Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

From blood–brain barrier to blood–brain interface: new opportunities for CNS drug delivery

Key Points

  • The blood–brain barriers (BBBs) are dynamic, adaptable, interactive monolayers of cells, including endothelial, ependymal and tanycytic cells, that participate in central nervous system (CNS) protection, are responsible for CNS nutrition and homeostasis, and facilitate serum-based brain–body communications.

  • The cells forming the BBB are in communication with other cells of the CNS, thus forming the neurovascular unit. This communication informs the BBB of the needs of the CNS, allowing it to adapt to the needs of the CNS.

  • The BBB also communicates with circulating immune cells and via blood-borne signals with the peripheral tissues. Through transport, secretion and other mechanisms, the BBB relays information between the periphery and the CNS.

  • The complexity of the BBB complicates CNS drug delivery, but also provides many unique opportunities for drug delivery. Manipulation of transporters, secretory functions, the extracellular pathways, and adsorptive transcytosis are examples of promising approaches to drug development.

  • The complexity of the BBB predisposes it to dysfunctions that can result in or promote disease. Such dysfunctions include BBB disruption as well as dysfunctions related to BBB transporters, neurovascular unit communication and secretion. Thus, the BBB itself can be a therapeutic target.


One of the biggest challenges in the development of therapeutics for central nervous system (CNS) disorders is achieving sufficient blood–brain barrier (BBB) penetration. Research in the past few decades has revealed that the BBB is not only a substantial barrier for drug delivery to the CNS but also a complex, dynamic interface that adapts to the needs of the CNS, responds to physiological changes, and is affected by and can even promote disease. This complexity confounds simple strategies for drug delivery to the CNS, but provides a wealth of opportunities and approaches for drug development. Here, I review some of the most important areas that have recently redefined the BBB and discuss how they can be applied to the development of CNS therapeutics.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Proportions of the blood–brain barrier.
Figure 2: The neurovascular unit and brain endothelial cell secretions.
Figure 3: The diseased blood–brain barrier.
Figure 4: Novel approaches to therapeutic targeting of the blood–brain barrier.


  1. 1

    Neuwelt, E. et al. Strategies to advance translational research into brain barriers. Lancet Neurol. 7, 84–96 (2008).

    CAS  PubMed  Google Scholar 

  2. 2

    Hawkins, B. T. & Davis, T. P. The blood–brain barrier/neurovascular unit in health and disease. Pharmacol. Rev. 57, 173–185 (2005).

    CAS  PubMed  Google Scholar 

  3. 3

    Daneman, R., Zhou, L., Kebede, A. A. & Barres, B. A. Pericytes are required for blood–brain barrier integrity during embryogenesis. Nature 468, 562–566 (2010). Demonstrates the role of pericytes in establishing the BBB and shows that barrier function is present even during the fetal period.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4

    Abbott, N. J., Ronnback, L. & Hansson, E. Astrocyte–endothelial interactions at the blood–brain barrier. Nat. Rev. Neurosci. 7, 41–53 (2006).

    CAS  PubMed  Google Scholar 

  5. 5

    Banks, W. A. The blood–brain barrier in neuroimmunology: tales of separation and assimilation. Brain Behav. Immun. 44, 1–8 (2015). Review of mechanisms by which the BBB defines the neuroimmune system.

    CAS  PubMed  Google Scholar 

  6. 6

    Bell, R. D. et al. Apolipoprotein E controls cerebrovascular integrity via cyclophilin A. Nature 485, 512–516 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7

    Oldendorf, W. H. Brain uptake of radio-labelled amino acids, amines and hexoses after arterial injection. Am. J. Physiol. 221, 1629–1639 (1971).

    CAS  PubMed  Google Scholar 

  8. 8

    Kastin, A. J. & Pan, W. Blood–brain barrier and feeding: regulatory roles of saturable transport systems for ingestive peptides. Curr. Pharm. Design 14, 1615–1619 (2008).

    CAS  Google Scholar 

  9. 9

    Pan, W. & Kastin, A. J. Interactions of cytokines with blood–brain barrier: implications for feeding. Curr. Pharm. Design 9, 827–831 (2003).

    CAS  Google Scholar 

  10. 10

    Banks, W. A. et al. Delivery across the blood–brain barrier of antisense directed againt amyloid β: reversal of learning and memory deficits in mice overexpressing amyloid precursor protein. J. Pharmacol. Exp. Ther. 297, 1113–1121 (2001).

    CAS  PubMed  Google Scholar 

  11. 11

    Soilu-Hanninen, M. et al. Treatment of experimental autoimmune encephalomyelitis with antisense oligonucleotides against the low affinity neurotrophin receptor. J. Neurosci. Res. 59, 712–721 (2000).

    CAS  PubMed  Google Scholar 

  12. 12

    Erickson, M. A. et al. Peripheral administration of antisense oligonucleotides targeting the amyloid-β protein precursor reverses AβPP and LRP-1 overexpression in aged SAMP8 mouse brain. J. Alzheimers Dis. 28, 951–960 (2012).

    CAS  PubMed  Google Scholar 

  13. 13

    Farr, S. A. et al. Antisense oligonucelotide against GSK-3β in brain of SAMP8 mice improves learning and memory and decreases oxidative stress: involvement of transcription factor Nrf2 and implications for Alzheimer's disease. Free Radic. Biol. Med. 67, 387–395 (2013).

    PubMed  PubMed Central  Google Scholar 

  14. 14

    Dogrukol-Ak, D. et al. Isolation of peptide transport system-6 from brain endothelial cells: therapeutic effects with antisense inhibition in Alzheimer's and stroke models. J. Cereb. Blood Flow Metab. 29, 411–422 (2009).

    CAS  PubMed  Google Scholar 

  15. 15

    Poon, H. F. et al. Proteomic identification of less oxidized brain proteins in aged senescence-accelerated mice following administration of antisense oligonucleotide directed at the Aβ region of amyloid precursor protein. Brain Res. Mol. Brain Res. 138, 8–13 (2005).

    CAS  PubMed  Google Scholar 

  16. 16

    Farr, S. A., Erickson, M. A., Niehoff, M. L., Banks, W. A. & Morley, J. E. Central and peripheral administration of antisense oligonucleotide targeting amyloid precursor protein improves learning and memory and reduces neuroinflammatory cytokines in Tg2576 (APPswe) mice. J. Alzheimers Dis. 40, 1005–1016 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17

    Poduslo, J. F. & Curran, G. L. Permeability at the blood–brain barrier and blood–nerve barriers of the neurotrophic factors: NGF, CNTF, NT-3, BDNF. Mol. Brain Res. 36, 280–286 (1996).

    CAS  PubMed  Google Scholar 

  18. 18

    Pan, W., Banks, W. A., Fasold, M. B., Bluth, J. & Kastin, A. J. Transport of brain-derived neurotrophic factor across the blood–brain barrier. Neuropharmacology 37, 1553–1561 (1998).

    CAS  PubMed  Google Scholar 

  19. 19

    Fernstrom, J. D. Branched-chain amino acids and brain function. J. Nutr. 135, 1439S–1546S (2005).

    Google Scholar 

  20. 20

    Elinav, E. et al. Pegylated leptin antagonist is a potent orexigenic agent: preparation and mechanism of activity. Endocrinology 150, 3083–3091 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21

    Georgieva, J. V., Hoekstra, D. & Zuhorn, I. S. Smuggling drugs into the brain: an overview of ligands targeting transcytosis for drug delivery across the blood–brain barrier. Pharmaceutics 6, 557–583 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22

    Pardridge, W. M. Blood–brain barrier drug delivery of IgG fusion proteins with a transferrin receptor monoclonal antibody. Expert Opin. Drug Deliv. 20, 1–16 (2014).

    Google Scholar 

  23. 23

    Wang, T. et al. Toll-like receptor 3 mediates West Nile virus entry into the brain causing lethal encephalitis. Nat. Med. 10, 1366–1373 (2004).

    CAS  PubMed  Google Scholar 

  24. 24

    Dohgu, S., Ryerse, J. S., Robinson, S. M. & Banks, W. A. Human immunodeficiency virus-1 uses the mannose-6-phosphate receptor to cross the blood–brain barrier. PLoS ONE 7, e41623 (2012).

    Google Scholar 

  25. 25

    Hambleton, S. Chickenpox. Curr. Opin. Infect. Dis. 18, 235–240 (2005).

    PubMed  Google Scholar 

  26. 26

    McCall, R. L. et al. Pathogen-inspired drug delivery to the central nervous system. Tissue Barriers 8, 3944449 (2014).

    Google Scholar 

  27. 27

    Atwal, J. K. et al. A therapeutic antibody targeting BACE1 inhibits amyloid-β production in vivo. Sci. Transl Med. 3, 84ra43 (2011).

    PubMed  Google Scholar 

  28. 28

    Yu, Y. J. et al. Boosting brain uptake of the therapeutic antibody by reducing its affinity for a transcytosis target. Sci. Transl Med. 3, 84ra44 (2011).

    PubMed  Google Scholar 

  29. 29

    Niewoehner, J. et al. Increased brain penetration and potency of a therapeutic antibody using a monovalent molecular shuttle. Neuron 81, 49–60 (2014).

    CAS  Google Scholar 

  30. 30

    Moinuddin, A., Morley, J. E. & Banks, W. A. Regional variations in the transport of interleukin-1α across the blood–brain barrier in ICR and aging SAMP8 mice. Neuroimmunomodulation 8, 165–170 (2000).

    CAS  PubMed  Google Scholar 

  31. 31

    Maness, L. M., Banks, W. A., Zadina, J. E. & Kastin, A. J. Selective transport of blood-borne interleukin-1α into the posterior division of the septum of the mouse brain. Brain Res. 700, 83–88 (1995).

    CAS  PubMed  Google Scholar 

  32. 32

    Begley, D. J. ABC transporters and the blood–brain barrier. Curr. Pharm. Design 10, 1295–1312 (2004). Classic and detailed description of P-gp and other ABC transporter CNS-to-blood efflux systems.

    CAS  Google Scholar 

  33. 33

    Nicita, F. et al. Efficacy of verapamil as an adjunctive treatment in children with drug-resistant epilepsy: a pilot study. Seizure 23, 36–40 (2014).

    PubMed  Google Scholar 

  34. 34

    Faraci, F. M. & Heistad, D. D. Regulation of the cerebral circulation: role of endothelium and potassium channels. Physiol. Rev. 78, 53–97 (1998).

    CAS  PubMed  Google Scholar 

  35. 35

    Reyes, T. M., Fabry, Z. & Coe, C. L. Brain endothelial cell production of a neuroprotective cytokine, interleukin-6, in response to noxious stimuli. Brain Res. 851, 215–220 (1999).

    CAS  PubMed  Google Scholar 

  36. 36

    Kis, B. et al. Cerebral endothelial cells are a major source of adrenomedullin. J. Neuroendocrinol. 14, 283–293 (2002).

    CAS  PubMed  Google Scholar 

  37. 37

    Dohgu, S., Fleegal-DeMotta, M. A. & Banks, W. A. Lipopolysaccharide-enhanced transcellular transport of HIV-1 across the blood–brain barrier is mediated by luminal microvessel IL-6 and GM-CSF. J. Neuroinflamm. 8, 167 (2011).

    CAS  Google Scholar 

  38. 38

    Cao, C., Matsumura, K., Yamagata, K. & Watanabe, Y. Involvement of cyclooxygenase-2 in LPS-induced fever and regulation of its mRNA by LPS in the rat brain. Am. J. Physiol. 272, R1712–R1725 (1997).

    CAS  PubMed  Google Scholar 

  39. 39

    Dohgu, S. & Banks, W. A. Brain pericytes increase the lipopolysaccharide-enhanced transcytosis of HIV-1 free virus across the in vitro blood–brain barrier: evidence for cytokine-mediated pericyte-endothelial cell cross talk. Fluids Barriers CNS 10, 23 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40

    Deli, M. A., Abraham, C. R., Kataoka, Y. & Niwa, M. Permeability studies on in vitro blood–brain barrier models: physiology, pathology, and pharmacology. Cell. Mol. Neurobiol. 25, 59–127 (2005). An authoritative and thorough review on the utility of, and approaches to, the gold standard in vitro monolayer model of the vascular BBB.

    PubMed  Google Scholar 

  41. 41

    Johanson, C. E. in Neuromethods; The Neuronal Microenvironment (eds Boulton, A. et al.) 33–104 (The Humana Press, 1988).

    Google Scholar 

  42. 42

    Verma, S., Nakaoke, R., Dohgu, S. & Banks, W. A. Release of cytokines by brain endothelial cells: a polarized response to lipopolysaccharide. Brain Behav. Immun. 20, 449–455 (2006).

    CAS  PubMed  Google Scholar 

  43. 43

    Engstrom, L. et al. Lipopolysaccharide-induced fever depends on prostaglandin E2 production specifically in brain endothelial cells. Endocrinology 153, 4849–4861 (2012). An elegant example of the BBB relay arm of the neuroimmune axis: blood-borne LPS binds to the luminal surface of the BEC, stimulating release of PGE2 from the abluminal surface into the CNS, thus inducing fever.

    PubMed  Google Scholar 

  44. 44

    Banks, W. A. & Robinson, S. M. Minimal penetration of lipopolysaccharide across the murine blood–brain barrier. Brain Behav. Immun. 24, 102–109 (2010).

    CAS  PubMed  Google Scholar 

  45. 45

    Parepally, J. M., Mandula, H. & Smith, Q. R. Brain uptake of nonsteroidal anti-inflammatory drugs: ibuprofen, flurbiprofen, and indomethacin. Pharm. Res. 23, 873–881 (2006).

    CAS  PubMed  Google Scholar 

  46. 46

    Morimoto, A., Murakami, N., Nakamori, T. & Watanabe, T. Evidence for separate mechanisms of induction of biphasic fever inside and outside the blood–brain barrier. J. Physiol. 383, 629–637 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47

    Saunders, N. R., Daneman, R., Dziegielewska, K. M. & Liddelow, S. A. Transporters of the blood–brain and blood–CSF interfaces in development and in the adult. Mol. Aspects Med. 34, 742–752 (2013).

    CAS  PubMed  Google Scholar 

  48. 48

    Kastin, A. J. & Akerstrom, V. Fasting, but not adrenalectomy, reduces transport of leptin into the brain. Peptides 21, 679–682 (2000).

    CAS  PubMed  Google Scholar 

  49. 49

    Banks, W. A., Burney, B. O. & Robinson, S. M. Effects of triglycerides, obesity, and starvation on ghrelin transport across the blood–brain barrier. Peptides 29, 2061–2065 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50

    Pan, W., Cain, C., Yu, Y. & Kastin, A. J. Receptor-mediated transport of LIF across blood–spinal cord barrier is upregulated after spinal cord injury. J. Neuroimmunol. 174, 119–125 (2006).

    CAS  PubMed  Google Scholar 

  51. 51

    Pan, W. et al. Stroke upregulates TNFα transport across the blood–brain barrier. Exp. Neurol. 198, 222–233 (2006).

    CAS  PubMed  Google Scholar 

  52. 52

    Somogyvari-Vigh, A., Pan, W., Reglodi, D., Kastin, A. J. & Arimura, A. Effect of middle cerebral artery occulsion on the passage of pituitary adenylate cyclase activating polypeptide across the blood–brain barrier in the rat. Regul. Pept. 91, 89–95 (2000).

    CAS  PubMed  Google Scholar 

  53. 53

    Yu, C. et al. Neuroinflammation activates Mdr1b efflux transport through NFκB: promoter analysis in BBB endothelia. Cell Physiol. Biochem. 22, 745–756 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54

    Yu, C., Pan, W., Tu, H., Waters, S. & Kastin, A. J. TNF activates MDR1 (P-glycoprotein) in cerebral microvascular endothelial cells. Cell Physiol. Biochem. 20, 853–858 (2007).

    CAS  PubMed  Google Scholar 

  55. 55

    Bauer, B., Hartz, A. M. S. & Miller, D. S. Tumor necrosis factor α and endothelin-1 increase P-glycoprotein expression and transport activity at the blood–brain barrier. Mol. Pharmacol. 71, 667–675 (2007).

    CAS  PubMed  Google Scholar 

  56. 56

    Chikale, E. G., Burton, P. S. & Borchardt, R. T. The effect of verapamil on the transport of peptides across the blood–brain barrier in rats: kinetic evidence for an apically polarized efflux mechanism. J. Pharmacol. Exp. Ther. 273, 298–303 (1995).

    Google Scholar 

  57. 57

    Drion, N., Lemaire, M., Lefauconnier, J. M. & Scherrmann, J. M. Role of P-glycoprotein in the blood–brain transport of colchicine and vinblastine. J. Neurochem. 67, 1688–1693 (1996).

    CAS  PubMed  Google Scholar 

  58. 58

    Banks, W. A. Enhanced leptin transport across the blood–brain barrier by α1-adrenergic agents. Brain Res. 899, 209–217 (2001).

    CAS  PubMed  Google Scholar 

  59. 59

    Vogler, C. et al. Enzyme replacement in murine mucopolysaccharidosis type VII: neuronal and glial response to β-glucuronidase requires early initiation of enzyme replacement therapy. Pediatr. Res. 45, 838–844 (1999).

    CAS  PubMed  Google Scholar 

  60. 60

    Urayama, A., Grubb, J. H., Banks, W. A. & Sly, W. S. Epinephrine enhances lysosomal enzyme delivery across the blood–brain barrier by up-regulation of the mannose 6-phosphate receptor. Proc. Natl Acad. Sci. USA 31, 12873–12878 (2007).

    Google Scholar 

  61. 61

    van Vliet, E. A. et al. COX-2 inhibition controls P-glycoprotein expression and promotes brain delivery of phenytoin in chronic epilipetic rats. Neuropharmacology 58, 404–412 (2010).

    CAS  PubMed  Google Scholar 

  62. 62

    Loscher, W. & Potschka, H. Role of multidrug transporters in pharmacoresistance to antiepileptic drugs. J. Pharmacol. Exp. Ther. 30, 7–14 (2002).

    Google Scholar 

  63. 63

    Robins, S. J., Collins, D., McNamara, J. R. & Bloomfield, H. E. Body weight, plasma insulin, and coronary events with gemfibrozil in the Veterans Affairs High-Density Lipoprotein Intervenation Trial (VA-HIT). Atherosclerosis 196, 849–855 (2007).

    PubMed  Google Scholar 

  64. 64

    Mandi, Y. et al. Nitric oxide production and MDR expression by human brain endothelial cells. Anticancer Res. 18, 3049–3052 (1998).

    CAS  PubMed  Google Scholar 

  65. 65

    Banks, W. A. Is obesity a disease of the blood–brain barrier? Physiological, pathological, and evolutionary considerations. Curr. Pharm. Design 9, 801–809 (2003).

    CAS  Google Scholar 

  66. 66

    Liu, J. Y. et al. Neuropathology of the blood–brain barrier and pharmaco-resistance in human epilepsy. Brain 135, 3115–3133 (2012).

    PubMed  Google Scholar 

  67. 67

    Kumar, A., Tripathi, D., Paliwal, V. K., Neyaz, Z. & Agarwal, V. Role of P-glycoprotein in refractoriness of seizures to antiepileptic drugs in Lennox–Gastaut syndrome. J. Child Neurol. 30, 223–227 (2014).

    PubMed  Google Scholar 

  68. 68

    Greig, N. H., Brossi, A., Pei, X.-F., Ingram, D. K. & Soncrant, T. T. in New Concepts of a Blood–Brain Barrier (eds Greenwood, J. et al.) 251–264 (Plenum Press, 1995). A clear, concise review of the major factors that control drug entry into the CNS.

    Google Scholar 

  69. 69

    Cornford, E. M., Braun, L. D., Oldendorf, W. H. & Hill, M. A. Comparison of lipid-mediated blood–brain-barrier penetrability in neonates and adults. Am. J. Physiol. 243, C161–C168 (1982).

    CAS  PubMed  Google Scholar 

  70. 70

    Oldendorf, W. H. Lipid solubility and drug penetration of the blood–brain barrier. Proc. Soc. Exp. Biol. Med. 147, 813–816 (1974).

    CAS  PubMed  Google Scholar 

  71. 71

    Rall, D. P., Stabenau, J. R. & Zubrod, C. G. Distribution of drugs between blood and cerebrospinal fluid: general methodology and effect of pH gradients. J. Pharmacol. Exp. Ther. 125, 185–193 (1959).

    CAS  PubMed  Google Scholar 

  72. 72

    Banks, W. A. & Kastin, A. J. Peptides and the blood–brain barrier: lipophilicity as a predictor of permeability. Brain Res. Bull. 15, 287–292 (1985).

    CAS  PubMed  Google Scholar 

  73. 73

    Chikhale, E. G., Ng, K. Y., Burton, P. S. & Borchardt, R. T. Hydrogen bonding potential as a determinant of the in vitro and in situ blood–brain barrier permeability of peptides. Pharm. Res. 11, 412–419 (1994).

    CAS  PubMed  Google Scholar 

  74. 74

    Gray, R. A. et al. Delta-sleep-inducing peptide: solution conformational studies of a membrane-permeable peptide. Biochemistry 33, 1323–1331 (1994).

    CAS  PubMed  Google Scholar 

  75. 75

    Begley, D. J. Strategies for delivery of peptide drugs to the central nervous system: exploiting molecular structure. J. Control. Release 29, 293–306 (1994).

    CAS  Google Scholar 

  76. 76

    Brownson, E. A., Abbruscato, T. J., Gillespie, T. J., Hruby, V. J. & Davis, T. P. Effect of peptidases at the blood brain barrier on the permeability of enkephalin. J. Pharmacol. Exp. Ther. 270, 675–680 (1994).

    CAS  PubMed  Google Scholar 

  77. 77

    Hardebo, J. E. & Owman, C. in Pathophysiology of the Blood–Brain Barrier (eds Johansson, B. B., Owman, C. & Widner, H.) 41–55 (Elsevier, 1990).

    Google Scholar 

  78. 78

    Kalaria, R. N., Mitchell, M. J. & Harik, S. I. Correlation of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine neurotoxicity with blood–brain barrier monoamine oxidase activity. Proc. Natl Acad. Sci. USA 84, 3521–3525 (1987). A classic example of the enzymatic barrier and an early example of the NVU.

    CAS  PubMed  Google Scholar 

  79. 79

    Svendgaard, N. A., Bjorklund, A., Hardebo, J. & Stenevi, U. Axonal degeneration associated with a defective blood–brain barrier in cerebral implants. Nature 225, 334–336 (1975).

    Google Scholar 

  80. 80

    van Gelder, N. M. in Brain Barrier Systems (eds Lajtha, A. & Ford, D. H.) 259–271 (Elsevier, 1968).

    Google Scholar 

  81. 81

    Novakovic, Z. M., Anderson, B. M. & Grasso, P. Myristic acid conjugation of [D-Leu-4]-OB3, a biologically active leptin-related synthetic peptide amide, significantly improves its pharmacokinetic profile and efficacy. Peptides 62, 176–182 (2014).

    CAS  PubMed  Google Scholar 

  82. 82

    Grubb, J. H. et al. Chemically modified β-glucuronidase crosses blood–brain barrier and clears neuronal storage in murine mucopolysaccharidosis VII. Proc. Natl Acad. Sci. USA 105, 2616–2621 (2008).

    CAS  PubMed  Google Scholar 

  83. 83

    Drewes, L. R., Conway, W. P. & Gilboe, D. D. Net amino acid transport between plasma and erythrocytes and perfused dog brain. Am. J. Physiol. 2, E320–E325 (1977).

    Google Scholar 

  84. 84

    Jacquez, J. A. Red blood cell as glucose carrier: significance for placental and cerebral glucose transfer. Am. J. Physiol. 246, R289–R298 (1984).

    CAS  PubMed  Google Scholar 

  85. 85

    Patel, A. et al. Soluble interleukin-6 receptor induces motor sterotypies and co-localizes with Gp130 in regions linked to cortico–striato–thalamo-cortical circuits. PLoS ONE 7, e1623 (2012).

    Google Scholar 

  86. 86

    Banks, W. A. Are the extracellular pathways a conduit for the delivery of therapeutics to the brain? Curr. Pharm. Design 10, 1365–1370 (2004).

    CAS  Google Scholar 

  87. 87

    Broadwell, R. D. & Sofroniew, M. V. Serum proteins bypass the blood–brain barrier for extracellular entry to the central nervous system. Exp. Neurol. 120, 245–263 (1993). The first elucidation of the extracellular pathways to the CNS. Later studies showed that therapeutic antibodies and other drugs with similar pharmacokinetic properties can use this route to access the CNS.

    CAS  PubMed  Google Scholar 

  88. 88

    Garg, A. & Balthasar, J. P. Investigation of the influence of FcRn on the distribution of IgG to the brain. AAPS J. 11, 553–557 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. 89

    Banks, W. A. et al. Anti-amyloid beta protein antibody passage across the blood–brain barrier in the SAMP8 mouse model of Alzheimer's disease: an age related selective uptake with reversal of learning impairment. Exp. Neurol. 206, 248–256 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. 90

    Mellman, I., Fuchs, R. & Helenius, A. Acidification of the endocytic and exocytic pathways. Annu. Rev. Biochem. 55, 663–700 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. 91

    Hardebo, J. E. & Kahrstrom, J. Endothelial negative surface charge areas and blood–brain barrier function. Acta Physiol. Scand. 125, 495–499 (1985).

    CAS  PubMed  Google Scholar 

  92. 92

    Villegas, J. C. & Broadwell, R. D. Transcytosis of protein through the mammalian cerebral epithelium and endothelium: II. Adsorptive transcytosis of WGA-HRP and the blood–brain and brain–blood barriers. J. Neurocytol. 22, 67–80 (1993).

    CAS  PubMed  Google Scholar 

  93. 93

    Banks, W. A., Kastin, A. J. & Akerstrom, V. HIV-1 protein gp120 crosses the blood–brain barrier: role of adsorptive endocytosis. Life Sci. 61, L119–L125 (1997).

    Google Scholar 

  94. 94

    Vorbrodt, A. W., Dobrogowska, D. H., Ueno, M. & Lossinsky, A. S. Immunocytochemical studies of protamine-induced blood–brain barrier opening to endogenous albumin. Acta Neuropathol. 89, 491–499 (1995).

    CAS  PubMed  Google Scholar 

  95. 95

    Herve, F., Ghinea, N. & Scherrmann, J. M. CNS delivery via adsorptive transcytosis. AAPS J. 10, 455–472 (2008). A clear, lucid review of potential of adsorptive transcytosis for CNS drug delivery.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. 96

    Chekhonin, V. P., Kabanov, A. V., Zhirkov, Y. A. & Morozov, G. V. Fatty acid acylated Fab-fragments of antibodies to neurospecific proteins as carriers for neuroleptic targeted delivery in brain. FEBS Lett. 287, 149–152 (1991).

    CAS  PubMed  Google Scholar 

  97. 97

    Peter, J. C. et al. A pharmacologically active monoclonal antibody against the human melanocortin-4 receptor: effectiveness after peripheral and central administration. J. Pharmacol. Exp. Ther. 333, 478–490 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. 98

    Kroll, R. A. & Neuwelt, E. A. Outwitting the blood–brain barrier for therapeutic purposes: osmotic opening and other means. Neurosurgery 42, 1083–1099 (1998).

    CAS  PubMed  Google Scholar 

  99. 99

    Saaber, D., Wollenhaupt, S., Baumann, K. & Reichl, S. Recent progress in tight junction modulation for improving bioavailability. Expert Opin. Drug Deliv. 9, 347–381 (2014).

    Google Scholar 

  100. 100

    Cheng, Z. et al. Central nervous system penetration for small molecule therapeutic agents does not increase in multiple sclerosis- and Alzheimer's disease-related animal models despite reported blood–brain barrier disruption. Drug Metab. Dispos. 38, 135–161 (2010).

    Google Scholar 

  101. 101

    Somjen, G. G., Segal, M. B. & Herreras, O. Osmotic-hypertensive opening of the blood–brain barrier in rats does not necessarily provide access for potassium to cerebral interstitial fluid. Exp. Physiol. 76, 507–514 (1991).

    CAS  PubMed  Google Scholar 

  102. 102

    Sengillo, J. D. et al. Deficiency in mural vascular cells coincides with blood–brain barrier disruption in Alzheimer's disease. Brain Pathol. 23, 303–310 (2012).

    PubMed  PubMed Central  Google Scholar 

  103. 103

    Price, T. O., Eranki, V., Banks, W. A., Ercal, N. & Shah, G. N. Topiramate treatment protects blood–brain barrier pericytes from hyperglycemia-induced oxidative damage in diabetic mice. Endocrinology 153, 362–372 (2012).

    CAS  PubMed  Google Scholar 

  104. 104

    Hammes, H. P. et al. Pericytes and the pathogenesis of diabetic retinopathy. Diabetes 51, 3107–3112 (2002).

    CAS  PubMed  Google Scholar 

  105. 105

    Avison, M. J. et al. Inflammatory changes and breakdown of microvascular integrity in early human immunodeficiency virus dementia. J. Neurovirol. 10, 223–232 (2004).

    CAS  PubMed  Google Scholar 

  106. 106

    Boven, L. A., Middel, J., Verhoef, J., De Groot, C. J. & Nottet, H. S. Monocytes infiltration is highly associated with loss of tight junction protein zonula occludens in HIV-1-associated dementia. Neuropathol. Appl. Neurobiol. 26, 356–362 (2000).

    CAS  PubMed  Google Scholar 

  107. 107

    Lossinsky, A. S., Vorbrodt, A. W. & Wisniewski, H. M. Ultracytochemical studies of vesicular and canalicular transport structures in the injured mammalian blood–brain barrier. Acta Neuropathol. 61, 239–245 (1983).

    CAS  PubMed  Google Scholar 

  108. 108

    Wahl, M., Unterberg, A., Baethmann, A. & Schilling, L. Mediators of blood–brain barrier dysfunction and formation of vasogenic brain edema. J. Cereb. Blood Flow Metab. 8, 621–634 (1988).

    CAS  PubMed  Google Scholar 

  109. 109

    Beauchesne, E., Desjardins, P., Hazell, A. S. & Butterworth, R. F. eNOS gene deletion restores blood–brain barrier integrity and attenuates neurodegeneration in the thiamine-deficient mouse brain. J. Neurochem. 111, 425–459 (2009).

    Google Scholar 

  110. 110

    Halliday, M. R. et al. Relationship between cyclophilin A levels and matrix metalloproteinase 9 activity in cerebrospinal fluid of cognitively normal apolipoprotein E4 carriers and blood–brain barrier breakdown. JAMA 70, 1198–1200 (2013).

    Google Scholar 

  111. 111

    Shah, G. N. et al. Pharmacological inhibition of mitochondrial carbonic anhydrases protects mouse cerebral pericytes from high glucose-induced oxidative stress and apoptosis. J. Pharmacol. Exp. Ther. 344, 637–645 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. 112

    Candelario-Jalil, E. et al. Cyclooxygenase inhibition limits blood–brain barrier disruption following intracerebral injection of tumor necrosis factor-α in the rat. J. Pharmacol. Exp. Ther. 323, 488–498 (2007).

    CAS  PubMed  Google Scholar 

  113. 113

    Frank, T. et al. Pegylated granulocyte colony-stimultating factor conveys long-term neuroprotection and improves functional outcome in a model of Parkinson's disease. Brain 135, 1914–1925 (2012).

    PubMed  Google Scholar 

  114. 114

    Polt, R., Dhanasekaran, M. & Keyari, C. M. Glycosylated neuropeptides: a new vista for neuropsychopharmacology. Med. Res. Rev. 25, 557–585 (2005).

    CAS  PubMed  Google Scholar 

  115. 115

    Batrakova, E. V., Gendelman, H. E. & Kabanov, A. V. Cell-mediated drug delivery. Expert Opin. Drug Deliv. 8, 415–433 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. 116

    Meng, Y. et al. Effectve intravenous therapy for neurodegenerative disease with a therapeutic enzyme and a peptide that mediates delivery to the brain. Mol. Ther. 22, 547–543 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. 117

    Yi, X. & Kabanov, A. V. Brain delivery of proteins via their fatty acid and block copolymer modifications. J. Drug Target. 21, 940–955 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. 118

    De Vivo, D. C. et al. Defective glucose transport across the blood–brain barrier as a cause of persistent hypoglycorrhachia, seizures, and developmental delay. N. Engl. J. Med. 325, 703–709 (1991).

    CAS  PubMed  Google Scholar 

  119. 119

    Erickson, M. A. & Banks, W. A. Blood–brain barrier dysfunction as a cause and consequence of Alzheimer's disease. J. Cereb. Blood Flow Metab. 33, 1500–1513 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. 120

    Boulton, M. et al. Contribution of extracranial lymphatics and arachnoid villi to the clearance of a CSF tracer in the rat. Am. J. Physiol. 276, R818–R823 (1999).

    CAS  PubMed  Google Scholar 

  121. 121

    Alafuzoff, I., Adolfsson, R., Grundke-Iqbal, I. & Winblad, B. Blood–brain barrier in Alzheimer dementia and in non-demented elderly. Acta Neuropathol. 73, 160–166 (1987).

    CAS  PubMed  Google Scholar 

  122. 122

    Iliff, J. J. et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci. Transl Med. 4, 147ra111 (2012). Key study demonstrating that the glymphatic pathway is important to CSF and brain interstitial fluid circulations, and clearance of toxins from the CNS.

    PubMed  PubMed Central  Google Scholar 

  123. 123

    Erickson, M. A. et al. Lipopolysaccharide impairs amyloid β efflux from brain: altered vascular sequestration, cerebrospinal fluid reabsorption, peripheral clearance and transporter function at the blood–brain barrier. J. Neuroinflamm. 9, 150 (2012).

    CAS  Google Scholar 

  124. 124

    Grammas, P. Neurovascular dysfunction, inflammation and endothelial activation: implications for the pathogenesis of Alzheimer's disease. J. Neuroinflammation 8, 26 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. 125

    Zlokovic, B. V. Neurovascular mechanisms of Alzheimer's neurodegeneration. Trends Neurosci. 28, 202–208 (2005). Introduction of the neurovascular hypothesis, which states that impaired BBB clearance of Aβ peptide from the CNS is a fundamental contributor to Alzheimer disease.

    CAS  PubMed  Google Scholar 

  126. 126

    Zlokovic, B. V., Deane, R., Sagare, A. P., Bell, R. D. & Winkler, E. A. Low density lipoprotein receptor related protein-1: a serial clearance homeostatic mechanism controlling Alzheimer's amyloid β-peptide elimination fromt the brain. J. Neurochem. 115, 1077–1089 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. 127

    Hartz, A. M. S., Miller, D. S. & Bauer, B. Restoring blood–brain barrier P-glycoprotein reduces brain amyloid-β in a mouse model of Alzheimer's disease. Mol. Pharmacol. 77, 715–723 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. 128

    Donahue, J. E. et al. RAGE, LRP-1, and amyloid-beta protein in Alzheimer's disease. Acta Neuropathol. 112, 405–415 (2006).

    CAS  PubMed  Google Scholar 

  129. 129

    Wijesuriya, J. C., Bullock, J. Y., Faull, R. L. M., Hladky, S. B. & Barrand, M. A. ABC efflux transporters in brain vasculature of Alzheimer's subjects. Brain Res. 1358, 228–238 (2010).

    CAS  PubMed  Google Scholar 

  130. 130

    Owen, J. B. et al. Oxidative modification to LDL receptor-related protein 1 in hippocampus from subjects with Alzheimer's disease: implications for Aβ accumulation in AD brain. Free Radic. Biol. Med. 49, 1798–1803 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. 131

    van Assema, D. M. et al. Blood–brain barrier P-glycoprotein function in Alzheimer's disease. Brain 135, 181–189 (2012).

    PubMed  Google Scholar 

  132. 132

    Jaeger, L. B. et al. Testing the neurovascular hypothesis of Alzheimer's disease: LRP-1 antisense reduces blood–brain barrier clearance, increases brain levels of amyloid-β protein, and impairs cognition. J. Alzheimers Dis. 17, 553–570 (2009). Provides experimental support for the neurovascular hypothesis first proposed in reference 125.

    CAS  PubMed  PubMed Central  Google Scholar 

  133. 133

    Butterfield, D. A. & Boyd-Kimball, D. The critical role of methionine 35 in Alzheimer's amyloid β peptide (1–42)-induced oxidative stress and neurotoxicity. Biochim. Biophys. Acta 1703, 149–156 (2005).

    CAS  PubMed  Google Scholar 

  134. 134

    Banks, W. A. et al. Impairments in brain-to-blood transport of amyloid-β and reabsorption of cerebrospinal fluid in an animal model of Alzheimer's disease are reversed by antisense directed against amyloid-β protein precursor. J. Alzheimers Dis. 23, 599–605 (2011).

    CAS  PubMed  Google Scholar 

  135. 135

    Sagare, A. P. et al. Pericyte loss influences Alzheimer-like neurodegeneration in mice. Nature Commun. 4, 2932 (2013).

    Google Scholar 

  136. 136

    Craft, S. et al. Cerebrosinal fluid and plasma insulin levels in Alzheimer's disease: relationship to severity of dementia and apolipoprotein E genotype. Neurology 50, 164–168 (1998).

    CAS  PubMed  Google Scholar 

  137. 137

    Talbot, K. et al. Demonstrated brain insulin resistance in Alzheimer's disease patients is associated with IGF-1 resistance, IRS-1 dyregulation, and cognitive decline. J. Clin. Invest. 122, 1316–1338 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. 138

    Reger, M. A. et al. Intranasal insulin administration dose-dependently modulates verbal memory and plasma amyloid-β in memory-impaired older adults. J. Alzheimers Dis. 13, 323–331 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. 139

    Urayama, A. & Banks, W. A. Starvation and triglycerides reverse the obesity-induced impairment of insulin transport at the blood–brain barrier. Endocrinology 149, 3592–3597 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. 140

    Berthoud, H. R. Interactions between 'cognitive' and 'metabolic' brain in the control of food intake. Physiol. Behav. 91, 486–498 (2007).

    CAS  PubMed  Google Scholar 

  141. 141

    Butter, C., Baker, D., O'Neill, J. K. & Turk, J. L. Mononuclear cell trafficking and plasma protein extravasation into the CNS during chronic relapsing experimental allergic encephalomyelitis in Biozzi AB/H mice. J. Neurol. Sci. 104, 9–12 (1991).

    CAS  PubMed  Google Scholar 

  142. 142

    Hsuchou, H., Pan, W., Wu, X. & Kastin, A. J. Cessation of blood-to-brain influx of interleukin-15 during development of EAE. J. Cereb. Blood Flow Metab. 29, 1568–1578 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. 143

    Juhler, M. et al. Blood–brain and blood–spinal cord barrier permeability during the course of experimental allergic encephalomyelitis in the rat. Brain Res. 302, 347–355 (1984).

    CAS  PubMed  Google Scholar 

  144. 144

    Mishra, P. K. et al. Loss of astrocytic leptin signaling worsens experimental autoimmune encephalomyelitis. Brain Behav. Immun. 34, 98–107 (2013).

    CAS  PubMed  Google Scholar 

  145. 145

    Hudson, L. C., Bragg, D. C., Tompkins, M. B. & Meeker, R. B. Astrocytes and microglia differentially regulate trafficking of lymphocyte subsets across brain endothelial cells. Brain Res. 1058, 148–160 (2005).

    CAS  PubMed  Google Scholar 

  146. 146

    Stuve, O. The effects of natalizumab on the innate and adaptive immune system in the central nervous system. J. Neurol. Sci. 274, 39–41 (2008).

    PubMed  Google Scholar 

  147. 147

    Correale, J. & Villa, A. The blood–brain barrier in multiple sclerosis: functional roles and therapeutic targeting. Autoimmunity 40, 148–160 (2007).

    CAS  PubMed  Google Scholar 

  148. 148

    Sandoval, D. A., Obici, S. & Seeley, R. J. Targeting the CNS to treat type 2 diabetes. Nat. Rev. Drug Discov. 8, 386–398 (2009). Shows the fundamental role of the BBB in controlling blood glucose levels via its transport of insulin into the CNS.

    CAS  PubMed  Google Scholar 

  149. 149

    Scherer, T. et al. Brain insulin controls adipose tissue lipolysis and lipogenesis. Cell Metab. 13, 183–194 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. 150

    Banks, W. A., DiPalma, C. R. & Farrell, C. L. Impaired transport of leptin across the blood–brain barrier in obesity. Peptides 20, 1341–1345 (1999).

    CAS  PubMed  Google Scholar 

  151. 151

    Romeo, G., Liu, W. H., Asnaghi, V., Kern, T. S. & Lorenzi, M. Activation of nuclear factor-κB induced by diabetes and high glucose regulates a proapoptotic program in retinal pericytes. Diabetes 51, 2241–2248 (2002).

    CAS  PubMed  Google Scholar 

  152. 152

    Huber, J. D., VanGilder, R. L. & Houser, K. A. Streptozotocin-induced diabetes progressively increases blood–brain barrier permeability in specific brain regions in rats. Am. J. Physiol. 291, H2660–H2668 (2006).

    CAS  Google Scholar 

  153. 153

    Starr, J. M. et al. Increased blood–brain barrier permeability in type II diabetes demonstrated by gadolinium magnetic resonance imaging. J. Neurol. Neurosurg. Psychiatry 74, 70–76 (2003). References 152 and 153 establish that BBB disruption occurs in diabetes.

    CAS  PubMed  PubMed Central  Google Scholar 

  154. 154

    Shah, G. N., Morofuji, Y., Banks, W. A. & Price, T. O. High glucose-induced mitochondrial resistance and reactive oxygen species in mouse cerebral pericytes is reversed by pharmacological inhibition of mitochondrial carbonic anhydrase: implications for cerbral microvascular disease in diabetes. Biochem. Biophys. Res. Commun. 440, 354–358 (2013). Demonstrates that BBB disruption occurs because of oxidative stress arising from excess mitochondrial respiration.

    CAS  PubMed  Google Scholar 

  155. 155

    Kowluru, R. A. Diabetic retinopathy: mitochondrial dysfunction and retinal capillary cell death. Antioxid. Redox Signal. 7, 1581–1587 (2005).

    CAS  PubMed  Google Scholar 

  156. 156

    Weiwei, Z. & Hu, R. Targeting carbonic anhydrase to treat diabetic retinopathy: emerging evidences and encouraging results. Biochem. Biophys. Res. Commun. 390, 368–371 (2009).

    PubMed  Google Scholar 

  157. 157

    Banks, W. A. et al. Triglycerides induce leptin resistance at the blood–brain barrier. Diabetes 53, 1253–1260 (2004).

    CAS  PubMed  Google Scholar 

  158. 158

    Kastin, A. J. & Akerstrom, V. Glucose and insulin increase the transport of leptin through the blood–brain barrier in normal mice but not in streptozotocin-diabetic mice. Neuroendocrinology 73, 237–242 (2001).

    CAS  PubMed  Google Scholar 

  159. 159

    Ito, S. et al. 1α,25-dihydroxyvitam D3 enhances cerebral clearance of human amyloid-β peptide(1-40) from mouse brain across the blood–brain barrier. Fluids Barriers CNS 8, 20 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. 160

    Moon, J. H. et al. The effect of rosiglitazone on LRP1 expression and amyloid β uptake in human brain microvascular endothelial cells: a possible role of a low-dose thiazolidinedione for dementia treatment. Int. J. Neuropsychopharmacol. 1, 1–8 (2011).

    Google Scholar 

  161. 161

    O'Donnell, M. E., Lam, T. I., Tran, L. Q., Foroutan, S. & Anderson, S. E. Estradiol reduces activity of the blood–brain barrier Na-K-Cl cotransporter and decreases edema formation in permenent middle cerebral artery occlusion. J. Cereb. Blood Flow Metab. 26, 1234–1249 (2006).

    CAS  PubMed  Google Scholar 

  162. 162

    Lyden, P. et al. Phase 1 safety, tolerability and pharmacokinetics of 3K3A-APC in healthy adult vounteers. Curr. Pharm. Design 19, 7479–7485 (2013).

    CAS  Google Scholar 

  163. 163

    McGuire, T. R. et al. Release of prostaglandin E-2 in bovine brain endothelial cells after exposure to three unique forms of the antifungal drug amphotericin-B: role of COX-2 in amphotericin-B induced fever. Life Sci. 72, 2581–2590 (2003).

    CAS  PubMed  Google Scholar 

  164. 164

    Sury, M. D. et al. Evidence that N-acetylcysteine inhibits TNF-α-induced cerebrovascular endothelin-1 upregulation via inhibition of mitogen- and stress-activated protein kinase. Free Radic. Biol. Med. 41, 1372–1383 (2006).

    CAS  PubMed  Google Scholar 

  165. 165

    Didier, N., Banks, W. A., Creminon, C., Dereuddre-Bosquet, N. & Mabondzo, A. HIV-1-induced production of endothelin-1 in an in vitro model of the human blood–brain barrier. Neuroreport 13, 1179–1183 (2002).

    CAS  PubMed  Google Scholar 

  166. 166

    Rolinski, B. et al. Endothelin-1 elevated in the cerebrospinal fluid of HIV-infected patients with encephalopathy. Infection 27, 244–247 (1999).

    CAS  PubMed  Google Scholar 

  167. 167

    Vangilder, R. L., Rosen, C. L., Barr, T. L. & Huber, J. D. Targeting the neurovascular unit for treatment of neurological disorders. Pharmacol. Ther. 130, 239–247 (2011).

    CAS  PubMed  Google Scholar 

  168. 168

    Li, J. et al. Immune activation of human brain microvascular endothelial cells inhibits HIV replication in macrophages. Blood 121, 2934–2942 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. 169

    Kubie, L. S. & Shults, G. M. Studies on the relationship of the chemical constituents of blood and cerebrospinal fluid. J. Exp. Med. 42, 565–591 (1925).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. 170

    Pincus, J. B. & Kramer, B. Comparative study of the concentration of various anions and cations in cerebrospinal fluid and serum. J. Biol. Chem. 57, 463–470 (1923).

    CAS  Google Scholar 

  171. 171

    Davson, H. & Smith, H. V. Physiological aspects of the penetration of drugs into the cerebrospinal fluid. Proc. R. Soc. Med. 50, 963–966 (1957).

    CAS  PubMed  Google Scholar 

  172. 172

    Roth, L. J. & Barlow, C. F. Drugs in the brain. Science 134, 22–31 (1961).

    CAS  PubMed  Google Scholar 

  173. 173

    Reese, T. S. & Karnovsky, M. J. Fine structural localization of a blood–brain barrier to endogenous peroxidase. J. Cell Biol. 34, 207–217 (1967). A classic paper demonstrating the ultrastructural basis for the BBB: the presence of tight junctions and decreased transcytotic vesicles.

    CAS  PubMed  PubMed Central  Google Scholar 

  174. 174

    Coisne, C., Mao, W. & Engelhardt, B. Cutting edge: natalizumab blocks adhesion but not initial contact of human T cells to the blood–brain barrier in vivo in an animal model of multiple sclerosis. J. Immunol. 182, 5909–5913 (2009).

    CAS  PubMed  Google Scholar 

Download references


The author is supported by the US Department of Veterans Affairs and a grant from the US National Institute on Aging (grant R01 AG046619).

Author information



Corresponding author

Correspondence to William A. Banks.

Ethics declarations

Competing interests

The author declares no competing financial interests.

PowerPoint slides


Blood–brain barrier

(BBB). The modified capillary bed of the brain; can be conceptualized as those processes that, taken together, control the exchange of substances between the blood and the fluids (cerebrospinal fluid and brain interstitial fluid) of the central nervous system (CNS).

Neurovascular unit

(NVU). For the purposes of this Review, this refers to the concept that the cells forming the BBB are in communication with other cells of the central nervous system (CNS) and, by extension, with the circulating immune cells, and with the peripheral tissues via blood-borne secretions.


Proteins that provide a mechanism by which substances can be carried from one side of the blood–brain barrier (BBB) to the other, thus greatly increasing (for blood-to-brain transporters) or greatly decreasing (for brain-to-blood transporters) the central nervous system (CNS) uptake of a substance in comparison with that predicted based on its physicochemical characteristics.


A characteristic of the blood–brain barrier (BBB), arising from different characteristics of its abluminal and luminal surfaces, including differing levels of enzymes, glycoproteins, lipid composition and transporters.

Active transport

Transport by an energy-requiring transporter that can move its ligand against a concentration gradient.

Facilitated diffusion

Transport by a non-energy-requiring transporter that moves it ligand down a concentration gradient.

Adsorptive transcytosis

A mechanism by which glycoproteins or highly chargedmolecules bind to brain endothelial cell (BEC) glycoproteins, inducing vesicles that are routed to the opposite membrane.

Passive diffusion

The mechanism by which a substance crosses the blood–brain barrier (BBB) by non-saturable means, with the degree of passage depending on the physicochemical characteristics of the substance.

Extracellular pathways

Areas such as the pial surface and subarachnoid space that are deficient in a blood–brain barrier (BBB) and thus allow small amounts of blood-borne substances, including albumin and immunoglobulins, to access the brain primarily through the Virchow–Robin spaces.

Neurovascular hypothesis

The hypothesis that the impaired ability of the blood–brain barrier (BBB) to remove amyloid-β peptide from the central nervous system (CNS) contributes to amyloid-β accumulation and the progression of Alzheimer disease.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Banks, W. From blood–brain barrier to blood–brain interface: new opportunities for CNS drug delivery. Nat Rev Drug Discov 15, 275–292 (2016).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing