221. Bradshaw, J. M. et al. Prolonged and tunable residence time using reversible covalent kinase inhibitors. Nat. Chem. Biol. 11, 525–531 (2015). This paper reports a method for rational design of drug residence times via reversible covalent interactions.

    CAS  PubMed  PubMed Central  Google Scholar 

  222. Forster, M. et al. Selective JAK3 inhibitors with a covalent reversible binding mode targeting a new induced fit binding pocket. Cell Chem. Biol. 23, 1335–1340 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  223. London, N. et al. Covalent docking of large libraries for the discovery of chemical probes. Nat. Chem. Biol. 10, 1066–1072 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  224. Miller, R. M., Paavilainen, V. O., Krishnan, S., Serafimova, I. M. & Taunton, J. Electrophilic fragment-based design of reversible covalent kinase inhibitors. J. Am. Chem. Soc. 135, 5298–5301 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  225. Backus, K. M. et al. Proteome-wide covalent ligand discovery in native biological systems. Nature 534, 570–574 (2016). This paper uses reactive fragments to enumerate the targetable cysteine residues in the proteome.

    CAS  PubMed  PubMed Central  Google Scholar 

  226. Anscombe, E. et al. Identification and characterization of an irreversible inhibitor of CDK2. Chem. Biol. 22, 1159–1164 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  227. Lin, S. et al. Redox-based reagents for chemoselective methionine bioconjugation. Science 355, 597–602 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  228. Dalton, S. E. et al. Selectively targeting the kinome-conserved lysine of PI3Kdelta as a general approach to covalent kinase inhibition. J. Am. Chem. Soc. 140, 932–939 (2018).

    CAS  PubMed  Google Scholar 

  229. Healy, D. G. et al. Phenotype, genotype, and worldwide genetic penetrance of LRRK2-associated Parkinson's disease: a case-control study. Lancet Neurol. 7, 583–590 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  230. Greggio, E. & Cookson, M. R. Leucine-rich repeat kinase 2 mutations and Parkinson's disease: three questions. ASN Neuro 1, e00002 (2009).

    PubMed  PubMed Central  Google Scholar 

  231. Kumar, A. & Cookson, M. R. Role of LRRK2 kinase dysfunction in Parkinson disease. Expert Rev. Mol. Med. 13, e20 (2011).

    PubMed  PubMed Central  Google Scholar 

  232. West, A. B. Achieving neuroprotection with LRRK2 kinase inhibitors in Parkinson disease. Exp. Neurol. 298, 236–245 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  233. Lee, K. L. et al. Discovery of clinical candidate 1-{[(2S,3S,4S)-3-Ethyl-4-fluoro-5-oxopyrrolidin-2-yl]methoxy}-7-methoxyisoquinoli ne-6-carboxamide (PF-06650833), a potent, selective inhibitor of interleukin-1 receptor associated kinase 4 (IRAK4), by fragment-based drug design. J. Med. Chem. 60, 5521–5542 (2017).

    CAS  PubMed  Google Scholar 

  234. Gomez, N., Erazo, T. & Lizcano, J. M. ERK5 and cell proliferation: nuclear localization is what matters. Front. Cell Dev. Biol. 4, 105 (2016).

    PubMed  PubMed Central  Google Scholar 

  235. Hoang, V. T. et al. Oncogenic signaling of MEK5-ERK5. Cancer Lett. 392, 51–59 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  236. Lin, E. C. et al. ERK5 kinase activity is dispensable for cellular immune response and proliferation. Proc. Natl Acad. Sci. USA 113, 11865–11870 (2016).

    CAS  PubMed  Google Scholar 

  237. Deng, X. et al. Discovery of a benzo[e]pyrimido-[5,4-b][1,4]diazepin-6(11H)-one as a potent and selective inhibitor of big MAP kinase 1. ACS Med. Chem. Lett. 2, 195–200 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  238. Deng, X. et al. Structural determinants for ERK5 (MAPK7) and leucine rich repeat kinase 2 activities of benzo[e]pyrimido-[5,4-b]diazepine-6(11H)-ones. Eur. J. Med. Chem. 70, 758–767 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  239. Elkins, J. M. et al. X-Ray crystal structure of ERK5 (MAPK7) in complex with a specific inhibitor. J. Med. Chem. 56, 4413–4421 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  240. Berger, S. B. et al. Cutting Edge: RIP1 kinase activity is dispensable for normal development but is a key regulator of inflammation in SHARPIN-deficient mice. J. Immunol. 192, 5476–5480 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  241. Harris, P. A. et al. DNA-encoded library screening identifies benzo[b][1,4]oxazepin-4-ones as highly potent and monoselective receptor interacting protein 1 kinase inhibitors. J. Med. Chem. 59, 2163–2178 (2016).

    CAS  PubMed  Google Scholar 

  242. Harris, P. A. et al. Discovery of a first-in-class receptor interacting protein 1 (RIP1) kinase specific clinical candidate (GSK2982772) for the treatment of inflammatory diseases. J. Med. Chem. 60, 1247–1261 (2017).

    CAS  PubMed  Google Scholar 

  243. Goldstein, D. M., Gray, N. S. & Zarrinkar, P. P. High-throughput kinase profiling as a platform for drug discovery. Nat. Rev. Drug Discov. 7, 391–397 (2008).

    CAS  PubMed  Google Scholar 

  244. Nomura, D. K., Dix, M. M. & Cravatt, B. F. Activity-based protein profiling for biochemical pathway discovery in cancer. Nat. Rev. Cancer 10, 630–638 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  245. Patricelli, M. P. et al. In situ kinase profiling reveals functionally relevant properties of native kinases. Chem. Biol. 18, 699–710 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  246. Bantscheff, M. et al. Quantitative chemical proteomics reveals mechanisms of action of clinical ABL kinase inhibitors. Nat. Biotechnol. 25, 1035–1044 (2007).

    CAS  PubMed  Google Scholar 

  247. Medard, G. et al. Optimized chemical proteomics assay for kinase inhibitor profiling. J. Proteome Res. 14, 1574–1586 (2015).

    CAS  PubMed  Google Scholar 

  248. Golkowski, M. et al. Kinobead and single-shot LC-MS profiling identifies selective PKD inhibitors. J. Proteome Res. 16, 1216–1227 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  249. Vasta, J. D. et al. Quantitative, wide-spectrum kinase profiling in live cells for assessing the effect of cellular ATP on target engagement. Cell Chem. Biol. https://doi.org/10.1016/j.chembiol.2017.10.010 (2017). This paper describes a commercially available, in cell competition assay to discern kinase inhibitor selectivity in a physiological context.

    PubMed  PubMed Central  Google Scholar 

  250. Munoz, L. Non-kinase targets of protein kinase inhibitors. Nat. Rev. Drug Discov. 16, 424–440 (2017). This article is an overview of unexpected off-target activities that have been discovered in kinase inhibitors.

    CAS  PubMed  Google Scholar 

  251. Ciceri, P. et al. Dual kinase-bromodomain inhibitors for rationally designed polypharmacology. Nat. Chem. Biol. 10, 305–312 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  252. Ember, S. W. et al. Acetyl-lysine binding site of bromodomain-containing protein 4 (BRD4) interacts with diverse kinase inhibitors. ACS Chem. Biol. 9, 1160–1171 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  253. Rimassa, L., Bruix, J., Broggini, M. & Santoro, A. Tivantinib (ARQ197) displays cytotoxic activity that is independent of its ability to bind MET — letter. Clin. Cancer Res. 19, 4290 (2013).

    CAS  PubMed  Google Scholar 

  254. Katayama, R. et al. Cytotoxic activity of tivantinib (ARQ 197) is not due solely to c-MET inhibition. Cancer Res. 73, 3087–3096 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  255. Cheong, J. K. et al. IC261 induces cell cycle arrest and apoptosis of human cancer cells via CK1delta/varepsilon and Wnt/beta-catenin independent inhibition of mitotic spindle formation. Oncogene 30, 2558–2569 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  256. Lanning, B. R. et al. A road map to evaluate the proteome-wide selectivity of covalent kinase inhibitors. Nat. Chem. Biol. 10, 760–767 (2014). This paper describes pull-down proteomics inhibitor profiling methods for assessing the proteome-wide selectivity of covalent inhibitors.

    CAS  PubMed  PubMed Central  Google Scholar 

  257. Niphakis, M. J. & Cravatt, B. F. Enzyme inhibitor discovery by activity-based protein profiling. Annu. Rev. Biochem. 83, 341–377 (2014).

    CAS  PubMed  Google Scholar 

  258. Yang, P. & Liu, K. Activity-based protein profiling: recent advances in probe development and applications. Chembiochem 16, 712–724 (2015).

    CAS  PubMed  Google Scholar 

  259. Wang, K. et al. Chemistry-based functional proteomics for drug target deconvolution. Expert Rev. Proteom. 9, 293–310 (2012).

    CAS  Google Scholar 

  260. Martinez Molina, D. et al. Monitoring drug target engagement in cells and tissues using the cellular thermal shift assay. Science 341, 84–87 (2013).

    PubMed  Google Scholar 

  261. Klaeger, S. et al. Chemical proteomics reveals ferrochelatase as a common off-target of kinase inhibitors. ACS Chem. Biol. 11, 1245–1254 (2016).

    CAS  PubMed  Google Scholar 

  262. Reinhard, F. B. et al. Thermal proteome profiling monitors ligand interactions with cellular membrane proteins. Nat. Methods 12, 1129–1131 (2015).

    CAS  PubMed  Google Scholar 

  263. Kooistra, A. J. et al. KLIFS: a structural kinase-ligand interaction database. Nucleic Acids Res. 44, D365–D371 (2016).

    CAS  PubMed  Google Scholar 

  264. Isberg, V. et al. GPCRdb: an information system for G protein-coupled receptors. Nucleic Acids Res. 44, D356–D364 (2016).

    CAS  PubMed  Google Scholar 

  265. McGuire, R. et al. 3D-e-Chem-VM: structural cheminformatics research infrastructure in a freely available virtual machine. J. Chem. Inform. Model. 57, 115–121 (2017).

    CAS  Google Scholar 

  266. Lin, X. et al. Life beyond kinases: structure-based discovery of sorafenib as nanomolar antagonist of 5-HT receptors. J. Med. Chem. 55, 5749–5759 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  267. Merget, B., Turk, S., Eid, S., Rippmann, F. & Fulle, S. Profiling prediction of kinase inhibitors: toward the virtual assay. J. Med. Chem. 60, 474–485 (2017).

    CAS  PubMed  Google Scholar 

  268. [No authors listed.] Kinase Assay Tools. Reaction Biology Corp. http://www.reactionbiology.com/webapps/site/KinaseDetail.aspx (2016).

  269. Drewry, D. H. et al. Progress towards a public chemogenomic set for protein kinases and a call for contributions. PLoS ONE 12, e0181585 (2017).

    PubMed  PubMed Central  Google Scholar 

  270. Klaeger, S. et al. The target landscape of clinical kinase drugs. Science 358, eaan4368 (2017).

    PubMed  PubMed Central  Google Scholar 

  271. Leelananda, S. P. & Lindert, S. Computational methods in drug discovery. Beilstein J. Org. Chem. 12, 2694–2718 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  272. Li, Z. & Lazaridis, T. Thermodynamic contributions of the ordered water molecule in HIV-1 protease. J. Am. Chem. Soc. 125, 6636–6637 (2003).

    CAS  PubMed  Google Scholar 

  273. Huggins, D. J., Quantifying the entropy of binding for water molecules in protein cavities by computing correlations. Biophys. J. 108, 928–936 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  274. Li, Z. & Lazaridis, T. Computing the thermodynamic contributions of interfacial water. Methods Mol. Biol. 819, 393–404 (2012).

    CAS  PubMed  Google Scholar 

  275. Robinson, D. D., Sherman, W. & Farid, R. Understanding kinase selectivity through energetic analysis of binding site waters. ChemMedChem 5, 618–627 (2010).

    CAS  PubMed  Google Scholar 

  276. Abel, R., Young, T., Farid, R., Berne, B. J. & Friesner, R. A. Role of the active-site solvent in the thermodynamics of factor Xa ligand binding. J. Am. Chem. Soc. 130, 2817–2831 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  277. Young, T., Abel, R., Kim, B., Berne, B. J. & Friesner, R. A. Motifs for molecular recognition exploiting hydrophobic enclosure in protein-ligand binding. Proc. Natl Acad. Sci. USA 104, 808–813 (2007).

    CAS  PubMed  Google Scholar 

  278. Kitamura, K. et al. Binding free-energy calculation is a powerful tool for drug optimization: calculation and measurement of binding free energy for 7-azaindole derivatives to glycogen synthase kinase-3beta. J. Chem. Inform. Model. 54, 1653–1660 (2014). This study is an elegant example of the accuracy of FEP calculations in ranking kinase inhibitors.

    CAS  Google Scholar 

  279. Lin, Y. L., Meng, Y., Jiang, W. & Roux, B. Explaining why Gleevec is a specific and potent inhibitor of Abl kinase. Proc. Natl Acad. Sci. USA 110, 1664–1669 (2013).

    CAS  PubMed  Google Scholar 

  280. Araki, M. et al. The effect of conformational flexibility on binding free energy estimation between kinases and their inhibitors. J. Chem. Inform. Model. 56, 2445–2456 (2016).

    CAS  Google Scholar 

  281. Ruiz-Carmona, S. et al. Dynamic undocking and the quasi-bound state as tools for drug discovery. Nat. Chem. 9, 201–206 (2017). This paper describes a new method for virtual screening and ranking ligands on the basis of calculations of nonthermodynamic properties.

    CAS  PubMed  Google Scholar 

  282. Takeuchi, K. & Ito, F. Receptor tyrosine kinases and targeted cancer therapeutics. Biol. Pharm. Bull. 34, 1774–1780 (2011).

    CAS  PubMed  Google Scholar 

  283. Mushtaq, G. et al. Neuroprotective mechanisms mediated by CDK5 inhibition. Curr. Pharm. Design 22, 527–534 (2016).

    CAS  Google Scholar 

  284. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT02784106 (2017).

  285. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT01882803 (2017).

  286. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT02100852 (2017).

  287. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT01674569 (2017).

  288. Narayanan, A. & Jones, L. H. Sulfonyl fluorides as privileged warheads in chemical biology. Chem. Sci. 6, 2650–2659 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  289. Morales-Sanfrutos, J. et al. Vinyl sulfone: a versatile function for simple bioconjugation and immobilization. Org. Biomol. Chem. 8, 667–675 (2010).

    CAS  PubMed  Google Scholar 

  290. Garcia, F. J. & Carroll, K. S. Redox-based probes as tools to monitor oxidized protein tyrosine phosphatases in living cells. Eur. J. Med. Chem. 88, 28–33 (2014).

    CAS  PubMed  Google Scholar 

  291. Leonard, S. E., Garcia, F. J., Goodsell, D. S. & Carroll, K. S. Redox-based probes for protein tyrosine phosphatases. Angew. Chem. Int. Ed. 50, 4423–4427 (2011).

    CAS  Google Scholar 

  292. Wani, R. et al. Isoform-specific regulation of Akt by PDGF-induced reactive oxygen species. Proc. Natl Acad. Sci. USA 108, 10550–10555 (2011).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank B.J. Pinch, D.A. Scott, N.P. Kwiatkowski and C.M. Olson for proofreading and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathanael S. Gray.

Ethics declarations

Competing interests

N.S.G. is a scientific founder and equity holder in C4, Petra, Syros and Gatekeeper Pharmaceuticals.

PowerPoint slides

Glossary

Free-energy perturbation

(FEP). A method for computing free-energy differences from molecular dynamics simulations on the basis of statistical mechanics.

Super-enhancers

(SEs). Large clusters of transcriptional enhancers, which normally drive expression of genes that define cell identity. Tumour cells acquire SEs at oncogenes and at genes associated with the acquisition of the hallmarks of cancer.

Tumour microenvironment

The cellular environment in which the tumour exists, which is composed of surrounding blood vessels, immune cells, fibroblasts, inflammatory cells, lymphocytes, signalling molecules and the extracellular matrix. The tumour microenvironment and the tumour are constantly interacting; thus, the tumour microenvironment affects tumour development and progression.

T cell checkpoint inhibitors

Antibody-based therapies that block inhibitory pathways that regulate the adaptive immune response. Currently approved T cell checkpoint inhibitors target programmed cell death protein 1 (PD1), PDL1 (PD1 ligand 1) and cytotoxic T lymphocyte-associated protein 4 (CTLA4).

Natural killer cells

Lymphocytes able to bind to certain tumour cells and virus-infected cells and kill them by the injection of granzymes. Unlike T cells, natural killer cells can recognize stressed cells in the absence of antibodies or major histocompatibility complex (MHC) expression, and elicit rapid immune responses.

PROTACs

Proteolysis-targeting chimaeras (PROTACs) are two-headed molecules capable of removing unwanted proteins by inducing selective intracellular proteolysis through induction of their ubiquitylation.

Covalent kinase inhibitors

Kinase inhibitors that contain a weakly reactive electrophile. Upon a reversible binding interaction, the electrophilic warhead is brought into close proximity with a nucleophilic residue in the kinase, often cysteine, which subsequently reacts to form a covalently bonded complex.

DNA-encoded library

Contains small molecules conjugated to short DNA fragments that serve as identification barcodes. The technique enables the mass interrogation of chemical libraries via affinity selection, typically on an immobilized protein target, followed by amplification of the binder's 'barcodes' via PCR and compound identification by DNA sequencing. The advantage of this technique is its screening efficiency.

Alchemical pathways

Simulated pathways from one physical state to another, that proceed via a series of non-physical intermediates.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferguson, F., Gray, N. Kinase inhibitors: the road ahead. Nat Rev Drug Discov 17, 353–377 (2018). https://doi.org/10.1038/nrd.2018.21

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd.2018.21

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer