Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Gasotransmitters in cancer: from pathophysiology to experimental therapy

Key Points

  • Nitric oxide (NO), carbon monoxide (CO) and hydrogen sulfide (H2S) are labile gaseous mediators that have multiple biological functions in tumour cells and in the host tissue. Each of these gases is produced by specific enzyme systems and regulates (among other aspects) cell viability, cell division, mitochondrial activity, angiogenesis and vascular tone.

  • Upregulation of the various gasotransmitter-producing enzymes occurs in many tumours. Most commonly, NO is overproduced by upregulation of inducible NO synthase (iNOS); CO is overproduced by haem oxygenase 1 (HO1); and H2S is overproduced by cystathionine-β-synthase (CBS).

  • Selective genetic silencing or pharmacological inhibition of iNOS, HO1 or CBS has been shown to exert anticancer effects in various in vitro and in vivo models. Many of these approaches also sensitize the tumour to chemotherapy and/or radiotherapy.

  • Because of the bell-shaped pharmacological character of the gasotransmitters, not only inhibition of gasotransmitter biosynthesis, but also elevation of gasotransmitter levels beyond a certain threshold can exert antitumour effects; preclinical data show that tumour-targeted NO donors, CO donors or CO inhalation therapy, and H2S donors of various classes exert antitumour effects.

  • Although the clinical translation of the findings of gasotransmitters in the field of tumour biology has been slow, several compounds can be identified that may be suitable for clinical repurposing and translational research activity.

Abstract

The three endogenous gaseous transmitters — nitric oxide (NO), carbon monoxide (CO) and hydrogen sulfide (H2S) — regulate a number of key biological functions. Emerging data have revealed several new mechanisms for each of these three gasotransmitters in tumour biology. It is now appreciated that they show bimodal pharmacological character in cancer, in that not only the inhibition of their biosynthesis but also elevation of their concentration beyond a certain threshold can exert anticancer effects. This Review discusses the role of each gasotransmitter in cancer and the effects of pharmacological agents — some of which are in early-stage clinical studies — that modulate the levels of each gasotransmitter. A clearer understanding of the pharmacological character of these three gases and the mechanisms underlying their biological effects is expected to guide further clinical translation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Effects of the three gasotransmitters on tumour survival and growth.
Figure 2: Chemical structures of selected compounds that affect gasotransmitter levels.
Figure 3: Implications of the bell-shaped pharmacological profile of gasotransmitters for the therapy of cancer.

Similar content being viewed by others

References

  1. Nathan, C. Nitric oxide as a secretory product of mammalian cells. FASEB J. 6, 3051–3064 (1992).

    CAS  PubMed  Google Scholar 

  2. Stuehr, D. J. Mammalian nitric oxide synthases. Biochim. Biophys. Acta 1411, 217–230 (1999).

    CAS  PubMed  Google Scholar 

  3. Liaudet, L., Soriano, F. G. & Szabo, C. Biology of nitric oxide signaling. Crit. Care Med. 28, N37–52 (2000).

    Google Scholar 

  4. Ignarro, L. J. Nitric Oxide: Biology and Pathobiology 2nd edn (Academic Press, 2009).

    Google Scholar 

  5. Southan, G. J. & Szabo, C. Selective pharmacological inhibition of distinct nitric oxide synthase isoforms. Biochem. Pharmacol. 51, 383–394 (1996).

    CAS  PubMed  Google Scholar 

  6. Joubert, J. & Malan, S. F. Novel nitric oxide synthase inhibitors: a patent review. Expert Opin. Ther. Pat. 21, 537–560 (2011).

    CAS  PubMed  Google Scholar 

  7. Szabo, C., Ischiropoulos, H. & Radi, R. Peroxynitrite: biochemistry, pathophysiology and development of therapeutics. Nat. Rev. Drug Discov. 6, 662–680 (2007).

    CAS  PubMed  Google Scholar 

  8. Pacher, P., Beckman, J. S. & Liaudet, L. Nitric oxide and peroxynitrite in health and disease. Physiol. Rev. 87, 315–424 (2007).

    CAS  PubMed  Google Scholar 

  9. Kröncke, K. D., Fehsel, K. & Kolb-Bachofen, V. Nitric oxide: cytotoxicity versus cytoprotection — how, why, when, and where? Nitric Oxide 1, 107–120 (1997).

    PubMed  Google Scholar 

  10. Wink, D. A. et al. Mechanisms of the antioxidant effects of nitric oxide. Antioxid. Redox Signal. 3, 203–213 (2001).

    CAS  PubMed  Google Scholar 

  11. Thomas, D. D. et al. The chemical biology of nitric oxide: implications in cellular signaling. Free Radic. Biol. Med. 45, 18–31 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Calabrese, V. et al. Nitric oxide in cell survival: a janus molecule. Antioxid. Redox Signal. 11, 2717–2739 (2009).

    CAS  PubMed  Google Scholar 

  13. Hibbs, J. B. Jr, Taintor, R. R. & Vavrin, Z. Macrophage cytotoxicity: role for L-arginine deiminase and imino nitrogen oxidation to nitrite. Science 235, 473–476 (1987).

    CAS  PubMed  Google Scholar 

  14. Stuehr, D. J. & Nathan, C. F. Nitric oxide. A macrophage product responsible for cytostasis and respiratory inhibition in tumor target cells. J. Exp. Med. 169, 1543–1555 (1989). A pioneering study that implicates NO in immune activation-mediated killing of tumour cells in vitro.

    CAS  PubMed  Google Scholar 

  15. Cui, S., Reichner, J. S., Mateo, R. B. & Albina, J. E. Activated murine macrophages induce apoptosis in tumor cells through nitric oxide-dependent or -independent mechanisms. Cancer Res. 54, 2462–2467 (1994).

    CAS  PubMed  Google Scholar 

  16. MacMicking, J., Xie, Q. W. & Nathan, C. Nitric oxide and macrophage function. Annu. Rev. Immunol. 15, 323–350 (1997).

    CAS  PubMed  Google Scholar 

  17. Farias-Eisner, R., Sherman, M. P., Aeberhard, E. & Chaudhuri, G. Nitric oxide is an important mediator for tumoricidal activity in vivo. Proc. Natl Acad. Sci. USA 91, 9407–9411 (1994). Another pioneering study that implicates NO in immune activation-mediated killing of tumour cells, in vivo.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang, B. et al. Intact nitric oxide synthase II gene is required for interferon-β-mediated suppression of growth and metastasis of pancreatic adenocarcinoma. Cancer Res. 61, 71–75 (2001).

    CAS  PubMed  Google Scholar 

  19. Wei, D. et al. Direct demonstration of negative regulation of tumor growth and metastasis by host-inducible nitric oxide synthase. Cancer Res. 63, 3855–3859 (2003).

    CAS  PubMed  Google Scholar 

  20. Menon, C. et al. Tumoricidal activity of high-dose tumor necrosis factor-α is mediated by macrophage-derived nitric oxide burst and permanent blood flow shutdown. Int. J. Cancer 123, 464–475 (2008).

    CAS  PubMed  Google Scholar 

  21. Kawakami, K., Kawakami, M. & Puri, R. K. Nitric oxide accelerates interleukin-13 cytotoxin-mediated regression in head and neck cancer animal model. Clin. Cancer Res. 10, 5264–5270 (2004).

    CAS  PubMed  Google Scholar 

  22. Wang, B. et al. A novel model system for studying the double-edged roles of nitric oxide production in pancreatic cancer growth and metastasis. Oncogene 22, 1771–1782 (2003).

    CAS  PubMed  Google Scholar 

  23. Shi, Q. et al. Influence of nitric oxide synthase II gene disruption on tumor growth and metastasis. Cancer Res. 60, 2579–2583 (2000).

    CAS  PubMed  Google Scholar 

  24. Konopka, T. E. et al. Nitric oxide synthase II gene disruption: implications for tumor growth and vascular endothelial growth factor production. Cancer Res. 61, 3182–3187 (2001).

    CAS  PubMed  Google Scholar 

  25. DiNapoli, M. R., Calderon, C. L. & Lopez, D. M. The altered tumoricidal capacity of macrophages isolated from tumor-bearing mice is related to reduce expression of the inducible nitric oxide synthase gene. J. Exp. Med. 183, 1323–1329 (1996).

    CAS  PubMed  Google Scholar 

  26. Weigert, A. & Brüne, B. Nitric oxide, apoptosis and macrophage polarization during tumor progression. Nitric Oxide 19, 95–102 (2008).

    CAS  PubMed  Google Scholar 

  27. Böhle, A. & Brandau, S. Immune mechanisms in bacillus Calmette–Guérin immunotherapy for superficial bladder cancer. J. Urol. 170, 964–969 (2003).

    PubMed  Google Scholar 

  28. Hosseini, A. et al. Enhanced formation of nitric oxide in bladder carcinoma in situ and in BCG treated bladder cancer. Nitric Oxide 15, 337–343 (2006).

    CAS  PubMed  Google Scholar 

  29. Shah, G. et al. iNOS expression and NO production contribute to the direct effects of BCG on urothelial carcinoma cell biology. Urol. Oncol. 32, 45.e1–45.e9 (2014).

    CAS  Google Scholar 

  30. Mills, C. D., Shearer, J., Evans, R. & Caldwell, M. D. Macrophage arginine metabolism and the inhibition or stimulation of cancer. J. Immunol. 149, 2709–2714 (1992).

    CAS  PubMed  Google Scholar 

  31. Ma, Q., Hoper, M., Anderson, N. & Rowlands, B. J. Effect of supplemental L-arginine in a chemical-induced model of colorectal cancer. World J. Surg. 20, 1087–1091 (1996).

    CAS  PubMed  Google Scholar 

  32. Yeh, C. L., Pai, M. H., Li, C. C., Tsai, Y. L. & Yeh, S. L. Effect of arginine on angiogenesis induced by human colon cancer: in vitro and in vivo studies. J. Nutr. Biochem. 21, 538–543 (2010).

    CAS  PubMed  Google Scholar 

  33. Brittenden, J., Heys, S. D., Ross, J., Park, K. G. & Eremin, O. Natural cytotoxicity in breast cancer patients receiving neoadjuvant chemotherapy: effects of L-arginine supplementation. Eur. J. Surg. Oncol. 20, 467–472 (1994).

    CAS  PubMed  Google Scholar 

  34. Heys, S. D. et al. Dietary supplementation with L-arginine: modulation of tumour-infiltrating lymphocytes in patients with colorectal cancer. Br. J. Surg. 84, 238–241 (1997).

    CAS  PubMed  Google Scholar 

  35. Buijs, N. et al. Perioperative arginine-supplemented nutrition in malnourished patients with head and neck cancer improves long-term survival. Am. J. Clin. Nutr. 92, 1151–1156 (2010).

    CAS  PubMed  Google Scholar 

  36. Zhao, H. et al. Randomized clinical trial of arginine-supplemented enteral nutrition versus standard enteral nutrition in patients undergoing gastric cancer surgery. J. Cancer Res. Clin. Oncol. 139, 1465–1470 (2013).

    CAS  PubMed  Google Scholar 

  37. Ma, Q., Wang, Y., Gao, X., Ma, Z. & Song, Z. L-arginine reduces cell proliferation and ornithine decarboxylase activity in patients with colorectal adenoma and adenocarcinoma. Clin. Cancer Res. 13, 7407–7412 (2007). This in vivo study shows that L -arginine upregulates NO production in colorectal tumours to confer inhibitory effects on tumour progression.

    CAS  PubMed  Google Scholar 

  38. Rahat, M. A. & Hemmerlein, B. Macrophage–tumor cell interactions regulate the function of nitric oxide. Front. Physiol. 4, 144 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Huerta, S., Chilka, S. & Bonavida, B. Nitric oxide donors: novel cancer therapeutics. Int. J. Oncol. 33, 909–927 (2008).

    CAS  PubMed  Google Scholar 

  40. Yasuda, H. Solid tumor physiology and hypoxia-induced chemo/radio-resistance: novel strategy for cancer therapy: nitric oxide donor as a therapeutic enhancer. Nitric Oxide 19, 205–216 (2008).

    CAS  PubMed  Google Scholar 

  41. Jeannin, J. F. et al. Nitric oxide-induced resistance or sensitization to death in tumor cells. Nitric Oxide 19, 158–163 (2008).

    CAS  PubMed  Google Scholar 

  42. De Ridder, M., Verellen, D., Verovski, V. & Storme, G. Hypoxic tumor cell radiosensitization through nitric oxide. Nitric Oxide 19, 164–169 (2008).

    CAS  PubMed  Google Scholar 

  43. Sonveaux, P., Jordan, B. F., Gallez, B. & Feron, O. Nitric oxide delivery to cancer: why and how? Eur. J. Cancer 45, 1352–1369 (2009).

    CAS  PubMed  Google Scholar 

  44. Reynolds, M. M. et al. Applications for nitric oxide in halting proliferation of tumor cells. Biochem. Biophys. Res. Commun. 431, 647–651 (2013).

    CAS  PubMed  Google Scholar 

  45. Rigas, B. & Williams, J. L. NO-donating NSAIDs and cancer: an overview with a note on whether NO is required for their action. Nitric Oxide 19, 199–204 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Findlay, V. J. et al. Tumor cell responses to a novel glutathione S-transferase-activated nitric oxide-releasing prodrug. Mol. Pharmacol. 65, 1070–1079 (2004).

    CAS  PubMed  Google Scholar 

  47. McMurtry, V. et al. JS-K, a nitric oxide-releasing prodrug, induces breast cancer cell death while sparing normal mammary epithelial cells. Int. J. Oncol. 38, 963–971 (2011). This study demonstrates the anticancer efficacy of a tumour-targeted NO donor in vivo.

    CAS  PubMed  Google Scholar 

  48. Duan, S., Cai, S., Yang, Q. & Forrest, M. L. Multi-arm polymeric nanocarrier as a nitric oxide delivery platform for chemotherapy of head and neck squamous cell carcinoma. Biomaterials 33, 3243–3253 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Carpenter, A. W. & Schoenfisch, M. H. Nitric oxide release: part II. Therapeutic applications. Chem. Soc. Rev. 41, 3742–3752 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Rapozzi, V. et al. Nitric oxide-mediated activity in anti-cancer photodynamic therapy. Nitric Oxide 30, 26–35 (2013).

    CAS  PubMed  Google Scholar 

  51. Heilman, B. & Mascharak, P. K. Light-triggered nitric oxide delivery to malignant sites and infection. Philos. Trans. A Math. Phys. Eng. Sci. 371, 20120368 (2013).

    PubMed  Google Scholar 

  52. Sharma, K. & Chakrapani, H. Site-directed delivery of nitric oxide to cancers. Nitric Oxide 43, 8–16 (2014). This study demonstrates the anticancer efficacy of tumour-targeted NO donors.

    CAS  PubMed  Google Scholar 

  53. Radomski, M. W., Jenkins, D. C., Holmes, L. & Moncada, S. Human colorectal adenocarcinoma cells: differential nitric oxide synthesis determines their ability to aggregate platelets. Cancer Res. 51, 6073–6078 (1991).

    CAS  PubMed  Google Scholar 

  54. Thomsen, L. L. & Miles, D. W. Role of nitric oxide in tumour progression: lessons from human tumours. Cancer Metastasis Rev. 17, 107–118 (1998).

    CAS  PubMed  Google Scholar 

  55. Jahani-Asl, A. & Bonni, A. iNOS: a potential therapeutic target for malignant glioma. Curr. Mol. Med. 13, 1241–1249 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Heinecke, J. L. et al. Tumor microenvironment-based feed-forward regulation of NOS2 in breast cancer progression. Proc. Natl Acad. Sci. USA 111, 6323–6328 (2014). This study demonstrates the suppression of tumour growth by selective iNOS inhibition with aminoguanidine in vivo and demonstrates the pro-proliferative, tumour-autonomous roles of iNOS-derived NO.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Granados-Principal, S. et al. Inhibition of iNOS as a novel effective targeted therapy against triple-negative breast cancer. Breast Cancer Res. 17, 25 (2015).

    PubMed  PubMed Central  Google Scholar 

  58. Jenkins, D. C. et al. Roles of nitric oxide in tumor growth. Proc. Natl Acad. Sci. USA 92, 4392–4396 (1995). This study pioneered the concept that iNOS in tumour cells can promote tumour growth in vivo , at least in part through stimulation of tumour angiogenesis.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Kostourou, V. et al. The role of tumour-derived iNOS in tumour progression and angiogenesis. Br. J. Cancer 104, 83–90 (2011).

    CAS  PubMed  Google Scholar 

  60. Sikora, A. G. et al. Targeted inhibition of inducible nitric oxide synthase inhibits growth of human melanoma in vivo and synergizes with chemotherapy. Clin. Cancer Res. 16, 1834–1844 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Juang, S. H. et al. Use of retroviral vectors encoding murine inducible nitric oxide synthase gene to suppress tumorigenicity and cancer metastasis of murine melanoma. Cancer Biother. Radiopharm. 12, 167–175 (1997).

    CAS  PubMed  Google Scholar 

  62. Papapetropoulos, A., García-Cardeña, G., Madri, J. A. & Sessa, W. C. Nitric oxide production contributes to the angiogenic properties of vascular endothelial growth factor in human endothelial cells. J. Clin. Invest. 100, 3131–3139 (1997). This study defined the role of NO as a pro-angiogenic mediator.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Sessa, W. C. Molecular control of blood flow and angiogenesis: role of nitric oxide. J. Thromb. Haemost. 7, s35–37 (2009).

    Google Scholar 

  64. Ziche, M. & Morbidelli, L. Molecular regulation of tumour angiogenesis by nitric oxide. Eur. Cytokine Netw. 20, 164–170 (2009).

    CAS  PubMed  Google Scholar 

  65. Thomsen, L. L. et al. Selective inhibition of inducible nitric oxide synthase inhibits tumor growth in vivo: studies with 1400W, a novel inhibitor. Cancer Res. 57, 3300–3304 (1997). This study shows that selective iNOS inhibition with 1400W suppresses in vivo tumour growth.

    CAS  PubMed  Google Scholar 

  66. Camp, E. R. et al. Roles of nitric oxide synthase inhibition and vascular endothelial growth factor receptor-2 inhibition on vascular morphology and function in an in vivo model of pancreatic cancer. Clin. Cancer Res. 12, 2628–2633 (2006).

    CAS  PubMed  Google Scholar 

  67. Lopez-Rivera, E. et al. Inducible nitric oxide synthase drives mTOR pathway activation and proliferation of human melanoma by reversible nitrosylation of TSC2. Cancer Res. 74, 1067–1078 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Wang, G. Y., Ji, B., Wang, X. & Gu, J. H. Anti-cancer effect of iNOS inhibitor and its correlation with angiogenesis in gastric cancer. World J. Gastroenterol. 11, 3830–3833 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Tozer, G. M. et al. Nitric oxide synthase inhibition enhances the tumor vascular-damaging effects of combretastatin A-4 3-O-phosphate at clinically relevant doses. Clin. Cancer Res. 15, 3781–3790 (2009).

    CAS  PubMed  Google Scholar 

  70. Cardnell, R. J. & Mikkelsen, R. B. Nitric oxide synthase inhibition enhances the antitumor effect of radiation in the treatment of squamous carcinoma xenografts. PLoS ONE 6, e20147 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Wood, P. J. et al. Modification of energy metabolism and radiation response of a murine tumour by changes in nitric oxide availability. Biochem. Biophys. Res. Commun. 192, 505–510 (1993). This study provides evidence that modulation of NO homeostasis can affect tumour radiation responses in vivo.

    CAS  PubMed  Google Scholar 

  72. Wood, P. J. et al. Induction of hypoxia in experimental murine tumors by the nitric oxide synthase inhibitor, NG-nitro-L-arginine. Cancer Res. 54, 6458–6463 (1994).

    CAS  PubMed  Google Scholar 

  73. Bolton, W. K. et al. Randomized trial of an inhibitor of formation of advanced glycation end products in diabetic nephropathy. Am. J. Nephrol. 24, 32–40 (2004).

    CAS  PubMed  Google Scholar 

  74. Brindicci, C., Ito, K., Torre, O., Barnes, P. J. & Kharitonov, S. A. Effects of aminoguanidine, an inhibitor of inducible nitric oxide synthase, on nitric oxide production and its metabolites in healthy control subjects, healthy smokers, and COPD patients. Chest 135, 353–367 (2009).

    CAS  PubMed  Google Scholar 

  75. López, A. et al. Multiple-center, randomized, placebo-controlled, double-blind study of the nitric oxide synthase inhibitor 546C88: effect on survival in patients with septic shock. Crit. Care Med. 32, 21–30 (2004).

    PubMed  Google Scholar 

  76. Alderton, W. K. et al. GW274150 and GW273629 are potent and highly selective inhibitors of inducible nitric oxide synthase in vitro and in vivo. Br. J. Pharmacol. 145, 301–312 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Singh, D. et al. Selective inducible nitric oxide synthase inhibition has no effect on allergen challenge in asthma. Am. J. Respir. Crit. Care Med. 176, 988–993 (2007).

    CAS  PubMed  Google Scholar 

  78. Høivik, H. O. et al. Lack of efficacy of the selective iNOS inhibitor GW274150 in prophylaxis of migraine headache. Cephalalgia 30, 1458–1467 (2010).

    PubMed  Google Scholar 

  79. Seymour, M. et al. Ultrasonographic measures of synovitis in an early phase clinical trial: a double-blind, randomised, placebo and comparator controlled phase IIa trial of GW274150 (a selective inducible nitric oxide synthase inhibitor) in rheumatoid arthritis. Clin. Exp. Rheumatol. 30, 254–261 (2012).

    PubMed  Google Scholar 

  80. Hellio le Graverand, M. P. et al. A 2-year randomised, double-blind, placebo-controlled, multicentre study of oral selective iNOS inhibitor, cindunistat (SD-6010), in patients with symptomatic osteoarthritis of the knee. Ann. Rheum. Dis. 72, 187–195 (2013).

    PubMed  Google Scholar 

  81. Arai, Y. Method for treating cancer by combined use of drugs. PATENTSCOPE [online], (2014).

    Google Scholar 

  82. Flitney, F. W. et al. Antitumor actions of ruthenium(III)-based nitric oxide scavengers and nitric oxide synthase inhibitors. Mol. Cancer Ther. 10, 1571–1580 (2011).

    CAS  PubMed  Google Scholar 

  83. Andrade, S. P., Hart, I. R. & Piper, P. J. Inhibitors of nitric oxide synthase selectively reduce flow in tumor-associated neovasculature. Br. J. Pharmacol. 107, 1092–1095 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Meyer, R. E. et al. Nitric oxide synthase inhibition irreversibly decreases perfusion in the R3230Ac rat mammary adenocarcinoma. Br. J. Cancer 71, 1169–1174 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Gallo, O. et al. Role of nitric oxide in angiogenesis and tumor progression in head and neck cancer. J. Natl Cancer Inst. 90, 587–596 (1998).

    CAS  PubMed  Google Scholar 

  86. Jadeski, L. C. & Lala, P. K. Nitric oxide synthase inhibition by NG-nitro-L-arginine methyl ester inhibits tumor-induced angiogenesis in mammary tumors. Am. J. Pathol. 155, 1381–1390 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Kashiwagi, S. et al. NO mediates mural cell recruitment and vessel morphogenesis in murine melanomas and tissue-engineered blood vessels. J. Clin. Invest. 115, 1816–1827 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Lampson, B. L. et al. Targeting eNOS in pancreatic cancer. Cancer Res. 72, 4472–4482 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Kashiwagi, S. et al. Perivascular nitric oxide gradients normalize tumor vasculature. Nat. Med. 14, 255–257 (2008).

    CAS  PubMed  Google Scholar 

  90. Yang, Z. et al. Targeting nitric oxide signaling with nNOS inhibitors as a novel strategy for the therapy and prevention of human melanoma. Antioxid. Redox Signal. 19, 433–447 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Ng, Q. S. et al. Effect of nitric-oxide synthesis on tumour blood volume and vascular activity: a phase I study. Lancet Oncol. 8, 111–118 (2007). This study shows that NOS inhibition suppresses tumour blood flow in patients with cancer.

    CAS  PubMed  Google Scholar 

  92. Maines, M. D. Heme oxygenase: function, multiplicity, regulatory mechanisms, and clinical applications. FASEB J. 2, 2557–2568 (1988).

    CAS  PubMed  Google Scholar 

  93. Otterbein, L. E. & Choi, A. M. Heme oxygenase: colors of defense against cellular stress. Am. J. Physiol. Lung Cell. Mol. Physiol. 279, L1029–L1037 (2000).

    CAS  PubMed  Google Scholar 

  94. Ryter, S. W. & Otterbein, L. E. Carbon monoxide in biology and medicine. Bioessays 26, 270–280 (2004).

    CAS  PubMed  Google Scholar 

  95. Wu, L. & Wang, R. Carbon monoxide: endogenous production, physiological functions, and pharmacological applications. Pharmacol. Rev. 57, 585–630 (2005).

    CAS  PubMed  Google Scholar 

  96. Motterlini, R. & Otterbein, L. E. The therapeutic potential of carbon monoxide. Nat. Rev. Drug Discov. 9, 728–743 (2010).

    CAS  PubMed  Google Scholar 

  97. Zuckerbraun, B. S. et al. Carbon monoxide signals via inhibition of cytochrome c oxidase and generation of mitochondrial reactive oxygen species. FASEB J. 21, 1099–1106 (2007). This study connects the mitochondria-inhibiting effect of CO to CO-mediated cytoprotective signalling in vitro.

    CAS  PubMed  Google Scholar 

  98. Chin, B. Y. et al. Hypoxia-inducible factor 1α stabilization by carbon monoxide results in cytoprotective preconditioning. Proc. Natl Acad. Sci. USA 104, 5109–5114 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Schacter, B. A. & Kurz, P. Alterations in hepatic and splenic microsomal electron transport system components, drug metabolism, heme oxygenase activity, and cytochrome P-450 turnover in Murphy-Sturm lymphosarcoma-bearing rats. Cancer Res. 42, 3557–3564 (1982).

    CAS  PubMed  Google Scholar 

  100. Was, H., Dulak, J. & Jozkowicz, A. Heme oxygenase-1 in tumor biology and therapy. Curr. Drug Targets 11, 1551–1570 (2010).

    CAS  PubMed  Google Scholar 

  101. Berberat, P. O. et al. Inhibition of heme oxygenase-1 increases responsiveness of pancreatic cancer cells to anticancer treatment. Clin. Cancer Res. 11, 3790–3798 (2005).

    CAS  PubMed  Google Scholar 

  102. Sass, G. et al. Inhibition of heme oxygenase 1 expression by small interfering RNA decreases orthotopic tumor growth in livers of mice. Int. J. Cancer 123, 1269–1277 (2008). This study shows that silencing of HO1 suppresses tumour growth in vivo.

    CAS  PubMed  Google Scholar 

  103. Alaoui-Jamali, M. A. et al. A novel experimental heme oxygenase-1-targeted therapy for hormone-refractory prostate cancer. Cancer Res. 69, 8017–8024 (2009).

    CAS  PubMed  Google Scholar 

  104. Li, Y. et al. PTEN deletion and heme oxygenase-1 overexpression cooperate in prostate cancer progression and are associated with adverse clinical outcome. J. Pathol. 224, 90–100 (2011).

    CAS  PubMed  Google Scholar 

  105. Sahoo, S. K. et al. Pegylated zinc protoporphyrin: a water-soluble heme oxygenase inhibitor with tumor-targeting capacity. Bioconjug. Chem. 13, 1031–1038 (2002).

    CAS  PubMed  Google Scholar 

  106. Fang, J. et al. In vivo antitumor activity of pegylated zinc protoporphyrin: targeted inhibition of heme oxygenase in solid tumor. Cancer Res. 63, 3567–3574 (2003). This study shows that inhibition of HO1 suppresses tumour growth in vivo.

    CAS  PubMed  Google Scholar 

  107. Hirai, K., Sasahira, T., Ohmori, H., Fujii, K. & Kuniyasu, H. Inhibition of heme oxygenase-1 by zinc protoporphyrin IX reduces tumor growth of LL/2 lung cancer in C57BL mice. Int. J. Cancer 120, 500–505 (2007).

    CAS  PubMed  Google Scholar 

  108. Nowis, D. et al. Zinc protoporphyrin IX, a heme oxygenase-1 inhibitor, demonstrates potent antitumor effects but is unable to potentiate antitumor effects of chemotherapeutics in mice. BMC Cancer 8, 197 (2008).

    PubMed  PubMed Central  Google Scholar 

  109. Miyake, M. et al. Heme oxygenase-1 promotes angiogenesis in urothelial carcinoma of the urinary bladder. Oncol. Rep. 25, 653–660 (2011).

    CAS  PubMed  Google Scholar 

  110. Deng, R. et al. Inhibition of tumor growth and alteration of associated macrophage cell type by an HO-1 inhibitor in breast carcinoma-bearing mice. Oncol. Res. 20, 473–482 (2013).

    CAS  PubMed  Google Scholar 

  111. Gueron, G. et al. Critical role of endogenous heme oxygenase 1 as a tuner of the invasive potential of prostate cancer cells. Mol. Cancer Res. 7, 1745–1755 (2009).

    CAS  PubMed  Google Scholar 

  112. Zou, C. et al. Heme oxygenase-1: a molecular brake on hepatocellular carcinoma cell migration. Carcinogenesis 32, 1840–1848 (2011).

    CAS  PubMed  Google Scholar 

  113. Kappas, A., Drummond, G. S., Manola, T., Petmezaki, S. & Valaes, T. Sn-protoporphyrin use in the management of hyperbilirubinemia in term newborns with direct Coombs-positive ABO incompatibility. Pediatrics 81, 485–497 (1988).

    CAS  PubMed  Google Scholar 

  114. Dover, S. B., Moore, M. R., Fitzsimmons, E. J., Graham, A. & McColl, K. E. Tin protoporphyrin prolongs the biochemical remission produced by heme arginate in acute hepatic porphyria. Gastroenterology 105, 500–506 (1993).

    CAS  PubMed  Google Scholar 

  115. Kappas, A., Drummond, G. S., Henschke, C. & Valaes, T. Direct comparison of Sn-mesoporphyrin, an inhibitor of bilirubin production, and phototherapy in controlling hyperbilirubinemia in term and near-term newborns. Pediatrics 95, 468–474 (1995).

    CAS  PubMed  Google Scholar 

  116. Nakamura, H., Fang, J., Gahininath, B., Tsukigawa, K. & Maeda, H. Intracellular uptake and behavior of two types zinc protoporphyrin (ZnPP) micelles, SMA-ZnPP and PEG-ZnPP as anticancer agents; unique intracellular disintegration of SMA micelles. J. Control. Release 155, 367–375 (2011).

    CAS  PubMed  Google Scholar 

  117. Tsukigawa, K., Nakamura, H., Fang, J., Otagiri, M. & Maeda, H. Effect of different chemical bonds in pegylation of zinc protoporphyrin that affects drug release, intracellular uptake, and therapeutic effect in the tumor. Eur. J. Pharm. Biopharm. 89, 259–270 (2015).

    CAS  PubMed  Google Scholar 

  118. Pittalà, V., Salerno, L., Romeo, G., Modica, M. N. & Siracusa, M. A. A focus on heme oxygenase-1 (HO-1) inhibitors. Curr. Med. Chem. 20, 3711–3732 (2013).

    PubMed  Google Scholar 

  119. Bergstraesser, C. et al. Inhibition of VCAM-1 expression in endothelial cells by CORM-3: the role of the ubiquitin-proteasome system, 38, and mitochondrial respiration. Free Radic. Biol. Med. 52, 794–802 (2012).

    CAS  PubMed  Google Scholar 

  120. Schwer, C. I. et al. Carbon monoxide releasing molecule-2 CORM-2 represses global protein synthesis by inhibition of eukaryotic elongation factor eEF2. Int. J. Biochem. Cell Biol. 45, 201–212 (2013).

    CAS  PubMed  Google Scholar 

  121. Wegiel, B. et al. Carbon monoxide expedites metabolic exhaustion to inhibit tumor growth. Cancer Res. 73, 7009–7021 (2013). This study demonstrates the inhibitory effects of CO inhalation therapy on tumour growth in vivo.

    CAS  PubMed  Google Scholar 

  122. Long, R., Salouage, I., Berdeaux, A., Motterlini, R. & Morin, D. CORM-3, a water soluble CO-releasing molecule, uncouples mitochondrial respiration via interaction with the phosphate carrier. Biochim. Biophys. Acta 1837, 201–209 (2014).

    CAS  PubMed  Google Scholar 

  123. Vítek, L. et al. Antiproliferative effects of carbon monoxide on pancreatic cancer. Dig. Liver Dis. 46, 369–375 (2014). This study demonstrates the inhibitory effects of CO inhalation therapy or parenteral CORM therapy on tumour growth in vivo.

    PubMed  Google Scholar 

  124. Stamellou, E. et al. Different design of enzyme-triggered CO-releasing molecules (ET-CORMs) reveals quantitative differences in biological activities in terms of toxicity and inflammation. Redox Biol. 2, 739–748 (2014). This paper introduces the concept of enzyme-triggered CORM release.

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Lee, W. Y. et al. The induction of heme oxygenase-1 suppresses heat shock protein 90 and the proliferation of human breast cancer cells through its byproduct carbon monoxide. Toxicol. Appl. Pharmacol. 274, 55–62 (2014).

    CAS  PubMed  Google Scholar 

  126. Foresti, R., Bani-Hani, M. G. & Motterlini, R. Use of carbon monoxide as a therapeutic agent: promises and challenges. Int. Care Med. 34, 649–658 (2008).

    CAS  Google Scholar 

  127. Otterbein, L. E. Quoth the Raven: carbon monoxide and nothing more. Med. Gas Res. 3, 7 (2013).

    PubMed  PubMed Central  Google Scholar 

  128. Plummer, A. L. The carbon monoxide diffusing capacity: clinical implications, coding, and documentation. Chest 134, 663–667 (2008).

    PubMed  Google Scholar 

  129. Vesely, A. E. et al. The effects of carbon monoxide on respiratory chemoreflexes in humans. Environ. Res. 94, 227–233 (2004).

    CAS  PubMed  Google Scholar 

  130. Mayr, F. B. et al. Effects of carbon monoxide inhalation during experimental endotoxemia in humans. Am. J. Respir. Crit. Care Med. 171, 354–360 (2005).

    PubMed  Google Scholar 

  131. Resch, H., Zawinka, C., Weigert, G., Schmetterer, L. & Garhöfer, G. Inhaled carbon monoxide increases retinal and choroidal blood flow in healthy humans. Invest. Ophthalmol. Vis. Sci. 46, 4275–4280 (2005).

    PubMed  Google Scholar 

  132. Bathoorn, E. et al. Anti-inflammatory effects of inhaled carbon monoxide in patients with COPD: a pilot study. Eur. Respir. J. 30, 1131–1137 (2007).

    CAS  PubMed  Google Scholar 

  133. Szabo, C. Hydrogen sulphide and its therapeutic potential. Nat. Rev. Drug Discov. 6, 917–935 (2007).

    CAS  PubMed  Google Scholar 

  134. Whiteman, M., Le Trionnaire, S., Chopra, M., Fox, B. & Whatmore, J. Emerging role of hydrogen sulfide in health and disease: critical appraisal of biomarkers and pharmacological tools. Clin. Sci. (Lond) 121, 459–488 (2011).

    CAS  Google Scholar 

  135. Kimura, H. Hydrogen sulfide: its production, release and functions. Amino Acids 41, 113–121 (2011).

    CAS  PubMed  Google Scholar 

  136. Wallace, J. L., Ferraz, J. G. & Muscara, M. N. Hydrogen sulfide: an endogenous mediator of resolution of inflammation and injury. Antioxid. Redox Signal. 17, 58–67 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Wang, R. Physiological implications of hydrogen sulfide: a whiff exploration that blossomed. Physiol. Rev. 92, 791–896 (2012).

    CAS  PubMed  Google Scholar 

  138. Shibuya, N. et al. A novel pathway for the production of hydrogen sulfide from d-cysteine in mammalian cells. Nat. Commun. 4, 1366 (2013).

    PubMed  Google Scholar 

  139. Asimakopoulou, A. et al. Selectivity of commonly used pharmacological inhibitors for cystathionine β synthase (CBS) and cystathionine γ lyase (CSE). Br. J. Pharmacol. 169, 922–932 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Papapetropoulos, A. et al. Hydrogen sulfide is an endogenous stimulator of angiogenesis. Proc. Natl Acad. Sci. USA 106, 21972–21977 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Coletta, C. et al. Hydrogen sulfide and nitric oxide are mutually dependent in the regulation of angiogenesis and endothelium-dependent vasorelaxation. Proc. Natl Acad. Sci. USA 109, 9161–9166 (2012). This study shows evidence for cooperative signalling between NO and H 2 S in the control of angiogenesis and vascular relaxation.

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Szabo, C. et al. Regulation of mitochondrial bioenergetic function by hydrogen sulfide. Part I. Biochemical and physiological mechanisms. Br. J. Pharmacol. 171, 2099–2122 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Szabo, C. et al. Tumor-derived hydrogen sulfide, produced by cystathionine-β-synthase, stimulates bioenergetics, cell proliferation, and angiogenesis in colon cancer. Proc. Natl Acad. Sci. USA 110, 12474–12479 (2013). This study shows that silencing CBS or inhibiting CBS suppresses colon cancer bioenergetics and growth in vivo.

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Bhattacharyya, S. et al. Cystathionine beta-synthase (CBS) contributes to advanced ovarian cancer progression and drug resistance. PLoS ONE 8, e79167 (2013). This study shows that silencing CBS or inhibiting CBS suppresses ovarian cancer bioenergetics and growth in vivo.

    PubMed  PubMed Central  Google Scholar 

  145. Guo, H. et al. Characterization of hydrogen sulfide and its synthases, cystathionine β-synthase and cystathionine γ-lyase, in human prostatic tissue and cells. Urology 79, 483.e1–483.e5 (2012).

    Google Scholar 

  146. Sen, S. et al. Role of cystathionine β-synthase in human breast cancer. Free Radic. Biol. Med. 86, 228–238 (2015).

    CAS  PubMed  Google Scholar 

  147. Chao, C. et al. Cystathionine-β-synthetase inhibition in combination with standard-chemotherapy decreases colorectal cancer metastasis to the liver. Nitric Oxide 39, S21–S22 (2014).

    Google Scholar 

  148. Takano, N. et al. Decreased expression of cystathionine β-synthase promotes glioma tumorigenesis. Mol. Cancer Res. 12, 1398–1406 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Hellmich, M. R., Coletta, C., Chao, C. & Szabo, C. The therapeutic potential of cystathionine β-synthetase/hydrogen sulfide inhibition in cancer. Antioxid. Redox Signal. 22, 424–448 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Panza, E. et al. Role of the cystathionine γ lyase/hydrogen sulfide pathway in human melanoma progression. Pigment Cell Melanoma Res. 28, 61–72 (2015).

    CAS  PubMed  Google Scholar 

  151. De Vos, J. et al. Comparison of gene expression profiling between malignant and normal plasma cells with oligonucleotide arrays. Oncogene 21, 6848–6857 (2002).

    CAS  PubMed  Google Scholar 

  152. Hansel, D. E. et al. Identification of novel cellular targets in biliary tract cancers using global gene expression technology. Am. J. Pathol. 163, 217–229 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Zhang, W. et al. Expression profiling of homocysteine junction enzymes in the NCI60 panel of human cancer cell lines. Cancer Res. 65, 1554–1560 (2005).

    CAS  PubMed  Google Scholar 

  154. Jurkowska, H., Placha, W., Nagahara, N. & Wróbel, M. The expression and activity of cystathionine-γ-lyase and 3-mercaptopyruvate sulfurtransferase in human neoplastic cell lines. Amino Acids 41, 151–158 (2011).

    CAS  PubMed  Google Scholar 

  155. Szczesny, B., Brunyanszki, A., Hellmich, M. R. & Szabo, C. Hydrogen sulfide in lung adenocarcinoma: a tumor cell survival factor, an enhancer of mitochondrial DNA repair and a cellular bioenergetic stimulator. Nitric Oxide 47, S46 (2015).

    Google Scholar 

  156. Fan, K. et al. Wnt/β-catenin signaling induces the transcription of cystathionine-γ-lyase, a stimulator of tumor in colon cancer. Cell Signal. 26, 2801–2808 (2014).

    CAS  PubMed  Google Scholar 

  157. Zatarain, J. R. et al. H2S inhibition of cystathionine-β-synthase (CBS) using a novel prodrug decreases colorectal cancer xenograft growth with less toxicity than aminooxyacetic acid (AOAA). Gastroenterology 148, S950 (2015).

    Google Scholar 

  158. Perry, T. L. et al. Failure of aminooxyacetic acid therapy in Huntington disease. Neurology 30, 772–775 (1980).

    CAS  PubMed  Google Scholar 

  159. Guth, P. S. et al. Evaluation of amino-oxyacetic acid as a palliative in tinnitus. Ann. Otol. Rhinol. Laryngol. 99, 74–79 (1990).

    CAS  PubMed  Google Scholar 

  160. Li, L. et al. Characterization of a novel, water-soluble hydrogen sulfide-releasing molecule (GYY4137): new insights into the biology of hydrogen sulfide. Circulation 117, 2351–2360 (2008).

    CAS  PubMed  Google Scholar 

  161. Han, Y. et al. Hydrogen sulfide inhibits abnormal proliferation of lymphocytes via AKT/GSK3β signal pathway in systemic lupus erythematosus patients. Cell. Physiol. Biochem. 31, 795–804 (2013).

    CAS  PubMed  Google Scholar 

  162. Lee, Z. W. et al. Utilizing hydrogen sulfide as a novel anti-cancer agent by targeting cancer glycolysis and pH imbalance. Br. J. Pharmacol. 171, 4322–4336 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Lee, Z. W. et al. The slow-releasing hydrogen sulfide donor, GYY4137, exhibits novel anti-cancer effects in vitro and in vivo. PLoS ONE 6, e21077 (2011). This study demonstrates the inhibitory effects of a slow-releasing H 2 S donor on tumour growth in vivo.

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Lu, S., Gao, Y., Huang, X. & Wang, X. GYY4137, a hydrogen sulfide (H2S) donor, shows potent anti-hepatocellular carcinoma activity through blocking the STAT3 pathway. Int. J. Oncol. 44, 1259–1267 (2014).

    CAS  PubMed  Google Scholar 

  165. Benavides, G. A. et al. Hydrogen sulfide mediates the vasoactivity of garlic. Proc. Natl Acad. Sci. USA 104, 17977–17982 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Insko, M. A., Deckwerth, T. L., Hill, P., Toombs, C. F. & Szabo, C. Detection of exhaled hydrogen sulphide gas in rats exposed to intravenous sodium sulphide. Br. J. Pharmacol. 157, 944–951 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Predmore, B. L. et al. The polysulfide diallyl trisulfide protects the ischemic myocardium by preservation of endogenous hydrogen sulfide and increasing nitric oxide bioavailability. Am. J. Physiol. Heart Circ. Physiol. 302, H2410–H2418 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Yi, L. & Su, Q. Molecular mechanisms for the anti-cancer effects of diallyl disulfide. Food Chem. Toxicol. 57, 362–370 (2013).

    CAS  PubMed  Google Scholar 

  169. Singh, S. V. et al. Garlic constituent diallyl trisulfide prevents development of poorly differentiated prostate cancer and pulmonary metastasis multiplicity in TRAMP mice. Cancer Res. 68, 9503–9511 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Wu, P. P. et al. Diallyl trisulfide (DATS) inhibits mouse colon tumor in mouse CT-26 cells allograft model in vivo. Phytomedicine 18, 672–676 (2011).

    CAS  PubMed  Google Scholar 

  171. Li, W. et al. Diallyl trisulfide induces apoptosis and inhibits proliferation of A549 cells in vitro and in vivo. Acta Biochim. Biophys. Sin. (Shanghai) 44, 577–583 (2012).

    CAS  Google Scholar 

  172. Wallace, G. C. et al. Multi-targeted DATS prevents tumor progression and promotes apoptosis in ectopic glioblastoma xenografts in SCID mice via HDAC inhibition. J. Neurooncol. 114, 43–50 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Ma, K. et al. H2S donor, S-propargyl-cysteine, increases CSE in SGC-7901 and cancer-induced mice: evidence for a novel anti-cancer effect of endogenous H2S? PLoS ONE 6, e20525 (2011).

    PubMed  PubMed Central  Google Scholar 

  174. Chattopadhyay, M. et al. Hydrogen sulfide-releasing aspirin suppresses NF-κB signaling in estrogen receptor negative breast cancer cells in vitro and in vivo. Biochem. Pharmacol. 83, 723–732 (2012).

    CAS  PubMed  Google Scholar 

  175. Kashfi, K. & Olson, K. R. Biology and therapeutic potential of hydrogen sulfide and hydrogen sulfide-releasing chimeras. Biochem. Pharmacol. 85, 689–703 (2013).

    CAS  PubMed  Google Scholar 

  176. Gemici, B. et al. H2S-releasing drugs: anti-inflammatory, cytoprotective and chemopreventative potential. Nitric Oxide 46, 25–31 (2015).

    CAS  PubMed  Google Scholar 

  177. Szabo, C. Gaseotransmitters: new frontiers for translational science. Sci. Transl. Med. 2, 59ps54 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Chattopadhyay, M., Kodela, R., Olson, K. R. & Kashfi, K. NOSH-aspirin (NBS-1120), a novel nitric oxide- and hydrogen sulfide-releasing hybrid is a potent inhibitor of colon cancer cell growth in vitro and in a xenograft mouse model. Biochem. Biophys. Res. Commun. 419, 523–528 (2012).

    CAS  PubMed  Google Scholar 

  179. Maksimovic-Ivanic, D. et al. Anticancer properties of the novel nitric oxide-donating compound (S,R)-3-phenyl-4,5-dihydro-5-isoxazole acetic acid–nitric oxide in vitro and in vivo. Mol. Cancer Ther. 7, 510–520 (2008).

    CAS  PubMed  Google Scholar 

  180. Mijatovic, S. et al. Induction of caspase-independent apoptotic-like cell death of mouse mammary tumor TA3Ha cells in vitro and reduction of their lethality in vivo by the novel chemotherapeutic agent GIT-27NO. Free Radic. Biol. Med. 48, 1090–1099 (2010).

    CAS  PubMed  Google Scholar 

  181. Donia, M. et al. In vitro and in vivo anticancer action of Saquinavir-NO, a novel nitric oxide-derivative of the protease inhibitor saquinavir, on hormone resistant prostate cancer cells. Cell Cycle 10, 492–499 (2011).

    CAS  PubMed  Google Scholar 

  182. Donia, M. et al. Unique antineoplastic profile of Saquinavir-NO, a novel NO-derivative of the protease inhibitor Saquinavir, on the in vitro and in vivo tumor formation of A375 human melanoma cells. Oncol. Rep. 28, 682–688 (2012).

    CAS  PubMed  Google Scholar 

  183. Elsheikh, W., Blackler, R. W., Flannigan, K. L. & Wallace, J. L. Enhanced chemopreventive effects of a hydrogen sulfide-releasing anti-inflammatory drug (ATB-346) in experimental colorectal cancer. Nitric Oxide 41, 131–137 (2014).

    CAS  PubMed  Google Scholar 

  184. Moriyama, A. et al. Plasma nitrite/nitrate concentrations as a tumor marker for hepatocellular carcinoma. Clin. Chim. Acta 296, 181–191 (2000).

    CAS  PubMed  Google Scholar 

  185. Chan, H. P., Lewis, C. & Thomas, P. S. Exhaled breath analysis: novel approach for early detection of lung cancer. Lung Cancer 63, 164–168 (2009). This paper presents an approach of measuring patient-exhaled levels of NO for the detection of lung cancer.

    PubMed  Google Scholar 

  186. Yin, H., Fang, J., Liao, L., Maeda, H. & Su, Q. Upregulation of heme oxygenase-1 in colorectal cancer patients with increased circulation carbon monoxide levels, potentially affects chemotherapeutic sensitivity. BMC Cancer 14, 436 (2014). This study indicates there are increased levels of the CO metabolite carboxyhaemoglobin in the circulation of patients with cancer.

    PubMed  PubMed Central  Google Scholar 

  187. Bonavida, B. & Baritaki, S. Dual role of NO donors in the reversal of tumor cell resistance and EMT: downregulation of the NF-kB/Snail/YY1/RKIP circuitry. Nitric Oxide 24, 1–7 (2011).

    CAS  PubMed  Google Scholar 

  188. Bhowmick, R. & Girotti, A. W. Cytoprotective signaling associated with nitric oxide upregulation in tumor cells subjected to photodynamic therapy-like oxidative stress. Free Radic. Biol. Med. 57, 39–48 (2013).

    CAS  PubMed  Google Scholar 

  189. Furfaro, A. L. et al. HO-1 up-regulation: a key point in high-risk neuroblastoma resistance to bortezomib. Biochim. Biophys. Acta 1842, 613–622 (2014).

    CAS  PubMed  Google Scholar 

  190. Sanokawa-Akakura, R., Ostrakhovitch, E. A., Akakura, S., Goodwin, S. & Tabibzadeh, S. A H2S-Nampt dependent energetic circuit is critical to survival and cytoprotection from damage in cancer cells. PLoS ONE 9, e108537 (2014).

    PubMed  PubMed Central  Google Scholar 

  191. Ostrakhovitch, E. A., Akakura, S., Sanokawa-Akakura, R., Goodwin, S. & Tabibzadeh, S. Dedifferentiation of cancer cells following recovery from a potentially lethal damage is mediated by H2S-Nampt. Exp. Cell Res. 330, 135–150 (2015).

    CAS  PubMed  Google Scholar 

  192. Eyler, C. E. et al. Glioma stem cell proliferation and tumor growth are promoted by nitric oxide synthase-2. Cell 146, 53–66 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Herrmann, H. et al. The Hsp32 inhibitors SMA-ZnPP and PEG-ZnPP exert major growth-inhibitory effects on D34+/CD38+ and CD34+/CD38 AML progenitor cells. Curr. Cancer Drug Targets 12, 51–63 (2012).

    CAS  PubMed  Google Scholar 

  194. Kim, R. K. et al. Fractionated radiation-induced nitric oxide promotes expansion of glioma stem-like cells. Cancer Sci. 104, 1172–1177 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Rao, C. V. Nitric oxide signaling in colon cancer chemoprevention. Mutat. Res. 555, 107–119 (2004).

    CAS  PubMed  Google Scholar 

  196. Bonavida, B., Khineche, S., Huerta-Yepez, S. & Garbán, H. Therapeutic potential of nitric oxide in cancer. Drug Resist. Updat. 9, 157–173 (2006).

    CAS  PubMed  Google Scholar 

  197. Burke, A. J., Sullivan, F. J., Giles, F. J. & Glynn, S. A. The yin and yang of nitric oxide in cancer progression. Carcinogenesis 34, 503–512 (2013).

    CAS  PubMed  Google Scholar 

  198. Grochot-Przeczek, A., Dulak, J. & Jozkowicz, A. Haem oxygenase-1: non-canonical roles in physiology and pathology. Clin. Sci. (Lond). 122, 93–103 (2012).

    CAS  PubMed  Google Scholar 

  199. Carbonero, F., Benefiel, A. C. & Gaskins, H. R. Contributions of the microbial hydrogen economy to colonic homeostasis. Nat. Rev. Gastroenterol. Hepatol. 9, 504–518 (2012).

    CAS  PubMed  Google Scholar 

  200. Kilbourn, R. G. et al. Inhibition of interleukin-1-α-induced nitric oxide synthase in vascular smooth muscle and full reversal of interleukin-1-α-induced hypotension by Nω-amino-L-arginine. J. Natl Cancer Inst. 84, 1008–1016 (1992).

    CAS  PubMed  Google Scholar 

  201. Kilbourn, R. G., Szabo, C. & Traber, D. L. Beneficial versus detrimental effects of nitric oxide synthase inhibitors in circulatory shock: lessons learned from experimental and clinical studies. Shock 7, 235–246 (1997).

    CAS  PubMed  Google Scholar 

  202. Kondapaneni, M., McGregor, J. R., Salvemini, D., Laubach, V. E. & Samlowski, W. E. Inducible nitric oxide synthase (iNOS) is not required for IL-2-induced hypotension and vascular leak syndrome in mice. J. Immunother. 31, 325–333 (2008).

    CAS  PubMed  Google Scholar 

  203. Samlowski, W. E. et al. Endothelial nitric oxide synthase is a key mediator of interleukin-2-induced hypotension and vascular leak syndrome. J. Immunother. 34, 419–427 (2011).

    CAS  PubMed  Google Scholar 

  204. Maybauer, D. M. et al. Lung-protective effects of the metalloporphyrinic peroxynitrite decomposition catalyst WW-85 in interleukin-2 induced toxicity. Biochem. Biophys. Res. Commun. 377, 786–791 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  205. Kilbourn, R. G., Fonseca, G. A., Trissel, L. A. & Griffith, O. W. Strategies to reduce side effects of interleukin-2: evaluation of the antihypotensive agent NG-monomethyl-L-arginine. Cancer J. Sci. Am. 6, S21–S30 (2000). This study shows that inhibition of NOS production by the non-isoform-selective NOS inhibitor L -NMA reduces the hypotensive side effects of IL-2 during the immunotherapy of patients with cancer.

    PubMed  Google Scholar 

  206. Ashburn, T. T. & Thor, K. B. Drug repositioning: identifying and developing new uses for existing drugs. Nat. Rev. Drug Discov. 3, 673–683 (2004).

    CAS  PubMed  Google Scholar 

  207. Blatt, J. & Corey, S. J. Drug repurposing in pediatrics and pediatric hematology oncology. Drug Discov. Today 18, 4–10 (2013).

    PubMed  Google Scholar 

  208. Stenvang, J. et al. Biomarker-guided repurposing of chemotherapeutic drugs for cancer therapy: a novel strategy in drug development. Front. Oncol. 3, 313 (2013).

    PubMed  PubMed Central  Google Scholar 

  209. Quinn, B. J. et al. Repositioning metformin for cancer prevention and treatment. Trends Endocrinol. Metab. 24, 469–480 (2013).

    CAS  PubMed  Google Scholar 

  210. Jordan, B. F. et al. Nitric oxide as a radiosensitizer: evidence for an intrinsic role in addition to its effect on oxygen delivery and consumption. Int. J. Cancer 109, 768–773 (2004).

    CAS  PubMed  Google Scholar 

  211. Oronsky, B. T., Knox, S. J. & Scicinski, J. J. Is nitric oxide (NO) the last word in radiosensitization? A review. Transl. Oncol. 5, 66–71 (2012).

    PubMed  PubMed Central  Google Scholar 

  212. Arrieta, O. et al. Phase II study. Concurrent chemotherapy and radiotherapy with nitroglycerin in locally advanced non-small cell lung cancer. Radiother. Oncol. 111, 311–315 (2014).

    CAS  PubMed  Google Scholar 

  213. Reid, T. et al. Two case reports of resensitization to previous chemotherapy with the novel hypoxia-activated hypomethylating anticancer agent RRx-001 in metastatic colorectal cancer patients. Case Rep. Oncol. 7, 79–85 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  214. Jiang, H. et al. Activated macrophages as a novel determinant of tumor cell radioresponse: the role of nitric oxide-mediated inhibition of cellular respiration and oxygen sparing. Int. J. Radiat. Oncol. Biol. Phys. 76, 1520–1527 (2010).

    CAS  PubMed  Google Scholar 

  215. de Bono, J. S. et al. Phase I study of ONO-4007, a synthetic analogue of the lipid A moiety of bacterial lipopolysaccharide. Clin. Cancer Res. 6, 397–405 (2000).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author's research in the field of H2S and cancer is supported by a grant from the US National Institutes of Health (NIH; R01CA175803) and the US Cancer Prevention Research Institute of Texas (CPRIT; DP150074).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Csaba Szabo.

Ethics declarations

Competing interests

The author is a principal and a shareholder of CBS Therapeutics Inc., a start-up company involved in the research and development of CBS inhibitors for cancer therapy.

PowerPoint slides

Glossary

Peroxynitrite

A short-lived cytotoxic oxidant species that is the product of the diffusion- controlled reaction between nitric oxide (NO) and a superoxide radical (O2).

Bacillus Calmette–Guérin

A live attenuated strain of Mycobacterium bovis that is a US-approved therapy for in situ bladder carcinoma.

3-methylcholanthrene

The most common isomer of a highly carcinogenic polycyclic aromatic hydrocarbon — its topical administration in mice is often used as an experimental cancer model.

Secretagogue

A biological substance that induces the secretion of another substance. For example, angiotensin II is a secretagogue for aldosterone.

Glutathione-S-transferase

(GST). A soluble protein with a molecular mass of ~50 kDa. GSTs represent a major group of detoxification enzymes and catalyse the conjugation of the reduced form of glutathione (GSH) to various cellular substrates.

Multi-arm polymeric nanocarriers

Branched, globular, nanoscale materials exhibiting a large surface area. They are commonly used for targeted drug delivery.

Prodrugs

Inactive precursors of active therapeutic agents. The conversion from the inactive to the active form occurs through normal metabolic processes, often involving the hydrolysis of an ester group.

Chorioallantoic membrane model

A common experimental model in which melanoma cells are grown on chick chorioallantoic membranes (CAMs). It is a model with a substantial angiogenesis component.

Epithelial–mesenchymal transition

(EMT). A process by which epithelial cells lose their cell polarity and cell–cell adhesion and assume a migratory and invasive phenotype.

Protoporphyrins

(PPs). Tetrapyrroles containing four methyl side chains, two propionic acid side chains and two vinyl side chains. The iron complex of PPs occurs in a number of proteins, including haemoglobin, myoglobin and several electron transport proteins of the mitochondrial respiratory chain.

Transgenic adenocarcinoma mouse prostate cancer model

(TRAMP cancer model). One of the most well-known prostate cancer mouse models. The expression of both the large and small SV40 tumour antigens is regulated by the prostate-specific rat probasin promoter.

Theranostic approach

Approaches that incorporate the development of molecular diagnostic tests in combination with targeted therapeutics. These approaches are integral to the personalized medicine concept. Also known as 'theranostics'.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Szabo, C. Gasotransmitters in cancer: from pathophysiology to experimental therapy. Nat Rev Drug Discov 15, 185–203 (2016). https://doi.org/10.1038/nrd.2015.1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd.2015.1

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer