Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mitochondria as a therapeutic target for common pathologies

Abstract

Although the development of mitochondrial therapies has largely focused on diseases caused by mutations in mitochondrial DNA or in nuclear genes encoding mitochondrial proteins, it has been found that mitochondrial dysfunction also contributes to the pathology of many common disorders, including neurodegeneration, metabolic disease, heart failure, ischaemia–reperfusion injury and protozoal infections. Mitochondria therefore represent an important drug target for these highly prevalent diseases. Several strategies aimed at therapeutically restoring mitochondrial function are emerging, and a small number of agents have entered clinical trials. This Review discusses the opportunities and challenges faced for the further development of mitochondrial pharmacology for common pathologies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mitochondrial function and pathological disruption.
Figure 2: Mitochondria as a therapeutic target in ischaemia–reperfusion injury.
Figure 3: Mitochondria as a therapeutic target in protozoal infections.

Similar content being viewed by others

References

  1. Koopman, W. J., Willems, P. H. & Smeitink, J. A. Monogenic mitochondrial disorders. N. Engl. J. Med. 366, 1132–1141 (2012).

    CAS  PubMed  Google Scholar 

  2. Wallace, D. C., Fan, W. & Procaccio, V. Mitochondrial energetics and therapeutics. Annu. Rev. Pathol. 5, 297–348 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Pfeffer, G., Majamaa, K., Turnbull, D. M., Thorburn, D. & Chinnery, P. F. Treatment for mitochondrial disorders. Cochrane Database Syst. Rev. 4, CD004426 (2012). This article provides an authoritative review on therapeutic approaches to primary mitochondrial diseases.

    Google Scholar 

  4. Mehta, M. M., Weinberg, S. E. & Chandel, N. S. Mitochondrial control of immunity: beyond ATP. Nat. Rev. Immunol. 17, 608–620 (2017).

    CAS  PubMed  Google Scholar 

  5. Nunnari, J. & Suomalainen, A. Mitochondria: in sickness and in health. Cell 148, 1145–1159 (2012). This paper is an excellent review on the roles of mitochondria in disease.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Suomalainen, A. & Battersby, B. J. Mitochondrial diseases: the contribution of organelle stress responses to pathology. Nat. Rev. Mol. Cell Biol. 19, 77–92 (2017).

    PubMed  Google Scholar 

  7. Sorrentino, V., Menzies, K. J. & Auwerx, J. Repairing mitochondrial dysfunction in disease. Annu. Rev. Pharmacol. Toxicol. 58, 353–389 (2018). This article presents a definitive and comprehensive recent review on therapeutic approaches targeted to secondary mitochondrial diseases.

    CAS  PubMed  Google Scholar 

  8. Gorman, G. S. et al. Mitochondrial diseases. Nat. Rev. Dis. Primers 2, 16080 (2016).

    PubMed  Google Scholar 

  9. Hassani, A., Horvath, R. & Chinnery, P. F. Mitochondrial myopathies: developments in treatment. Curr. Opin. Neurol. 23, 459–465 (2010).

    CAS  PubMed  Google Scholar 

  10. Koopman, W. J., Distelmaier, F., Esseling, J. J., Smeitink, J. A. & Willems, P. H. Computer-assisted live cell analysis of mitochondrial membrane potential, morphology and calcium handling. Methods 46, 304–311 (2008).

    CAS  PubMed  Google Scholar 

  11. Wallace, D. C. Mitochondrial DNA mutations in disease and aging. Environ. Mol. Mutagen. 51, 440–450 (2010).

    CAS  PubMed  Google Scholar 

  12. Andreux, P. A., Houtkooper, R. H. & Auwerx, J. Pharmacological approaches to restore mitochondrial function. Nat. Rev. Drug Discov. 12, 465–483 (2013). This very useful review focuses on biogenesis and repletion of the NAD+ pool.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Herzig, S. & Shaw, R. J. AMPK: guardian of metabolism and mitochondrial homeostasis. Nat. Rev. Mol. Cell Biol. 19, 121–135 (2017).

    PubMed  PubMed Central  Google Scholar 

  14. Smith, R. A., Hartley, R. C., Cocheme, H. M. & Murphy, M. P. Mitochondrial pharmacology. Trends Pharmacol. Sci. 33, 341–352 (2012). This article provides an overview of the mitochondrial targeting of drugs.

    CAS  PubMed  Google Scholar 

  15. Whitaker, R. M., Corum, D., Beeson, C. C. & Schnellmann, R. G. Mitochondrial biogenesis as a pharmacological target: a new approach to acute and chronic diseases. Annu. Rev. Pharmacol. Toxicol. 56, 229–249 (2016).

    CAS  PubMed  Google Scholar 

  16. Sivitz, W. I. & Yorek, M. A. Mitochondrial dysfunction in diabetes: from molecular mechanisms to functional significance and therapeutic opportunities. Antioxid. Redox Signal. 12, 537–577 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Finkel, T. Opinion: radical medicine: treating ageing to cure disease. Nat. Rev. Mol. Cell Biol. 6, 971–976 (2005).

    CAS  PubMed  Google Scholar 

  18. Picard, M., Wallace, D. C. & Burelle, Y. The rise of mitochondria in medicine. Mitochondrion 30, 105–116 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Logan, A. & Murphy, M. P. Using chemical biology to assess and modulate mitochondria: progress and challenges. Interface Focus 7, 20160151 (2017).

    PubMed  PubMed Central  Google Scholar 

  20. Jean, S. R., Ahmed, M., Lei, E. K., Wisnovsky, S. P. & Kelley, S. O. Peptide-mediated delivery of chemical probes and therapeutics to mitochondria. Accounts Chem. Res. 49, 1893–1902 (2016). This paper presents a review of using peptides to target molecules to mitochondria.

    CAS  Google Scholar 

  21. Tsubota, K. The first human clinical study for NMN has started in Japan. NPJ Aging Mech. Dis. 2, 16021 (2016).

    PubMed  PubMed Central  Google Scholar 

  22. Gane, E. J. et al. The mitochondria-targeted anti-oxidant mitoquinone decreases liver damage in a phase II study of hepatitis C patients. Liver Int. 30, 1019–1026 (2010).

    CAS  PubMed  Google Scholar 

  23. Snow, B. J. et al. A double-blind, placebo-controlled study to assess the mitochondria-targeted antioxidant MitoQ as a disease-modifying therapy in Parkinson's disease. Mov. Disord. 25, 1670–1674 (2010). This article presents the first clinical trial of a mitochondria-targeted antioxidant.

    PubMed  Google Scholar 

  24. Gibson, C. M. et al. EMBRACE STEMI study: a Phase 2a trial to evaluate the safety, tolerability, and efficacy of intravenous MTP-131 on reperfusion injury in patients undergoing primary percutaneous coronary intervention. Eur. Heart J. 37, 1296–1303 (2016).

    CAS  PubMed  Google Scholar 

  25. Mortensen, S. A. et al. The effect of coenzyme Q10 on morbidity and mortality in chronic heart failure: results from Q-SYMBIO: a randomized double-blind trial. JACC Heart Fail. 2, 641–649 (2014).

    PubMed  Google Scholar 

  26. Cung, T. T. et al. Cyclosporine before PCI in patients with acute myocardial infarction. N. Engl. J. Med. 373, 1021–1031 (2015).

    CAS  PubMed  Google Scholar 

  27. Ottani, F. et al. Cyclosporine A in reperfused myocardial infarction: the multicenter, controlled, open-label CYCLE trial. J. Am. Coll. Cardiol. 67, 365–374 (2016).

    CAS  PubMed  Google Scholar 

  28. Sun, N., Youle, R. J. & Finkel, T. The mitochondrial basis of aging. Mol. Cell 61, 654–666 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Galluzzi, L., Kepp, O. & Kroemer, G. Mitochondria: master regulators of danger signalling. Nat. Rev. Mol. Cell Biol. 13, 780–788 (2012).

    CAS  PubMed  Google Scholar 

  30. Heusch, G. & Gersh, B. J. The pathophysiology of acute myocardial infarction and strategies of protection beyond reperfusion: a continual challenge. Eur. Heart J. 38, 774–784 (2017).

    CAS  PubMed  Google Scholar 

  31. Onyango, I. G., Dennis, J. & Khan, S. M. Mitochondrial dysfunction in Alzheimer's disease and the rationale for bioenergetics based therapies. Aging Dis. 7, 201–214 (2016).

    PubMed  PubMed Central  Google Scholar 

  32. Downey, J. M. & Cohen, M. V. Why do we still not have cardioprotective drugs? Circ. J. 73, 1171–1177 (2009).

    PubMed  Google Scholar 

  33. Parikh, S. et al. A modern approach to the treatment of mitochondrial disease. Curr. Treat. Opt. Neurol. 11, 414–430 (2009).

    Google Scholar 

  34. Jain, I. H. et al. Hypoxia as a therapy for mitochondrial disease. Science 352, 54–61 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Ma, H. et al. Metabolic rescue in pluripotent cells from patients with mtDNA disease. Nature 524, 234–238 (2015).

    CAS  PubMed  Google Scholar 

  36. Hyslop, L. A. et al. Towards clinical application of pronuclear transfer to prevent mitochondrial DNA disease. Nature 534, 383–386 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. McCully, J. D., Levitsky, S., Del Nido, P. J. & Cowan, D. B. Mitochondrial transplantation for therapeutic use. Clin. Transl Med. 5, 16 (2016).

    PubMed  PubMed Central  Google Scholar 

  38. Minczuk, M., Papworth, M. A., Kolasinska, P., Murphy, M. P. & Klug, A. Sequence-specific modification of mitochondrial DNA using a chimeric zinc finger methylase. Proc. Natl Acad. Sci. USA 103, 19689–19694 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Fernandez-Ayala, D. J. et al. Expression of the Ciona intestinalis alternative oxidase (AOX) in Drosophila complements defects in mitochondrial oxidative phosphorylation. Cell Metab. 9, 449–460 (2009). This study is a demonstration of a metabolic bypass approach in vivo.

    CAS  PubMed  Google Scholar 

  40. Nightingale, H., Pfeffer, G., Bargiela, D., Horvath, R. & Chinnery, P. F. Emerging therapies for mitochondrial disorders. Brain 139, 1633–1648 (2016).

    PubMed  PubMed Central  Google Scholar 

  41. Smith, R. A., Hartley, R. C. & Murphy, M. P. Mitochondria-targeted small molecule therapeutics and probes. Antioxid. Redox Signal. 15, 3021–3038 (2011).

    CAS  PubMed  Google Scholar 

  42. Yousif, L. F., Stewart, K. M. & Kelley, S. O. Targeting mitochondria with organelle-specific compounds: strategies and applications. Chembiochem 10, 1939–1950 (2009).

    CAS  PubMed  Google Scholar 

  43. Balaban, R. S., Nemoto, S. & Finkel, T. Mitochondria, oxidants, and aging. Cell 120, 483–495 (2005).

    CAS  PubMed  Google Scholar 

  44. Wagner, G. R. et al. A class of reactive acyl-CoA species reveals the non-enzymatic origins of protein acylation. Cell Metab. 25, 823–837.e8 (2017). This article presents a stimulating recent work on the development of the 'carbon stress' hypothesis, underlying the damage caused by protein acylation.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Wagner, G. R. & Hirschey, M. D. Nonenzymatic protein acylation as a carbon stress regulated by sirtuin deacylases. Mol. Cell 54, 5–16 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Finkel, T. & Holbrook, N. J. Oxidants, oxidative stress and the biology of ageing. Nature 408, 239–247 (2000).

    CAS  PubMed  Google Scholar 

  47. Murphy, M. P. How mitochondria produce reactive oxygen species. Biochem. J. 417, 1–13 (2009). This paper presents a description of how mitochondrial ROS arise.

    CAS  PubMed  Google Scholar 

  48. James, A. M. et al. Non-enzymatic N-acetylation of lysine residues by acetylCoA often occurs via a proximal S-acetylated thiol intermediate sensitive to glyoxalase II. Cell Rep. 18, 2105–2112 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Ying, W. NAD+ and NADH in cellular functions and cell death. Front. Biosci. 11, 3129–3148 (2006).

    CAS  PubMed  Google Scholar 

  50. Camacho-Pereira, J. et al. CD38 dictates age-related NAD decline and mitochondrial dysfunction through an SIRT3-dependent mechanism. Cell Metab. 23, 1127–1139 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Gariani, K. et al. Eliciting the mitochondrial unfolded protein response by nicotinamide adenine dinucleotide repletion reverses fatty liver disease in mice. Hepatology 63, 1190–1204 (2016).

    CAS  PubMed  Google Scholar 

  52. Lin, J. B. et al. NAMPT-mediated NAD(+) biosynthesis is essential for vision in mice. Cell Rep. 17, 69–85 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Giorgio, V., Guo, L., Bassot, C., Petronilli, V. & Bernardi, P. Calcium and regulation of the mitochondrial permeability transition. Cell Calcium 70, 56–63 (2017).

    Google Scholar 

  54. Carraro, M. & Bernardi, P. Calcium and reactive oxygen species in regulation of the mitochondrial permeability transition and of programmed cell death in yeast. Cell Calcium 60, 102–107 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Rasola, A. & Bernardi, P. Mitochondrial permeability transition in Ca(2+)-dependent apoptosis and necrosis. Cell Calcium 50, 222–233 (2011). This paper presents a good review on the regulation of the MPTP.

    CAS  PubMed  Google Scholar 

  56. Jensen, M. B. & Jasper, H. Mitochondrial proteostasis in the control of aging and longevity. Cell Metab. 20, 214–225 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Moehle, E. A., Shen, K. & Dillin, A. Mitochondrial proteostasis in the context of cellular and organismal health and aging. J. Biol. Chem. https://doi.org/10.1074/jbc.TM117.000893 (2018). This article provides an overview of current issues in mitochondrial proteostasis.

    Google Scholar 

  58. Quiros, P. M., Langer, T. & Lopez-Otin, C. New roles for mitochondrial proteases in health, ageing and disease. Nat. Rev. Mol. Cell Biol. 16, 345–359 (2015).

    CAS  PubMed  Google Scholar 

  59. Halestrap, A. P. & Davidson, A. M. Inhibition of Ca2(+)-induced large-amplitude swelling of liver and heart mitochondria by cyclosporin is probably caused by the inhibitor binding to mitochondrial-matrix peptidyl-prolyl cis-trans isomerase and preventing it interacting with the adenine nucleotide translocase. Biochem. J. 268, 153–160 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Orr, A. L. et al. Suppressors of superoxide production from mitochondrial complex III. Nat. Chem. Biol. 11, 834–836 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Brand, M. D. et al. Suppressors of superoxide-H2O2 production at site IQ of mitochondrial complex I protect against stem cell hyperplasia and ischemia-reperfusion injury. Cell Metab. 24, 582–592 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Kelso, G. F. et al. Selective targeting of a redox-active ubiquinone to mitochondria within cells: antioxidant and antiapoptotic properties. J. Biol. Chem. 276, 4588–4596 (2001).

    CAS  PubMed  Google Scholar 

  63. Eleff, S. et al. 31P NMR study of improvement in oxidative phosphorylation by vitamins K3 and C in a patient with a defect in electron transport at complex III in skeletal muscle. Proc. Natl Acad. Sci. USA 81, 3529–3533 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Simkins, S. Dinitrophenol and dessicated thyroid in the treatment of obesity. JAMA 108, 2210–2217 (1937). This historical paper shows the possibility of uncoupling mitochondria as a therapy.

    Google Scholar 

  65. Harper, J. A., Dickinson, K. & Brand, M. D. Mitochondrial uncoupling as a target for drug development for the treatment of obesity. Obes. Rev. 2, 255–265 (2001).

    CAS  PubMed  Google Scholar 

  66. Yang, S. J. et al. Nicotinamide improves glucose metabolism and affects the hepatic NAD-sirtuin pathway in a rodent model of obesity and type 2 diabetes. J. Nutr. Biochem. 25, 66–72 (2014).

    CAS  PubMed  Google Scholar 

  67. Long, A. N. et al. Effect of nicotinamide mononucleotide on brain mitochondrial respiratory deficits in an Alzheimer's disease-relevant murine model. BMC Neurol. 15, 19 (2015).

    PubMed  PubMed Central  Google Scholar 

  68. Sorrentino, V. et al. Enhancing mitochondrial proteostasis reduces amyloid-beta proteotoxicity. Nature 552, 187–193 (2017). This article discusses the exciting potential therapeutic link between addressing mitochondrial proteostasis by enhancing NAD+ levels in AD.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Ryu, D. et al. NAD+ repletion improves muscle function in muscular dystrophy and counters global PARylation. Sci. Transl Med. 8, 361ra139 (2016).

    PubMed  PubMed Central  Google Scholar 

  70. Yoshino, J., Mills, K. F., Yoon, M. J. & Imai, S. Nicotinamide mononucleotide, a key NAD(+) intermediate, treats the pathophysiology of diet- and age-induced diabetes in mice. Cell Metab. 14, 528–536 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Suliman, H. B. & Piantadosi, C. A. Mitochondrial quality control as a therapeutic target. Pharmacol. Rev. 68, 20–48 (2016).

    CAS  PubMed  Google Scholar 

  72. Komen, J. C. & Thorburn, D. R. Turn up the power – pharmacological activation of mitochondrial biogenesis in mouse models. Br. J. Pharmacol. 171, 1818–1836 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Valero, T. Mitochondrial biogenesis: pharmacological approaches. Curr. Pharm. Design 20, 5507–5509 (2014).

    CAS  Google Scholar 

  74. Arnaudo, E. et al. Depletion of muscle mitochondrial DNA in AIDS patients with zidovudine-induced myopathy. Lancet 337, 508–510 (1991).

    CAS  PubMed  Google Scholar 

  75. Scarpulla, R. C. Metabolic control of mitochondrial biogenesis through the PGC-1 family regulatory network. Biochim. Biophys. Acta 1813, 1269–1278 (2011).

    CAS  PubMed  Google Scholar 

  76. Yatsuga, S. & Suomalainen, A. Effect of bezafibrate treatment on late-onset mitochondrial myopathy in mice. Hum. Mol. Genet. 21, 526–535 (2012).

    CAS  PubMed  Google Scholar 

  77. Chaturvedi, R. K. & Flint Beal, M. Mitochondrial diseases of the brain. Free Radic. Biol. Med. 63, 1–29 (2013).

    CAS  PubMed  Google Scholar 

  78. Viscomi, C. et al. In vivo correction of COX deficiency by activation of the AMPK/PGC-1alpha axis. Cell Metab. 14, 80–90 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Semenza, G. L. Oxygen-dependent regulation of mitochondrial respiration by hypoxia-inducible factor 1. Biochem. J. 405, 1–9 (2007).

    CAS  PubMed  Google Scholar 

  80. Zhang, H. et al. HIF-1 inhibits mitochondrial biogenesis and cellular respiration in VHL-deficient renal cell carcinoma by repression of C-MYC activity. Cancer Cell 11, 407–420 (2007).

    CAS  PubMed  Google Scholar 

  81. Wai, T. & Langer, T. Mitochondrial dynamics and metabolic regulation. Trends Endocrinol. Metab. 27, 105–117 (2016). This paper presents a good review of current issues in mitochondrial dynamics.

    CAS  PubMed  Google Scholar 

  82. Sebastian, D., Palacin, M. & Zorzano, A. Mitochondrial dynamics: coupling mitochondrial fitness with healthy aging. Trends Mol. Med. 23, 201–215 (2017).

    CAS  PubMed  Google Scholar 

  83. Kim, H., Lee, J. Y., Park, K. J., Kim, W. H. & Roh, G. S. A mitochondrial division inhibitor, Mdivi-1, inhibits mitochondrial fragmentation and attenuates kainic acid-induced hippocampal cell death. BMC Neurosci. 17, 33 (2016).

    PubMed  PubMed Central  Google Scholar 

  84. Smith, G. & Gallo, G. To mdivi-1 or not to mdivi-1: is that the question? Dev. Neurobiol. 77, 1260–1268 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Bordt, E. A. et al. The putative Drp1 inhibitor mdivi-1 is a reversible mitochondrial complex i inhibitor that modulates reactive oxygen species. Dev. Cell 40, 583–594.e6 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Narendra, D. P. & Youle, R. J. Targeting mitochondrial dysfunction: role for PINK1 and Parkin in mitochondrial quality control. Antioxid. Redox Signal. 14, 1929–1938 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. McWilliams, T. G. et al. Basal mitophagy occurs independently of PINK1 in mouse tissues of high metabolic demand. Cell Metab. 27, 439–449.e5 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Toyama, E. Q. et al. Metabolism. AMP-activated protein kinase mediates mitochondrial fission in response to energy stress. Science 351, 275–281 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Ryu, D. et al. Urolithin A induces mitophagy and prolongs lifespan in C. elegans and increases muscle function in rodents. Nat. Med. 22, 879–888 (2016).

    CAS  PubMed  Google Scholar 

  90. Soubannier, V. et al. A vesicular transport pathway shuttles cargo from mitochondria to lysosomes. Curr. Biol. 22, 135–141 (2012).

    CAS  PubMed  Google Scholar 

  91. Soubannier, V., Rippstein, P., Kaufman, B. A., Shoubridge, E. A. & McBride, H. M. Reconstitution of mitochondria derived vesicle formation demonstrates selective enrichment of oxidized cargo. PLOS One 7, e52830 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Sugiura, A., McLelland, G. L., Fon, E. A. & McBride, H. M. A new pathway for mitochondrial quality control: mitochondrial-derived vesicles. EMBO J. 33, 2142–2156 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Zutz, A., Gompf, S., Schagger, H. & Tampe, R. Mitochondrial ABC proteins in health and disease. Biochim. Biophys. Acta 1787, 681–690 (2009).

    CAS  PubMed  Google Scholar 

  94. Vakifahmetoglu-Norberg, H., Ouchida, A. T. & Norberg, E. The role of mitochondria in metabolism and cell death. Biochem. Biophys. Res. Commun. 482, 426–431 (2017).

    CAS  PubMed  Google Scholar 

  95. Goodman, C. D., Buchanan, H. D. & McFadden, G. I. Is the mitochondrion a good malaria drug target? Trends Parasitol. 33, 185–193 (2017).

    CAS  PubMed  Google Scholar 

  96. Lopez, J. & Tait, S. W. Mitochondrial apoptosis: killing cancer using the enemy within. Br. J. Cancer 112, 957–962 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Rocha, C. R. et al. Glutathione depletion sensitizes cisplatin- and temozolomide-resistant glioma cells in vitro and in vivo. Cell Death Dis. 5, e1505 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Robb, E. L. et al. Selective superoxide generation within mitochondria by the targeted redox cycler MitoParaquat. Free Radic. Biol. Med. 89, 883–894 (2015).

    CAS  PubMed  Google Scholar 

  99. Chandel, N. S. Evolution of mitochondria as signaling organelles. Cell Metab. 22, 204–206 (2015). This article provides an introductory overview of mitochondria as signalling sites within the cell.

    CAS  PubMed  Google Scholar 

  100. Murphy, M. P. Mitochondrial thiols in antioxidant protection and redox signaling: distinct roles for glutathionylation and other thiol modifications. Antioxid. Redox Signal. 16, 476–495 (2012).

    CAS  PubMed  Google Scholar 

  101. Murphy, M. P. et al. Unraveling the biological roles of reactive oxygen species. Cell Metab. 13, 361–366 (2011). This review addresses current critical issues in the ROS field in an accessible manner.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Holmstrom, K. M. & Finkel, T. Cellular mechanisms and physiological consequences of redox-dependent signalling. Nat. Rev. Mol. Cell Biol. 15, 411–421 (2014).

    CAS  PubMed  Google Scholar 

  103. Sciacovelli, M. et al. Fumarate is an epigenetic modifier that elicits epithelial-to-mesenchymal transition. Nature 537, 544–547 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Tannahill, G. M. et al. Succinate is an inflammatory signal that induces IL-1beta through HIF-1alpha. Nature 496, 238–242 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Morrish, F. et al. Myc-dependent mitochondrial generation of acetyl-CoA contributes to fatty acid biosynthesis and histone acetylation during cell cycle entry. J. Biol. Chem. 285, 36267–36274 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Salminen, A., Kauppinen, A. & Kaarniranta, K. 2-Oxoglutarate-dependent dioxygenases are sensors of energy metabolism, oxygen availability, and iron homeostasis: potential role in the regulation of aging process. Cell. Mol. Life Sci. 72, 3897–3914 (2015).

    CAS  Google Scholar 

  107. Kaelin, W. G. Jr & McKnight, S. L. Influence of metabolism on epigenetics and disease. Cell 153, 56–69 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Palmieri, F. The mitochondrial transporter family SLC25: identification, properties and physiopathology. Mol. Aspects Med. 34, 465–484 (2013).

    CAS  PubMed  Google Scholar 

  109. Calvani, R. et al. Mitochondrial pathways in sarcopenia of aging and disuse muscle atrophy. Biol. Chem. 394, 393–414 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Yue, L. & Yao, H. Mitochondrial dysfunction in inflammatory responses and cellular senescence: pathogenesis and pharmacological targets for chronic lung diseases. Br. J. Pharmacol. 173, 2305–2318 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Dashdorj, A. et al. Mitochondria-targeted antioxidant MitoQ ameliorates experimental mouse colitis by suppressing NLRP3 inflammasome-mediated inflammatory cytokines. BMC Med. 11, 178 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Sanderson, T. H., Reynolds, C. A., Kumar, R., Przyklenk, K. & Huttemann, M. Molecular mechanisms of ischemia-reperfusion injury in brain: pivotal role of the mitochondrial membrane potential in reactive oxygen species generation. Mol. Neurobiol. 47, 9–23 (2013).

    CAS  PubMed  Google Scholar 

  113. Hausenloy, D. J. & Yellon, D. M. Myocardial ischemia-reperfusion injury: a neglected therapeutic target. J. Clin. Invest. 123, 92–100 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Chouchani, E. T. et al. A unifying mechanism for mitochondrial superoxide production during ischemia-reperfusion injury. Cell Metab. 23, 254–263 (2016). This article presents a model for the role of mitochondria in IR injury.

    CAS  PubMed  Google Scholar 

  115. Lesnefsky, E. J., Chen, Q., Tandler, B. & Hoppel, C. L. Mitochondrial dysfunction and myocardial ischemia-reperfusion: implications for novel therapies. Annu. Rev. Pharmacol. Toxicol. 57, 535–565 (2017).

    CAS  PubMed  Google Scholar 

  116. Jennings, R. B. et al. Relation between high energy phosphate and lethal injury in myocardial ischemia in the dog. Am. J. Pathol. 92, 187–214 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Hausenloy, D. J. et al. Targeting reperfusion injury in patients with ST-segment elevation myocardial infarction: trials and tribulations. Eur. Heart J. 38, 935–941 (2017).

    CAS  PubMed  Google Scholar 

  118. Adeoye, O., Hornung, R., Khatri, P. & Kleindorfer, D. Recombinant tissue-type plasminogen activator use for ischemic stroke in the United States: a doubling of treatment rates over the course of 5 years. Stroke 42, 1952–1955 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Zaidat, O. O. et al. Recommendations on angiographic revascularization grading standards for acute ischemic stroke: a consensus statement. Stroke 44, 2650–2663 (2013).

    PubMed  PubMed Central  Google Scholar 

  120. Dawson, T. M. & Dawson, V. L. Mitochondrial mechanisms of neuronal cell death: potential therapeutics. Annu. Rev. Pharmacol. Toxicol. 57, 437–454 (2017).

    CAS  PubMed  Google Scholar 

  121. Bonventre, J. V. & Yang, L. Cellular pathophysiology of ischemic acute kidney injury. J. Clin. Invest. 121, 4210–4221 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Wilson, R. J. et al. Mitochondrial protein S-nitrosation protects against ischemia reperfusion-induced denervation at neuromuscular junction in skeletal muscle. Free Radic. Biol. Med. 117, 180–190 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Kosieradzki, M. & Rowinski, W. Ischemia/reperfusion injury in kidney transplantation: mechanisms and prevention. Transplant. Proc. 40, 3279–3288 (2008).

    CAS  PubMed  Google Scholar 

  124. Pell, V. R., Chouchani, E. T., Murphy, M. P., Brookes, P. S. & Krieg, T. Moving forwards by blocking back-flow: the yin and yang of MI therapy. Circ. Res. 118, 898–906 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Schinzel, A. C. et al. Cyclophilin D is a component of mitochondrial permeability transition and mediates neuronal cell death after focal cerebral ischemia. Proc. Natl Acad. Sci. USA 102, 12005–12010 (2005). This paper, and the two that follow, demonstrate the critical role of the MPTP in IR injury.

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Nakagawa, T. et al. Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death. Nature 434, 652–658 (2005).

    CAS  PubMed  Google Scholar 

  127. Baines, C. P. et al. Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature 434, 658–662 (2005).

    CAS  PubMed  Google Scholar 

  128. Lutz, J., Thurmel, K. & Heemann, U. Anti-inflammatory treatment strategies for ischemia/reperfusion injury in transplantation. J. Inflamm (Lond.) 7, 27 (2010).

    Google Scholar 

  129. Chouchani, E. T. et al. Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature 515, 431–435 (2014). This article demonstrates the role of succinate accumulation and oxidation in the contribution of mitochondria to pathology.

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Valls-Lacalle, L. et al. Succinate dehydrogenase inhibition with malonate during reperfusion reduces infarct size by preventing mitochondrial permeability transition. Cardiovasc. Res. 109, 374–384 (2016).

    CAS  PubMed  Google Scholar 

  131. Valls-Lacalle, L. et al. Selective inhibition of succinate dehydrogenase in reperfused myocardium with intracoronary malonate reduces infarct size. Sci. Rep. 8, 2442 (2018).

    PubMed  PubMed Central  Google Scholar 

  132. Kohlhauer, M. Metabolomic profiling in acute ST elevation myocardial infarction identifies succinate as an early marker of human ischemia-reperfusion injury. J. Am. Heart Assoc. 7, e007546 (2018).

    PubMed  PubMed Central  Google Scholar 

  133. Peruzzotti-Jametti, L. et al. Macrophage-derived extracellular succinate licenses neural stem cells to suppress chronic neuroinflammation. Cell Stem Cell 22, 355–368.e13 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Hamel, D. et al. G-Protein-coupled receptor 91 and succinate are key contributors in neonatal postcerebral hypoxia-ischemia recovery. Arterioscler. Thromb. Vasc. Biol. 34, 285–293 (2013).

    PubMed  Google Scholar 

  135. Littlewood-Evans, A. et al. GPR91 senses extracellular succinate released from inflammatory macrophages and exacerbates rheumatoid arthritis. J. Exp. Med. 213, 1655–1662 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Ariza, A. C., Deen, P. M. & Robben, J. H. The succinate receptor as a novel therapeutic target for oxidative and metabolic stress-related conditions. Front. Endocrinol. (Lausanne) 3, 22 (2012).

    Google Scholar 

  137. Lesnefsky, E. J. et al. Blockade of electron transport during ischemia protects cardiac mitochondria. J. Biol. Chem. 279, 47961–47967 (2004).

    CAS  PubMed  Google Scholar 

  138. Hoerter, J. et al. Mitochondrial uncoupling protein 1 expressed in the heart of transgenic mice protects against ischemic-reperfusion damage. Circulation 110, 528–533 (2004).

    CAS  PubMed  Google Scholar 

  139. Chouchani, E. T. et al. Identification of S-nitrosated mitochondrial proteins by S-nitrosothiol difference in gel electrophoresis (SNO-DIGE): implications for the regulation of mitochondrial function by reversible S-nitrosation. Biochem. J. 430, 49–59 (2010).

    CAS  PubMed  Google Scholar 

  140. Prime, T. A. et al. A mitochondria-targeted S-nitrosothiol modulates respiration, nitrosates thiols, and protects against ischemia-reperfusion injury. Proc. Natl Acad. Sci. USA 106, 10764–10769 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Chouchani, E. T. et al. Cardioprotection by S-nitrosation of a cysteine switch on mitochondrial complex I. Nat. Med. 19, 753–759 (2013). This paper shows that reversible inhibition of complex I is a potential therapeutic strategy to treat IR injury.

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Elrod, J. W. et al. Hydrogen sulfide attenuates myocardial ischemia-reperfusion injury by preservation of mitochondrial function. Proc. Natl Acad. Sci. USA 104, 15560–15565 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Karwi, Q. G. et al. AP39, a mitochondria-targeting hydrogen sulfide (H2 S) donor, protects against myocardial reperfusion injury independently of salvage kinase signalling. Br. J. Pharmacol. 174, 287–301 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Dhalla, N. S., Elmoselhi, A. B., Hata, T. & Makino, N. Status of myocardial antioxidants in ischemia-reperfusion injury. Cardiovasc. Res. 47, 446–456 (2000).

    CAS  PubMed  Google Scholar 

  145. Adlam, V. J. et al. Targeting an antioxidant to mitochondria decreases cardiac ischemia-reperfusion injury. FASEB J. 19, 1088–1095 (2005).

    CAS  PubMed  Google Scholar 

  146. Dare, A. J. et al. The mitochondria-targeted anti-oxidant MitoQ decreases ischemia-reperfusion injury in a murine syngeneic heart transplant model. J. Heart Lung Transplant 34, 1471–1480 (2015).

    PubMed  PubMed Central  Google Scholar 

  147. Dare, A. J. et al. Protection against renal ischemia-reperfusion injury in vivo by the mitochondria targeted antioxidant MitoQ. Redox Biol. 5, 163–168 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Skyschally, A., Schulz, R. & Heusch, G. Cyclosporine A at reperfusion reduces infarct size in pigs. Cardiovasc. Drugs Ther. 24, 85–87 (2010).

    PubMed  PubMed Central  Google Scholar 

  149. Piot, C. et al. Effect of cyclosporine on reperfusion injury in acute myocardial infarction. N. Engl. J. Med. 359, 473–481 (2008).

    CAS  PubMed  Google Scholar 

  150. Atar, D. et al. Effect of intravenous TRO40303 as an adjunct to primary percutaneous coronary intervention for acute ST-elevation myocardial infarction: MITOCARE study results. Eur. Heart J. 36, 112–119 (2015).

    CAS  PubMed  Google Scholar 

  151. Schaller, S. et al. TRO40303, a new cardioprotective compound, inhibits mitochondrial permeability transition. J. Pharmacol. Exp. Ther. 333, 696–706 (2010).

    CAS  PubMed  Google Scholar 

  152. Cho, J. et al. Potent mitochondria-targeted peptides reduce myocardial infarction in rats. Coron. Artery Dis. 18, 215–220 (2007).

    PubMed  Google Scholar 

  153. Campo, G. et al. Clinical benefit of drugs targeting mitochondrial function as an adjunct to reperfusion in ST-segment elevation myocardial infarction: a meta-analysis of randomized clinical trials. Int. J. Cardiol. 244, 59–66 (2017).

    PubMed  Google Scholar 

  154. Hausenloy, D. J. et al. Ischaemic conditioning and targeting reperfusion injury: a 30 year voyage of discovery. Bas. Res. Cardiol. 111, 70 (2016).

    Google Scholar 

  155. Sadeghian, M. et al. Mitochondrial dysfunction is an important cause of neurological deficits in an inflammatory model of multiple sclerosis. Sci. Rep. 6, 33249 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Chao, T., Wang, H. & Ho, P. C. Mitochondrial control and guidance of cellular activities of T cells. Front. Immunol. 8, 473 (2017).

    PubMed  PubMed Central  Google Scholar 

  157. Pelletier, M., Lepow, T. S., Billingham, L. K., Murphy, M. P. & Siegel, R. M. New tricks from an old dog: mitochondrial redox signaling in cellular inflammation. Semin. Immunol. 24, 384–392 (2012).

    CAS  PubMed  Google Scholar 

  158. Nakahira, K., Hisata, S. & Choi, A. M. The roles of mitochondrial damage-associated molecular patterns in diseases. Antioxid. Redox Signal. 23, 1329–1350 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Hu, Q., Wood, C. R., Cimen, S., Venkatachalam, A. B. & Alwayn, I. P. Mitochondrial damage-associated molecular patterns (MTDs) are released during hepatic ischemia reperfusion and induce inflammatory responses. PLOS One 10, e0140105 (2015).

    PubMed  PubMed Central  Google Scholar 

  160. Zhou, R., Yazdi, A. S., Menu, P. & Tschopp, J. A role for mitochondria in NLRP3 inflammasome activation. Nature 469, 221–225 (2011). This important early paper links mitochondria to inflammation.

    CAS  PubMed  Google Scholar 

  161. Jo, E. K., Kim, J. K., Shin, D. M. & Sasakawa, C. Molecular mechanisms regulating NLRP3 inflammasome activation. Cell. Mol. Immunol. 13, 148–159 (2016).

    CAS  PubMed  Google Scholar 

  162. Tal, M. C. et al. Absence of autophagy results in reactive oxygen species-dependent amplification of RLR signaling. Proc. Natl Acad. Sci. USA 106, 2770–2775 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Sena, L. A. et al. Mitochondria are required for antigen-specific T cell activation through reactive oxygen species signaling. Immunity 38, 225–236 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Mills, E. L. et al. Succinate dehydrogenase supports metabolic repurposing of mitochondria to drive inflammatory macrophages. Cell 167, 457–470.e13 (2016). This paper links mitochondrial metabolic and ROS signals to inflammation.

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Rubic-Schneider, T. et al. GPR91 deficiency exacerbates allergic contact dermatitis while reducing arthritic disease in mice. Allergy 72, 444–452 (2017).

    CAS  PubMed  Google Scholar 

  166. Lowes, D. A., Thottakam, B. M., Webster, N. R., Murphy, M. P. & Galley, H. F. The mitochondria-targeted antioxidant MitoQ protects against organ damage in a lipopolysaccharide-peptidoglycan model of sepsis. Free Radic. Biol. Med. 45, 1559–1565 (2008).

    CAS  PubMed  Google Scholar 

  167. Supinski, G. S., Wang, W. & Callahan, L. A. Caspase and calpain activation both contribute to sepsis induced diaphragmatic weakness. J. Appl. Physiol. 107, 1389–1396 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Bulua, A. C. et al. Mitochondrial reactive oxygen species promote production of proinflammatory cytokines and are elevated in TNFR1-associated periodic syndrome (TRAPS). J. Exp. Med. 208, 519–533 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Kaur, J. A comprehensive review on metabolic syndrome. Cardiol. Res. Pract. 2014, 943162 (2014).

    PubMed  PubMed Central  Google Scholar 

  170. James, A. M., Collins, Y., Logan, A. & Murphy, M. P. Mitochondrial oxidative stress and the metabolic syndrome. Trends Endocrinol. Metab. 23, 429–434 (2012).

    CAS  PubMed  Google Scholar 

  171. Martin, S. D. & McGee, S. L. The role of mitochondria in the aetiology of insulin resistance and type 2 diabetes. Biochim. Biophys. Acta 1840, 1303–1312 (2014).

    CAS  PubMed  Google Scholar 

  172. Batsis, J. A. et al. Effect of bariatric surgery on the metabolic syndrome: a population-based, long-term controlled study. Mayo Clin. Proc. 83, 897–907 (2008).

    PubMed  Google Scholar 

  173. Brand, M. D. The proton leak across the mitochondrial inner membrane. Biochim. Biophys. Acta 1018, 128–133 (1990).

    CAS  PubMed  Google Scholar 

  174. Childress, E. S. et al. J. Med. Chem. 61, 4641–4655 (2018).

    CAS  PubMed  Google Scholar 

  175. Perry, R. J. et al. Reversal of hypertriglyceridemia, fatty liver disease, and insulin resistance by a liver-targeted mitochondrial uncoupler. Cell. Metabolism 18, 740–748 (2013). This article demonstrates the selective delivery of an uncoupler to the liver.

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Perry, R. J., Zhang, D., Zhang, X. M., Boyer, J. L. & Shulman, G. I. Controlled-release mitochondrial protonophore reverses diabetes and steatohepatitis in rats. Science 347, 1253–1256 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Lou, P. H. et al. Mitochondrial uncouplers with an extraordinary dynamic range. Biochem. J. 407, 129–140 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Severin, F. F. et al. Penetrating cation/fatty acid anion pair as a mitochondria-targeted protonophore. Proc. Natl Acad. Sci. USA 107, 663–668 (2010).

    CAS  PubMed  Google Scholar 

  179. Chouchani, E. T. et al. Mitochondrial ROS regulate thermogenic energy expenditure and sulfenylation of UCP1. Nature 532, 112–116 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Kazak, L. et al. A creatine-driven substrate cycle enhances energy expenditure and thermogenesis in beige fat. Cell 163, 643–655 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Kazak, L. et al. Genetic depletion of adipocyte creatine metabolism inhibits diet-induced thermogenesis and drives obesity. Cell Metab. 26, 660–671.e3 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Moore, S. A., Moennich, D. M. & Gresser, M. J. Synthesis and hydrolysis of ADP-arsenate by beef heart submitochondrial particles. J. Biol. Chem. 258, 6266–6271 (1983).

    CAS  PubMed  Google Scholar 

  183. Long, J. W. & Ray, W. J. Jr. Kinetics and thermodynamics of the formation of glucose arsenate. Reaction of glucose arsenate with phosphoglucomutase. Biochemistry 12, 3932–3937 (1973).

    CAS  PubMed  Google Scholar 

  184. Owen, M. R., Doran, E. & Halestrap, A. P. Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. Biochem. J. 348 Pt. 3, 607–614 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Houstis, N., Rosen, E. D. & Lander, E. S. Reactive oxygen species have a causal role in multiple forms of insulin resistance. Nature 440, 944–948 (2006).

    CAS  PubMed  Google Scholar 

  186. Hoehn, K. L. et al. Insulin resistance is a cellular antioxidant defense mechanism. Proc. Natl Acad. Sci. USA 106, 17787–17792 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Ni, R. et al. Therapeutic inhibition of mitochondrial reactive oxygen species with mito-TEMPO reduces diabetic cardiomyopathy. Free Radic. Biol. Med. 90, 12–23 (2016).

    CAS  PubMed  Google Scholar 

  188. Mercer, J. R. et al. The mitochondria-targeted antioxidant MitoQ decreases features of the metabolic syndrome in ATM+/−/ApoE−/− mice. Free Radic. Biol. Med. 52, 841–849 (2012).

    CAS  PubMed  Google Scholar 

  189. Jeong, E. M. et al. Role of mitochondrial oxidative stress in glucose tolerance, insulin resistance, and cardiac diastolic dysfunction. J. Am. Heart Assoc. 5, e003046 (2016).

    PubMed  PubMed Central  Google Scholar 

  190. Blake, R. & Trounce, I. A. Mitochondrial dysfunction and complications associated with diabetes. Biochim. Biophys. Acta 1840, 1404–1412 (2014).

    CAS  PubMed  Google Scholar 

  191. Brownlee, M. Biochemistry and molecular cell biology of diabetic complications. Nature 414, 813–820 (2001).

    CAS  PubMed  Google Scholar 

  192. Dikalov, S. I. & Dikalova, A. E. Contribution of mitochondrial oxidative stress to hypertension. Curr. Opin. Nephrol. Hypertens. 25, 73–80 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Graham, D. et al. Mitochondria-targeted antioxidant MitoQ10 improves endothelial function and attenuates cardiac hypertrophy. Hypertension 54, 322–328 (2009).

    CAS  PubMed  Google Scholar 

  194. McLachlan, J. et al. Combined therapeutic benefit of mitochondria-targeted antioxidant, MitoQ10, and angiotensin receptor blocker, losartan, on cardiovascular function. J. Hypertens. 32, 555–564 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Dikalova, A. E. et al. Therapeutic targeting of mitochondrial superoxide in hypertension. Circul. Res. 107, 106–116 (2010).

    CAS  Google Scholar 

  196. Gioscia-Ryan, R. A. Mitochondria-targeted antioxidant therapy with MitoQ ameliorates aortic stiffening in old mice. J. Appl. Physiol. 592, 2549–2561 (2014).

    CAS  Google Scholar 

  197. Rossman, M. Chronic supplementation with a mitochondrial antioxidant (MitoQ) improves vascular function in healthy late middle-aged and older adults. Hypertension 71, 1056–1063 (2018). This paper demonstrates that a mitochondria-targeted drug can reverse age-associated endothelial damage in patients.

    CAS  PubMed  Google Scholar 

  198. Younossi, Z. & Henry, L. Contribution of alcoholic and nonalcoholic fatty liver disease to the burden of liver-related morbidity and mortality. Gastroenterology 150, 1778–1785 (2016).

    PubMed  Google Scholar 

  199. Samuel, V. T. & Shulman, G. I. Nonalcoholic fatty liver disease as a nexus of metabolic and hepatic diseases. Cell Metab. 27, 22–41 (2018).

    CAS  PubMed  Google Scholar 

  200. Nassir, F. & Ibdah, J. A. Role of mitochondria in nonalcoholic fatty liver disease. Int. J. Mol. Sci. 15, 8713–8742 (2014).

    PubMed  PubMed Central  Google Scholar 

  201. Bezard, E., Yue, Z., Kirik, D. & Spillantini, M. G. Animal models of Parkinson's disease: limits and relevance to neuroprotection studies. Mov. Disord. 28, 61–70 (2013).

    CAS  PubMed  Google Scholar 

  202. Moreira, P. I. et al. Mitochondria: a therapeutic target in neurodegeneration. Biochim. Biophys. Acta 1802, 212–220 (2010).

    CAS  PubMed  Google Scholar 

  203. Johri, A. & Beal, M. F. Mitochondrial dysfunction in neurodegenerative diseases. J. Pharmacol. Exp. Ther. 342, 619–630 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  204. Kumar, A. & Singh, A. A review on mitochondrial restorative mechanism of antioxidants in Alzheimer's disease and other neurological conditions. Front. Pharmacol. 6, 206 (2015).

    PubMed  PubMed Central  Google Scholar 

  205. Schapira, A. H. Mitochondria in the aetiology and pathogenesis of Parkinson's disease. Lancet Neurol. 7, 97–109 (2008).

    CAS  PubMed  Google Scholar 

  206. Chaturvedi, R. K. & Beal, M. F. Mitochondria targeted therapeutic approaches in Parkinson's and Huntington's diseases. Mol. Cell Neurosci. 55, 101–114 (2013).

    CAS  PubMed  Google Scholar 

  207. Coskun, P. et al. A mitochondrial etiology of Alzheimer and Parkinson disease. Biochim. Biophys. Acta 1820, 553–564 (2012).

    CAS  PubMed  Google Scholar 

  208. Dulovic, M. et al. The protective role of AMP-activated protein kinase in alpha-synuclein neurotoxicity in vitro. Neurobiol. Dis. 63, 1–11 (2014).

    CAS  PubMed  Google Scholar 

  209. Miquel, E. et al. Neuroprotective effects of the mitochondria-targeted antioxidant MitoQ in a model of inherited amyotrophic lateral sclerosis. Free Radic. Biol. Med. 70, 204–213 (2014).

    CAS  PubMed  Google Scholar 

  210. McManus, M. J., Murphy, M. P. & Franklin, J. L. The mitochondria-targeted antioxidant MitoQ prevents loss of spatial memory retention and early neuropathology in a transgenic mouse model of Alzheimer's disease. J. Neurosci. 31, 15703–15715 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  211. Bido, S., Soria, F. N., Fan, R. Z., Bezard, E. & Tieu, K. Mitochondrial division inhibitor-1 is neuroprotective in the A53T-alpha-synuclein rat model of Parkinson's disease. Sci. Rep. 7, 7495 (2017).

    PubMed  PubMed Central  Google Scholar 

  212. Wang, W. et al. Inhibition of mitochondrial fragmentation protects against Alzheimer's disease in rodent model. Hum. Mol. Genet. 26, 4118–4131 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  213. Bingol, B. et al. The mitochondrial deubiquitinase USP30 opposes parkin-mediated mitophagy. Nature 510, 370–375 (2014).

    CAS  PubMed  Google Scholar 

  214. Moreira, P. I., Carvalho, C., Zhu, X., Smith, M. A. & Perry, G. Mitochondrial dysfunction is a trigger of Alzheimer's disease pathophysiology. Biochim. Biophys. Acta 1802, 2–10 (2010).

    CAS  PubMed  Google Scholar 

  215. Chaturvedi, R. K. et al. Impaired PGC-1alpha function in muscle in Huntington's disease. Hum. Mol. Genet. 18, 3048–3065 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  216. Damiano, M., Galvan, L., Deglon, N. & Brouillet, E. Mitochondria in Huntington's disease. Biochim. Biophys. Acta 1802, 52–61 (2010).

    CAS  PubMed  Google Scholar 

  217. Lott, I. T. & Dierssen, M. Cognitive deficits and associated neurological complications in individuals with Down's syndrome. Lancet Neurol. 9, 623–633 (2010).

    PubMed  Google Scholar 

  218. Klein, C. & Westenberger, A. Genetics of Parkinson's disease. Cold Spring Harb. Perspect. Med. 2, a008888 (2012).

    PubMed  PubMed Central  Google Scholar 

  219. Liu, C. C., Liu, C. C., Kanekiyo, T., Xu, H. & Bu, G. Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy. Nat. Rev. Neurol. 9, 106–118 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  220. Wright, A. F., Chakarova, C. F., Abd El-Aziz, M. M. & Bhattacharya, S. S. Photoreceptor degeneration: genetic and mechanistic dissection of a complex trait. Nat. Rev. Genet. 11, 273–284 (2010).

    CAS  PubMed  Google Scholar 

  221. Terluk, M. R. et al. Investigating mitochondria as a target for treating age-related macular degeneration. J. Neurosci. 35, 7304–7311 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  222. Lefevere, E. et al. Mitochondrial dysfunction underlying outer retinal diseases. Mitochondrion 36, 66–76 (2017).

    CAS  PubMed  Google Scholar 

  223. Okawa, H., Sampath, A. P., Laughlin, S. B. & Fain, G. L. ATP consumption by mammalian rod photoreceptors in darkness and in light. Curr. Biol. 18, 1917–1921 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  224. Yau, K. W. & Hardie, R. C. Phototransduction motifs and variations. Cell 139, 246–264 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  225. Tarallo, V. et al. DICER1 loss and Alu RNA induce age-related macular degeneration via the NLRP3 inflammasome and MyD88. Cell 149, 847–859 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  226. Bayeva, M., Gheorghiade, M. & Ardehali, H. Mitochondria as a therapeutic target in heart failure. J. Am. Coll. Cardiol. 61, 599–610 (2013).

    CAS  PubMed  Google Scholar 

  227. Rosca, M. G. & Hoppel, C. L. Mitochondria in heart failure. Cardiovasc. Res. 88, 40–50 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  228. Rosca, M. G. & Hoppel, C. L. Mitochondrial dysfunction in heart failure. Heart Fail Rev. 18, 607–622 (2013).

    CAS  PubMed  Google Scholar 

  229. Rosca, M. G., Tandler, B. & Hoppel, C. L. Mitochondria in cardiac hypertrophy and heart failure. J. Mol. Cell. Cardiol. 55, 31–41 (2013).

    CAS  PubMed  Google Scholar 

  230. Brown, D. A. et al. Expert consensus document: mitochondrial function as a therapeutic target in heart failure. Nat. Rev. Cardiol. 14, 238–250 (2017). This article presents a summary statement on why mitochondria are promising targets for HF.

    CAS  PubMed  Google Scholar 

  231. Swedberg, K. et al. Guidelines for the diagnosis and treatment of chronic heart failure: executive summary: The Task Force for the Diagnosis and Treatment of Chronic Heart Failure of the European Society of Cardiology. Eur. Heart J. 26, 1115–1140 (2005).

    PubMed  Google Scholar 

  232. Barrese, V. & Taglialatela, M. New advances in beta-blocker therapy in heart failure. Front. Physiol. 4, 323 (2013).

    PubMed  PubMed Central  Google Scholar 

  233. Balaban, R. S. Domestication of the cardiac mitochondrion for energy conversion. J. Mol. Cell. Cardiol. 46, 832–841 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  234. Wu, F., Zhang, J. & Beard, D. A. Experimentally observed phenomena on cardiac energetics in heart failure emerge from simulations of cardiac metabolism. Proc. Natl Acad. Sci. USA 106, 7143–7148 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  235. Stanley, W. C., Recchia, F. A. & Lopaschuk, G. D. Myocardial substrate metabolism in the normal and failing heart. Physiol. Rev. 85, 1093–1129 (2005).

    CAS  PubMed  Google Scholar 

  236. Pisano, A. et al. Impaired mitochondrial biogenesis is a common feature to myocardial hypertrophy and end-stage ischemic heart failure. Cardiovasc. Pathol. 25, 103–112 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  237. Ide, T. et al. Mitochondrial electron transport complex I is a potential source of oxygen free radicals in the failing myocardium. Circ. Res. 85, 357–363 (1999).

    CAS  PubMed  Google Scholar 

  238. Sabbah, H. N. Targeting mitochondrial dysfunction in the treatment of heart failure. Expert Rev. Cardiovasc. Ther. 14, 1305–1313 (2016).

    CAS  PubMed  Google Scholar 

  239. Okonko, D. O. & Shah, A. M. Heart failure: mitochondrial dysfunction and oxidative stress in CHF. Nat. Rev. Cardiol. 12, 6–8 (2015).

    CAS  PubMed  Google Scholar 

  240. Eirin, A. et al. Mitochondrial targeted peptides attenuate residual myocardial damage after reversal of experimental renovascular hypertension. J. Hypertens. 32, 154–165 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  241. Sabbah, H. N. et al. Chronic therapy with elamipretide (MTP-131), a novel mitochondria-targeting peptide, improves left ventricular and mitochondrial function in dogs with advanced heart failure. Circ. Heart Fail. 9, e002206 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  242. Rowe, G. C., Jiang, A. & Arany, Z. PGC-1 coactivators in cardiac development and disease. Circ. Res. 107, 825–838 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  243. Menzies, S. K., Tulloch, L. B., Florence, G. J. & Smith, T. K. The trypanosome alternative oxidase: a potential drug target? Parasitology 145, 175–183 (2016).

    PubMed  Google Scholar 

  244. Vaidya, A. B. & Mather, M. W. Mitochondrial evolution and functions in malaria parasites. Annu. Rev. Microbiol. 63, 249–267 (2009).

    CAS  PubMed  Google Scholar 

  245. Phillips, M. A. et al. A long-duration dihydroorotate dehydrogenase inhibitor (DSM265) for prevention and treatment of malaria. Sci. Transl Med. 7, 296ra111 (2015).

    PubMed  PubMed Central  Google Scholar 

  246. Stocks, P. A. et al. Novel inhibitors of the Plasmodium falciparum electron transport chain. Parasitology 141, 50–65 (2014).

    CAS  PubMed  Google Scholar 

  247. Wang, J. et al. Artemisinin directly targets malarial mitochondria through its specific mitochondrial activation. PLOS One 5, e9582 (2010).

    PubMed  PubMed Central  Google Scholar 

  248. Fidalgo, L. M. & Gille, L. Mitochondria and trypanosomatids: targets and drugs. Pharm. Res. 28, 2758–2770 (2011). This review indicates why mitochondria are a good therapeutic target in protozoal infections.

    CAS  PubMed  Google Scholar 

  249. van Hellemond, J. J., Opperdoes, F. R. & Tielens, A. G. The extraordinary mitochondrion and unusual citric acid cycle in Trypanosoma brucei. Biochem. Soc. Trans. 33, 967–971 (2005).

    CAS  PubMed  Google Scholar 

  250. May, B., Young, L. & Moore, A. L. Structural insights into the alternative oxidases: are all oxidases made equal? Biochem. Soc. Trans. 45, 731–740 (2017).

    CAS  PubMed  Google Scholar 

  251. Nolan, D. P. & Voorheis, H. P. The mitochondrion in bloodstream forms of Trypanosoma brucei is energized by the electrogenic pumping of protons catalysed by the F1F0-ATPase. Eur. J. Biochem. 209, 207–216 (1992).

    CAS  PubMed  Google Scholar 

  252. Yabu, Y. et al. The efficacy of ascofuranone in a consecutive treatment on Trypanosoma brucei brucei in mice. Parasitol. Int. 52, 155–164 (2003).

    CAS  PubMed  Google Scholar 

  253. Steele, H. E., Horvath, R., Lyon, J. J. & Chinnery, P. F. Monitoring clinical progression with mitochondrial disease biomarkers. Brain 140, 2530–2540 (2017).

    PubMed  PubMed Central  Google Scholar 

  254. Tyrrell, D. J., Bharadwaj, M. S., Jorgensen, M. J., Register, T. C. & Molina, A. J. Blood cell respirometry is associated with skeletal and cardiac muscle bioenergetics: implications for a minimally invasive biomarker of mitochondrial health. Redox Biol. 10, 65–77 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  255. Tyrrell, D. J. et al. Blood-based bioenergetic profiling reflects differences in brain bioenergetics and metabolism. Oxid. Med. Cell Longev. 2017, 7317251 (2017).

    PubMed  PubMed Central  Google Scholar 

  256. Zharikov, S. & Shiva, S. Platelet mitochondrial function: from regulation of thrombosis to biomarker of disease. Biochem. Soc. Trans. 41, 118–123 (2013).

    CAS  PubMed  Google Scholar 

  257. Chacko, B. K. et al. The Bioenergetic Health Index: a new concept in mitochondrial translational research. Clin. Sci. 127, 367–373 (2014).

    CAS  Google Scholar 

  258. Robinson, B. H. Lactic acidemia and mitochondrial disease. Mol. Genet. Metab. 89, 3–13 (2006).

    CAS  PubMed  Google Scholar 

  259. Milne, G. L., Musiek, E. S. & Morrow, J. D. F2-isoprostanes as markers of oxidative stress in vivo: an overview. Biomarkers 10, S10–S23 (2005).

    CAS  PubMed  Google Scholar 

  260. Thompson Legault, J. et al. A metabolic signature of mitochondrial dysfunction revealed through a monogenic form of leigh syndrome. Cell Rep. 13, 981–989 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  261. Ingelsson, B. et al. Lymphocytes eject interferogenic mitochondrial DNA webs in response to CpG and non-CpG oligodeoxynucleotides of class C. Proc. Natl Acad. Sci. USA 115, E478–E487 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  262. Cocheme, H. M. et al. Using the mitochondria-targeted ratiometric mass spectrometry probe MitoB to measure H2O2 in living Drosophila. Nat. Protoc. 7, 946–958 (2012).

    CAS  PubMed  Google Scholar 

  263. Logan, A. et al. Using exomarkers to assess mitochondrial reactive species in vivo. Biochim. Biophys. Acta 1840, 923–930 (2014).

    CAS  PubMed  Google Scholar 

  264. Pun, P. B. et al. A mitochondria-targeted mass spectrometry probe to detect glyoxals: implications for diabetes. Free Radic. Biol. Med. 67, 437–450 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  265. Iotti, S., Lodi, R., Frassineti, C., Zaniol, P. & Barbiroli, B. In vivo assessment of mitochondrial functionality in human gastrocnemius muscle by 31P MRS. The role of pH in the evaluation of phosphocreatine and inorganic phosphate recoveries from exercise. NMR Biomed. 6, 248–253 (1993).

    CAS  PubMed  Google Scholar 

  266. Befroy, D. E., Falk Petersen, K., Rothman, D. L. & Shulman, G. I. Assessment of in vivo mitochondrial metabolism by magnetic resonance spectroscopy. Methods Enzymol. 457, 373–393 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  267. Willingham, T. B. & McCully, K. K. In vivo assessment of mitochondrial dysfunction in clinical populations using near-infrared spectroscopy. Front. Physiol. 8, 689 (2017).

    PubMed  PubMed Central  Google Scholar 

  268. Alpert, N. M. et al. Quantitative in vivo mapping of myocardial mitochondrial membrane potential. PLOS One 13, e0190968 (2018).

    PubMed  PubMed Central  Google Scholar 

  269. Dodd, M. S. et al. Impaired in vivo mitochondrial Krebs cycle activity after myocardial infarction assessed using hyperpolarized magnetic resonance spectroscopy. Circ. Cardiovasc. Imag. 7, 895–904 (2014).

    Google Scholar 

  270. Logan, A. et al. Assessing the mitochondrial membrane potential in cells and in vivo using targeted click chemistry and mass spectrometry. Cell Metab. 23, 379–385 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  271. Chalmers, S. et al. Selective uncoupling of individual mitochondria within a cell using a mitochondria-targeted photoactivated protonophore. J. Am. Chem. Soc. 134, 758–761 (2012).

    CAS  PubMed  Google Scholar 

  272. Lopez-Otin, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. The hallmarks of aging. Cell 153, 1194–1217 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  273. Miller, R. A. et al. An aging interventions testing program: study design and interim report. Aging Cell 6, 565–575 (2007).

    CAS  PubMed  Google Scholar 

  274. Strong, R. et al. Longer lifespan in male mice treated with a weakly estrogenic agonist, an antioxidant, an alpha-glucosidase inhibitor or a Nrf2-inducer. Aging Cell 15, 872–884 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  275. Harrison, D. E. et al. Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 460, 392–395 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  276. Barzilai, N., Crandall, J. P., Kritchevsky, S. B. & Espeland, M. A. Metformin as a tool to target aging. Cell Metab. 23, 1060–1065 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  277. McGill, M. R. et al. The mechanism underlying acetaminophen-induced hepatotoxicity in humans and mice involves mitochondrial damage and nuclear DNA fragmentation. J. Clin. Invest. 122, 1574–1583 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  278. Kalivendi, S. V. et al. Doxorubicin activates nuclear factor of activated T-lymphocytes and Fas ligand transcription: role of mitochondrial reactive oxygen species and calcium. Biochem. J. 389, 527–539 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  279. Chandran, K. et al. Doxorubicin inactivates myocardial cytochrome c oxidase in rats: cardioprotection by Mito-Q. Biophys. J. 96, 1388–1398 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  280. Picard, M. et al. Mitochondrial functions modulate neuroendocrine, metabolic, inflammatory, and transcriptional responses to acute psychological stress. Proc. Natl Acad. Sci. USA 112, E6614–6623 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  281. Nussbaumer, M. et al. Selective mitochondrial targeting exerts anxiolytic effects in vivo. Neuropsychopharmacology 41, 1751–1758 (2016).

    CAS  PubMed  Google Scholar 

  282. Nicholls, D. G. & Ferguson, S. J. Bioenergetics 4th edn. (Academic Press, 2013).

    Google Scholar 

  283. Stewart, K. M., Horton, K. L. & Kelley, S. O. Cell-penetrating peptides as delivery vehicles for biology and medicine. Org. Biomol. Chem. 6, 2242–2255 (2008).

    CAS  PubMed  Google Scholar 

  284. Horton, K. L., Stewart, K. M., Fonseca, S. B., Guo, Q. & Kelley, S. O. Mitochondria-penetrating peptides. Chem. Biol. 15, 375–382 (2008).

    CAS  PubMed  Google Scholar 

  285. Smith, R. A., Porteous, C. M., Gane, A. M. & Murphy, M. P. Delivery of bioactive molecules to mitochondria in vivo. Proc. Natl Acad. Sci. USA 100, 5407–5412 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  286. Szeto, H. H. & Schiller, P. W. Novel therapies targeting inner mitochondrial membrane—from discovery to clinical development. Pharm. Res. 28, 2669–2679 (2011).

    CAS  PubMed  Google Scholar 

  287. DeBerardinis, R. J. & Chandel, N. S. Fundamentals of cancer metabolism. Sci. Adv. 2, e1600200 (2016).

    PubMed  PubMed Central  Google Scholar 

  288. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    CAS  PubMed  Google Scholar 

  289. Ward, P. S. & Thompson, C. B. Metabolic reprogramming: a cancer hallmark even warburg did not anticipate. Cancer Cell 21, 297–308 (2012). This review outlines the metabolic and mitochondrial changes that occur in cancer.

    CAS  PubMed  PubMed Central  Google Scholar 

  290. Pavlova, N. N. & Thompson, C. B. The emerging hallmarks of cancer metabolism. Cell Metab. 23, 27–47 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  291. Vander Heiden, M. G., Cantley, L. C. & Thompson, C. B. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029–1033 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  292. Warburg, O. On the origin of cancer cells. Science 123, 309–314 (1956).

    CAS  PubMed  Google Scholar 

  293. Zu, X. L. & Guppy, M. Cancer metabolism: facts, fantasy, and fiction. Biochem. Biophys. Res. Commun. 313, 459–465 (2004).

    CAS  PubMed  Google Scholar 

  294. Fan, J. et al. Glutamine-driven oxidative phosphorylation is a major ATP source in transformed mammalian cells in both normoxia and hypoxia. Mol. Systems Biol. 9, 712 (2013).

    CAS  Google Scholar 

  295. Weinberg, F. et al. Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proc. Natl Acad. Sci. USA 107, 8788–8793 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  296. Chandel, N. S. & Tuveson, D. A. The promise and perils of antioxidants for cancer patients. N. Engl. J. Med. 371, 177–178 (2014).

    CAS  PubMed  Google Scholar 

  297. Weinberg, S. E. & Chandel, N. S. Targeting mitochondria metabolism for cancer therapy. Nat. Chem. Biol. 11, 9–15 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  298. Rideout, D. C., Calogeropoulou, T., Jaworski, J. S., Dagnino, R. & McCarthy, M. R. Phosphonium salts exhibiting selective anti-carcinoma activity in vitro. Anticancer Drug Design 4, 265–280 (1989).

    CAS  Google Scholar 

  299. Patel, J. et al. Antineoplastic activity, synergism and antagonism of trialkylphsphonium salts and their combinations. Anticancer Res. 14, 21–28 (1994).

    PubMed  Google Scholar 

  300. Manetta, A. et al. Novel phosphonium salts display in vitro and in vivo cytotoxic activity against human ovarian cancer cell lines. Gynecol. Oncol. 60, 203–212 (1996).

    CAS  PubMed  Google Scholar 

  301. Chen, L. B. Mitochondrial membrane potential in living cells. Annu. Rev. Cell Biol. 4, 155–181 (1988).

    CAS  PubMed  Google Scholar 

  302. Davis, S., Weiss, M. J., Wong, J. R., Lampidis, T. J. & Chen, L. B. Mitochondrial and plasma membrane potential cause unusual accumulation and retention of rhodamine 123 by human breast adenocarcinoma-derived MCF-7 cells. J. Biol. Chem. 260, 13844–13850 (1985).

    CAS  PubMed  Google Scholar 

  303. Madar, I. et al. Enhanced uptake of [11C]TPMP in canine brain tumor: a PET study. J. Nucl. Med. 40, 1180–1185 (1999).

    CAS  PubMed  Google Scholar 

  304. Madar, I. et al. Characterization of uptake of the new PET imaging compound 18F-fluorobenzyl triphenyl phosphonium in dog myocardium. J. Nucl. Med. 47, 1359–1366 (2006).

    CAS  PubMed  Google Scholar 

  305. Ravert, H. T., Madar, I. & Dannals, R. F. Radiosynthesis of 3-[18F]fluoropropyl and 4-[18F]fluorobenzyl triarylphosphonium ions. J. Labelled Compounds Radiopharmaceuticals 47, 469–476 (2004).

    CAS  Google Scholar 

  306. Tan, A. S. et al. Mitochondrial genome acquisition restores respiratory function and tumorigenic potential of cancer cells without mitochondrial DNA. Cell Metab. 21, 81–94 (2015).

    CAS  PubMed  Google Scholar 

  307. Schumacker, P. T. Reactive oxygen species in cancer cells: live by the sword, die by the sword. Cancer Cell 10, 175–176 (2006).

    CAS  PubMed  Google Scholar 

  308. Sabharwal, S. S. & Schumacker, P. T. Mitochondrial ROS in cancer: initiators, amplifiers or an Achilles' heel? Nat. Rev. Cancer 14, 709–721 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  309. Giampazolias, E. & Tait, S. W. Mitochondria and the hallmarks of cancer. FEBS J. 283, 803–814 (2016).

    CAS  PubMed  Google Scholar 

  310. Liou, G. Y. & Storz, P. Reactive oxygen species in cancer. Free Radic. Res. 44, 479–496 (2010).

    CAS  PubMed  Google Scholar 

  311. Porporato, P. E. et al. A mitochondrial switch promotes tumor metastasis. Cell Rep. 8, 754–766 (2014).

    CAS  PubMed  Google Scholar 

  312. Gorrini, C., Harris, I. S. & Mak, T. W. Modulation of oxidative stress as an anticancer strategy. Nat. Rev. Drug Discov. 12, 931–947 (2013).

    CAS  PubMed  Google Scholar 

  313. Reed, J. C. Bcl-2 on the brink of breakthroughs in cancer treatment. Cell Death Differ. 25, 3–6 (2018).

    CAS  PubMed  Google Scholar 

  314. Tait, S. W. & Green, D. R. Mitochondria and cell death: outer membrane permeabilization and beyond. Nat. Rev. Mol. Cell Biol. 11, 621–632 (2010).

    CAS  PubMed  Google Scholar 

  315. Adams, J. M. & Cory, S. The BCL-2 arbiters of apoptosis and their growing role as cancer targets. Cell Death Differ. 25, 27–36 (2018).

    CAS  PubMed  Google Scholar 

  316. Wei, M. C. et al. tBID, a membrane-targeted death ligand, oligomerizes BAK to release cytochrome c. Genes Dev. 14, 2060–2071 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank N. Burger, P. Chinnery, C. Frezza, E. C. Hinchy, T. Krieg, H. A. Prag, J. Prudent and K. Saeb-Parsy for critical comments and suggestions. The authors apologize to their many colleagues whose primary papers they were unable to cite owing to their frequent citing of reviews owing to the wide scope of the topic. M.P.M.'s laboratory is supported by a grant from the UK Medical Research Council (MRC; MC_U105663142) and by a Wellcome Trust investigator award (110159/Z/15/Z). R.C.H.'s laboratory is supported by a Wellcome Trust investigator award (110158/Z/15/Z).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Michael P. Murphy or Richard C. Hartley.

Ethics declarations

Competing interests

M.P.M. has a financial interest in Antipodean Pharmaceuticals, a company that is developing mitochondria-targeted therapies. M.P.M. and R.C.H. also hold patents in the area of mitochondrial therapies. In addition, M.P.M. consults for Novintum Biotechnology, Cayman Chemicals and Takeda Pharmaceuticals, and R.C.H. consults for Cayman Chemicals.

Related links

PowerPoint slides

Glossary

Mitochondrial permeability transition pore

(MPTP). The MPTP is a large conductance pore that opens in the mitochondrial inner membrane in response to oxidative stress and elevated calcium levels. This leads to mitochondrial swelling and cell death.

Reactive oxygen species

(ROS). ROS such as superoxide and hydrogen peroxide are produced as a by-product of normal metabolism. They can cause nonspecific oxidative damage to proteins, DNA and lipids that contributes to pathologies and can also act as redox signals.

Protonmotive force

(Δp). The mitochondrial respiratory chain passes electrons from NADH or flavins on to oxygen and in doing so pumps protons across the mitochondrial inner membrane, thereby establishing a Δp. The Δp is composed of a mitochondrial membrane potential (Δψ) of ~150 mV and a pH gradient of ~0.5 pH units.

Citric acid cycle

(CAC). The CAC takes acetyl-CoA generated from the pyruvate produced by glycolysis to fuse with oxaloacetate to form citrate. The citrate is then broken down to release carbon dioxide while providing electrons to the respiratory chain and regenerating oxaloacetate to keep the CAC turning.

Reverse electron transport

(RET). Complex I in the mitochondrial respiratory chain can produce superoxide by RET. This occurs when the protonmotive force (Δp) is high and the ratio of ubiquinol (QH2) to ubiquinone (Q) in the CoQ pool is high, causing electrons to flow backwards through complex I.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murphy, M., Hartley, R. Mitochondria as a therapeutic target for common pathologies. Nat Rev Drug Discov 17, 865–886 (2018). https://doi.org/10.1038/nrd.2018.174

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd.2018.174

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research