Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Drug development for noncastrate prostate cancer in a changed therapeutic landscape

An Erratum to this article was published on 08 November 2017

This article has been updated

Key Points

  • The increasing number of both approved and experimental therapies available mandates the use of new trial designs for patients with noncastrate prostate cancer, which provide expedited readouts of efficacy

  • Trials based on time-to-event end points, such as progression to metastatic disease and overall survival, require large numbers of patients with long follow-up durations, and might provide inconclusive results owing to use of post-protocol interventions

  • To accelerate progress, a multi-arm, multistage, multimodality trial platform involving delivery of systemic therapy, radiotherapy to detectable metastases, and radical surgery was developed that enables new arms to be added at any time

  • The objective is to eliminate all disease using binary quantitative end points that occur early and solely reflect the effects of treatment, such as pathological complete response and undetectable serum prostate-specific antigen levels after testosterone recovery

Abstract

The unprecedented progress in the treatment of metastatic castration-resistant prostate cancer is only beginning to be realized in patients with noncastrate disease. This slow progress in part reflects the use of trial objectives focused on time-to-event end points, such as time to metastasis and overall survival, which require long follow-up durations and large sample sizes, and has been further delayed by the use of approved therapies that are effective at the time of progression. Our central hypotheses are that progress can be accelerated, and that outcomes can be improved by shifting trial objectives to response measures occurring early that solely reflect the effects of the treatment. To test these hypotheses, a continuously enrolling multi-arm, multi-stage randomized trial design, analogous to that used in the STAMPEDE trial, has been developed. Eligibility is focused on patients with incurable disease or those with a high risk of death with any form of monotherapy alone. The primary objective is to eliminate all disease using a multimodality treatment strategy. End points include pathological complete response and an undetectable level of serum prostate-specific antigen, with recovery of serum testosterone levels. Both are binary, objective, and provide an early, quantitative indication of efficacy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Percentage of patients with an undetectable serum PSA level following multimodality therapy.
Figure 2: Multimodality treatment schema for multiarm, multistage trials in patients with advanced-stage prostate cancer.
Figure 3: Frequency of genetic alterations in different disease states.

Similar content being viewed by others

Change history

  • 08 November 2017

    In the version of this Review published online ahead of print, The Acknowledgements section in the online and PDF versions of this manuscript originally contained the text "The authors gratefully acknowledge financial support from the Prostate Cancer Clinical Trials Consortium of the Prostate Cancer Foundation, and a SPORE Center Grant to the Sidney Kimmel Center for Prostate and Urologic Cancers." This was incorrect and has been corrected to "The authors gratefully acknowledge financial support from the Department of Defense Prostate Cancer Research Program (PC121111 and PC131984), the NIH/NCI (Cancer Center Support Grant P30-CA008748, P50-CA92629 SPORE in Prostate Cancer), the Prostate Cancer Foundation, and the Sidney Kimmel Center for Prostate and Urologic Cancers” in the online and PDF versions of this manuscript.

References

  1. Tannock, I. F. et al. Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. N. Engl. J. Med. 351, 1502–1512 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Kantoff, P. W. et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N. Engl. J. Med. 363, 411–422 (2010).

    CAS  PubMed  Google Scholar 

  3. de Bono, J. S. et al. Prednisone plus cabazitaxel or mitoxantrone for metastatic castration-resistant prostate cancer progressing after docetaxel treatment: a randomised open-label trial. Lancet 376, 1147–1154 (2010).

    CAS  PubMed  Google Scholar 

  4. de Bono, J. S. et al. Abiraterone and increased survival in metastatic prostate cancer. N. Engl. J. Med. 364, 1995–2005 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Ryan, C. J. et al. Abiraterone in metastatic prostate cancer without previous chemotherapy. N. Engl. J. Med. 368, 138–148 (2013).

    CAS  PubMed  Google Scholar 

  6. Scher, H. I. et al. Increased survival with enzalutamide in prostate cancer after chemotherapy. N. Engl. J. Med. 367, 1187–1197 (2012).

    Article  CAS  PubMed  Google Scholar 

  7. Beer, T. M. et al. Enzalutamide in metastatic prostate cancer before chemotherapy. N. Engl. J. Med. 371, 424–433 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Mateo, J. et al. DNA-repair defects and olaparib in metastatic prostate cancer. N. Engl. J. Med. 373, 1697–1708 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Cancer Genome Atlas Research Network. The molecular taxonomy of primary prostate cancer. Cell 163, 1011–1025 (2015).

  10. Abida, W. et al. Genomic characterization of primary and metastatic prostate cancer (PC) using a targeted next-generation sequencing assay [abstract]. J. Clin. Oncol. 34 (Suppl.), 254 (2016).

    Google Scholar 

  11. Scher, H. I. et al. Design and end points of clinical trials for patients with progressive prostate cancer and castrate levels of testosterone: recommendations of the Prostate Cancer Clinical Trials Working Group. J. Clin. Oncol. 26, 1148–1159 (2008).

    PubMed  Google Scholar 

  12. [No authors listed.] NOVANTRONE® mitoXANTRONE for injection concentrate. U.S. Food and Drug Administration https://www.accessdata.fda.gov/drugsatfda_docs/label/2009/019297s030s031lbl.pdf (2008).

  13. Morris, M. J. et al. Correlation between radiographic progression-free survival (rPFS) and overall survival (OS): Results from PREVAIL [abstract]. J. Clin. Oncol. 34 (Suppl.), 182 (2016).

    Google Scholar 

  14. Morris, M. J. et al. Radiographic progression-free survival as a response biomarker in metastatic castration-resistant prostate cancer: COU-AA-302 results. J. Clin. Oncol. 33, 1356–1363. (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Huggins, C. The Treatment of Cancer of the Prostate (The 1943 Address in Surgery before the Royal College of Physicians and Surgeons of Canada). Can. Med. Assoc. J. 50, 301–307 (1944).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Chang, A. J., Autio, K. A., Roach, M., 3rd, Scher, H. I. High-risk prostate cancer-classification and therapy. Nat. Rev. Clin. Oncol. 11, 308–323 (2014).

    PubMed  PubMed Central  Google Scholar 

  17. Mason, M. D. et al. Final report of the intergroup randomized study of combined androgen-deprivation therapy plus radiotherapy versus androgen-deprivation therapy alone in locally advanced prostate cancer. J. Clin. Oncol. 33, 2143–2150 (2015).

    PubMed  PubMed Central  Google Scholar 

  18. Widmark, A. et al. Endocrine treatment, with or without radiotherapy, in locally advanced prostate cancer (SPCG-7/SFUO-3): an open randomised phase III trial. Lancet 373, 301–308 (2009).

    CAS  PubMed  Google Scholar 

  19. Friedland, D. et al. A phase II trial of docetaxel (Taxotere) in hormone-refractory prostate cancer: correlation of antitumor effect to phosphorylation of Bcl-2. Semin. Oncol. 26, 19–23 (1999).

    CAS  PubMed  Google Scholar 

  20. Picus, J. & Schultz, M. Docetaxel (Taxotere) as monotherapy in the treatment of hormone-refractory prostate cancer: preliminary results. Semin. Oncol. 26, 14–18 (1999).

    CAS  PubMed  Google Scholar 

  21. Fizazi, K. et al. Androgen deprivation therapy plus docetaxel and estramustine versus androgen deprivation therapy alone for high-risk localised prostate cancer (GETUG 12): a phase 3 randomised controlled trial. Lancet Oncol. 16, 787–794 (2015).

    CAS  PubMed  Google Scholar 

  22. Petrylak, D. P. et al. Docetaxel and estramustine compared with mitoxantrone and prednisone for advanced refractory prostate cancer. N. Engl. J. Med. 351, 1513–1520 (2004).

    CAS  PubMed  Google Scholar 

  23. Sandler, H. M. et al. A phase III protocol of androgen suppression (AS) and 3DCRT/IMRT versus AS and 3DCRT/IMRT followed by chemotherapy (CT) with docetaxel and prednisone for localized, high-risk prostate cancer (RTOG 0521) [abstract]. J. Clin. Oncol. 33 (Suppl.), LBA5002 (2015).

    Google Scholar 

  24. Glode, L. M. et al. Adjuvant androgen deprivation (ADT) versus mitoxantrone plus prednisone (MP) plus ADT in high-risk prostate cancer (PCa) patients following radical prostatectomy: A phase III intergroup trial (SWOG S9921) NCT00004124 [abstract]. J. Clin. Oncol. 35 (Suppl.), 2 (2017).

    Google Scholar 

  25. Royce, T. J. et al. Surrogate end points for all-cause mortality in men with localized unfavorable-risk prostate cancer treated with radiation therapy versus radiation therapy plus androgen deprivation therapy: a secondary analysis of a randomized clinical trial. JAMA Oncol. 3, 652–658 (2017).

    PubMed  PubMed Central  Google Scholar 

  26. ICECaP Working Group et al. The development of Intermediate Clinical Endpoints in Cancer of the Prostate (ICECaP). J. Natl Cancer Inst. 107, djv261 (2015).

  27. Xie, W. et al. Metastasis-free survival (MFS) is a surrogate for overall survival (OS) in localized prostate cancer (CaP) [abstract]. Ann. Oncol. 27 (Suppl. 6), 717O (2016).

    Google Scholar 

  28. Pound, C. R. et al. Natural history of progression after PSA elevation following radical prostatectomy. JAMA 281, 1591–1597 (1999).

    CAS  PubMed  Google Scholar 

  29. Yossepowitch, O. et al. Radical prostatectomy for clinically localized, high risk prostate cancer: critical analysis of risk assessment methods. J. Urol. 178, 493–499 (2007).

    PubMed  Google Scholar 

  30. Briganti, A. et al. Prediction of outcome following early salvage radiotherapy among patients with biochemical recurrence after radical prostatectomy. Eur. Urol. 66, 479–486 (2014).

    CAS  PubMed  Google Scholar 

  31. Brockman, J. A. et al. Nomogram predicting prostate cancer-specific mortality for men with biochemical recurrence after radical prostatectomy. Eur. Urol. 67, 1160–1167 (2015).

    PubMed  Google Scholar 

  32. Katz, M. S. et al. Predictors of biochemical outcome with salvage conformal radiotherapy after radical prostatectomy for prostate cancer. J. Clin. Oncol. 21, 483–489 (2003).

    PubMed  Google Scholar 

  33. Karlin, J. D. et al. Identifying appropriate patients for early salvage radiotherapy after prostatectomy. J. Urol. 190, 1410–1415 (2013).

    PubMed  Google Scholar 

  34. Shipley, W. U. et al. Radiation with or without antiandrogen therapy in recurrent prostate cancer. N. Engl. J. Med. 376, 417–428 (2017).

    PubMed  PubMed Central  Google Scholar 

  35. Carrie, C. et al. Salvage radiotherapy with or without short-term hormone therapy for rising prostate-specific antigen concentration after radical prostatectomy (GETUG-AFU 16): a randomised, multicentre, open-label phase 3 trial. Lancet Oncol. 17, 747–756 (2016).

    CAS  PubMed  Google Scholar 

  36. Crawford, E. D. et al. A controlled trial of leuprolide with and without flutamide in prostatic carcinoma. N. Engl. J. Med. 321, 419–424 (1989).

    CAS  PubMed  Google Scholar 

  37. Eisenberger, M. A. et al. Bilateral orchiectomy with or without flutamide for metastatic prostate cancer. N. Engl. J. Med. 339, 1036–1042 (1998).

    CAS  PubMed  Google Scholar 

  38. Prostate Cancer Trialists' Collaborative Group. Maximum androgen blockade in advanced prostate cancer: an overview of the randomised trials. Lancet 355, 1491–1498 (2000).

  39. Bennett, C. L. et al. Maximum androgen-blockade with medical or surgical castration in advanced prostate cancer: a meta-analysis of nine published randomized controlled trials and 4128 patients using flutamide. Prostate Cancer Prostatic Dis. 2, 4–8 (1999).

    CAS  PubMed  Google Scholar 

  40. Bertagna, C., De Gery, A., Hucher, M., Francois, J. P. & Zanirato, J. Efficacy of the combination of nilutamide plus orchidectomy in patients with metastatic prostatic cancer. A meta-analysis of seven randomized double-blind trials (1056 patients). Br. J. Urol. 73, 396–402 (1994).

    CAS  PubMed  Google Scholar 

  41. Caubet, J. F. et al. Maximum androgen blockade in advanced prostate cancer: a meta-analysis of published randomized controlled trials using nonsteroidal antiandrogens. Urology 49, 71–78 (1997).

    CAS  PubMed  Google Scholar 

  42. Schmitt, B. et al. Combined androgen blockade with nonsteroidal antiandrogens for advanced prostate cancer: a systematic review. Urology 57, 727–732 (2001).

    CAS  PubMed  Google Scholar 

  43. Seidenfeld, J. et al. Relative effectiveness and cost-effectiveness of methods of androgen suppression in the treatment of advanced prostate cancer. Evid. Rep. Technol. Assess. 4, 1–246 (1999).

    Google Scholar 

  44. Sweeney, C. et al. Impact on overall survival (OS) with chemohormonal therapy versus hormonal therapy for hormone-sensitive newly metastatic prostate cancer (mPrCa): an ECOG-led phase III randomized trial [abstract]. J. Clin. Oncol. 32, (Suppl.), LBA2 (2014).

    Google Scholar 

  45. Sweeney, C. J. et al. Chemohormonal therapy in metastatic hormone-sensitive prostate cancer. N. Engl. J. Med. 373, 737–746 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Sweeney, C. et al. Long term efficacy and QOL data of chemohormonal therapy (C-HT) in low and high volume hormone naïve metastatic prostate cancer (PrCa): E3805 CHAARTED trial [abstract]. Ann. Oncol. 27 (Suppl. 6), 720PD (2016).

    Google Scholar 

  47. James, N. D. et al. Docetaxel and/or zoledronic acid for hormone-naïve prostate cancer: first overall survival results from STAMPEDE (NCT00268476) [abstract]. J. Clin. Oncol. 33, (Suppl.), 5001 (2015).

    Google Scholar 

  48. James, N. D. et al. Addition of docetaxel, zoledronic acid, or both to first-line long-term hormone therapy in prostate cancer (STAMPEDE): survival results from an adaptive, multiarm, multistage, platform randomised controlled trial. Lancet 387, 1163–1177 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Gravis, G. et al. Androgen-deprivation therapy alone or with docetaxel in non-castrate metastatic prostate cancer (GETUG-AFU 15): a randomised, open-label, phase 3 trial. Lancet Oncol. 14, 149–158 (2013).

    CAS  PubMed  Google Scholar 

  50. Gravis, G. et al. Androgen deprivation therapy (ADT) plus docetaxel versus ADT alone in metastatic non castrate prostate cancer: impact of metastatic burden and long-term survival analysis of the randomized phase 3 GETUG-AFU15 trial. Eur. Urol. 70, 256–262 (2015).

    PubMed  Google Scholar 

  51. Fizazi, K. et al. Abiraterone plus prednisone in metastatic, castration-sensitive prostate cancer. N. Engl. J. Med. 377, 352–360 (2017).

    CAS  PubMed  Google Scholar 

  52. James, N. D. et al. Abiraterone for prostate cancer not previously treated with hormone therapy. N. Engl. J. Med. 377, 338–351 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Taplin, M. E. et al. Intense androgen-deprivation therapy with abiraterone acetate plus leuprolide acetate in patients with localized high-risk prostate cancer: results of a randomized phase II neoadjuvant study. J. Clin. Oncol. 32, 3705–3715 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. O'Shaughnessy, M. J. et al. A pilot study of a multimodal treatment paradigm to accelerate drug evaluations in early stage metastatic prostate cancer. Urology 102, 164–172 (2016).

    PubMed  Google Scholar 

  55. Sternberg, C. N. et al. M-VAC (methotrexate, vinblastine, doxorubicin and cisplatin) for advanced transitional cell carcinoma of the urothelium. J. Urol. 139, 461–469 (1988).

    CAS  PubMed  Google Scholar 

  56. Hendry, W. F. et al. Metastatic nonseminomatous germ cell tumors of the testis: results of elective and salvage surgery for patients with residual retroperitoneal masses. Cancer 94, 1668–1676 (2002).

    PubMed  Google Scholar 

  57. Eggener, S. E. et al. Pathologic findings and clinical outcome of patients undergoing retroperitoneal lymph node dissection after multiple chemotherapy regimens for metastatic testicular germ cell tumors. Cancer 109, 528–535 (2007).

    PubMed  Google Scholar 

  58. Symmans, W. F. et al. Long-term prognostic risk after neoadjuvant chemotherapy associated with residual cancer burden and breast cancer subtype. J. Clin. Oncol. 35, 1049–1060 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Berruti, A. et al. Pathologic complete response as a potential surrogate for the clinical outcome in patients with breast cancer after neoadjuvant therapy: a meta-regression of 29 randomized prospective studies. J. Clin. Oncol. 32, 3883–3891 (2014).

    PubMed  Google Scholar 

  60. Attard, G. et al. Phase I clinical trial of a selective inhibitor of CYP17, abiraterone acetate, confirms that castration-resistant prostate cancer commonly remains hormone driven. J. Clin. Oncol. 26, 4563–4571 (2008).

    CAS  PubMed  Google Scholar 

  61. Tran, C. et al. Development of a second-generation antiandrogen for treatment of advanced prostate cancer. Science 324, 787–790 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Shore, N. D. et al. Efficacy and safety of enzalutamide versus bicalutamide for patients with metastatic prostate cancer (TERRAIN): a randomised, double-blind, phase 2 study. Lancet Oncol. 17, 153–163 (2016).

    CAS  PubMed  Google Scholar 

  63. Penson, D. F. et al. Enzalutamide versus bicalutamide in castration-resistant prostate cancer: the STRIVE trial. J. Clin. Oncol. 34, 2098–2106 (2016).

    CAS  PubMed  Google Scholar 

  64. Scher, H. I. et al. Antitumour activity of MDV3100 in castration-resistant prostate cancer: a phase 1–2 study. Lancet 375, 1437–1446 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Symmans, W. F. et al. Measurement of residual breast cancer burden to predict survival after neoadjuvant chemotherapy. J. Clin. Oncol. 25, 4414–4422 (2007).

    PubMed  Google Scholar 

  66. Crook, J. M. et al. Intermittent androgen suppression for rising PSA level after radiotherapy. N. Engl. J. Med. 367, 895–903 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Hussain, M. et al. Intermittent versus continuous androgen deprivation in prostate cancer. N. Engl. J. Med. 368, 1314–1325 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Rathkopf, D. et al. Phase II trial of docetaxel with rapid androgen cycling for progressive noncastrate prostate cancer. J. Clin. Oncol. 26, 2959–2965 (2008).

    CAS  PubMed  Google Scholar 

  69. Morris, M. J. et al. Efficacy analysis of a phase III study of androgen deprivation therapy (ADT) +/- docetaxel (D) for men with biochemical relapse (BCR) after prostatectomy [abstract]. J. Clin. Oncol. 33 (Suppl.), 5011 (2015).

    Google Scholar 

  70. James, N. D. et al. Survival with newly diagnosed metastatic prostate cancer in the “docetaxel era”: data from 917 patients in the control arm of the STAMPEDE trial (MRC PR08, CRUK/06/019). Eur. Urol. 67, 1028–1038 (2015).

    PubMed  Google Scholar 

  71. Hussain, M. et al. Absolute prostate-specific antigen value after androgen deprivation is a strong independent predictor of survival in new metastatic prostate cancer: data from Southwest Oncology Group Trial 9346 (INT-0162). J. Clin. Oncol. 24, 3984–3990 (2006).

    PubMed  Google Scholar 

  72. Heidenreich, A., Pfister, D. & Porres, D. Cytoreductive radical prostatectomy in patients with prostate cancer and low volume skeletal metastases: results of a feasibility and case-control study. J. Urol. 193, 832–838 (2015).

    PubMed  Google Scholar 

  73. Sooriakumaran, P. et al. A multi-institutional analysis of perioperative outcomes in 106 men who underwent radical prostatectomy for distant metastatic prostate cancer at presentation. Eur. Urol. 69, 788–794 (2016).

    PubMed  Google Scholar 

  74. Antwi, S. & Everson, T. M. Prognostic impact of definitive local therapy of the primary tumor in men with metastatic prostate cancer at diagnosis: a population-based, propensity score analysis. Cancer Epidemiol. 38, 435–441 (2014).

    PubMed  Google Scholar 

  75. Culp, S. H., Schellhammer, P. F. & Williams, M. B. Might men diagnosed with metastatic prostate cancer benefit from definitive treatment of the primary tumor? A SEER-based study. Eur. Urol. 65, 1058–1066 (2014).

    PubMed  Google Scholar 

  76. Rusthoven, C. G. et al. Improved survival with prostate radiation in addition to androgen deprivation therapy for men with newly diagnosed metastatic prostate cancer. J. Clin. Oncol. 34, 2835–2842 (2016).

    CAS  PubMed  Google Scholar 

  77. Moschini, M., Soria, F., Briganti, A. & Shariat, S. F. The impact of local treatment of the primary tumor site in node positive and metastatic prostate cancer patients. Prostate Cancer Prostatic Dis. 20, 7–11 (2017).

    CAS  PubMed  Google Scholar 

  78. Ost, P. et al. Progression-free survival following stereotactic body radiotherapy for oligometastatic prostate cancer treatment-naive recurrence: a multi-institutional analysis. Eur. Urol. 69, 9–12 (2016).

    PubMed  Google Scholar 

  79. Seung, S. K. et al. American College of Radiology (ACR) and American Society for Radiation Oncology (ASTRO) practice guideline for the performance of stereotactic radiosurgery (SRS). Am. J. Clin. Oncol. 36, 310–315 (2013).

    PubMed  PubMed Central  Google Scholar 

  80. Ost, P. et al. Metastasis-directed therapy of regional and distant recurrences after curative treatment of prostate cancer: a systematic review of the literature. Eur. Urol. 67, 852–863 (2015).

    PubMed  Google Scholar 

  81. Berkovic, P. et al. Salvage stereotactic body radiotherapy for patients with limited prostate cancer metastases: deferring androgen deprivation therapy. Clin. Genitourin. Cancer 11, 27–32 (2013).

    PubMed  Google Scholar 

  82. James, N. D. et al. STAMPEDE: Systemic Therapy for Advancing or Metastatic Prostate Cancer — a multi-arm multi-stage randomised controlled trial. Clin. Oncol. 20, 577–581 (2008).

    CAS  Google Scholar 

  83. James, N. D. et al. Systemic therapy for advancing or metastatic prostate cancer (STAMPEDE): a multi-arm, multistage randomized controlled trial. BJU Int. 103, 464–469 (2008).

    PubMed  Google Scholar 

  84. Parmar, M. K. et al. Speeding up the evaluation of new agents in cancer. J. Natl Cancer Inst. 100, 1204–1214 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Sydes, M. R. et al. Flexible trial design in practice — stopping arms for lack-of-benefit and adding research arms mid-trial in STAMPEDE: a multi-arm multi-stage randomized controlled trial. Trials 13, 168 (2012).

    PubMed  PubMed Central  Google Scholar 

  86. Epstein, J. I. et al. A contemporary prostate cancer grading system: a validated alternative to the Gleason score. Eur. Urol. 69, 428–435 (2016).

    PubMed  Google Scholar 

  87. Den, R. B. et al. Decipher correlation patterns post prostatectomy: initial experience from 2342 prospective patients. Prostate Cancer Prostatic Dis. 19, 374–379 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Cullen, J. et al. A biopsy-based 17-gene genomic prostate score predicts recurrence after radical prostatectomy and adverse surgical pathology in a racially diverse population of men with clinically low- and intermediate-risk prostate cancer. Eur. Urol. 68, 123–131 (2015).

    PubMed  Google Scholar 

  89. Feng, F. Y. et al. Luminal and basal subtyping of prostate cancer [abstract]. J. Clin. Oncol. 35 (Suppl.), 3 (2017).

    Google Scholar 

  90. Cooperberg, M. R. et al. Combined value of validated clinical and genomic risk stratification tools for predicting prostate cancer mortality in a high-risk prostatectomy cohort. Eur. Urol. 67, 326–333 (2015).

    PubMed  Google Scholar 

  91. Klein, E. A. et al. A genomic classifier improves prediction of metastatic disease within 5 years after surgery in node-negative high-risk prostate cancer patients managed by radical prostatectomy without adjuvant therapy. Eur. Urol. 67, 778–786 (2015).

    PubMed  Google Scholar 

  92. Ross, A. E. et al. Tissue-based genomics augments post-prostatectomy risk stratification in a natural history cohort of intermediate- and high-risk men. Eur. Urol. 69, 157–165 (2016).

    PubMed  Google Scholar 

  93. Touijer, K. A., Mazzola, C. R., Sjoberg, D. D., Scardino, P. T. & Eastham, J. A. Long-term outcomes of patients with lymph node metastasis treated with radical prostatectomy without adjuvant androgen-deprivation therapy. Eur. Urol. 65, 20–25 (2014).

    PubMed  Google Scholar 

  94. Evangelista, L., Guttilla, A., Zattoni, F., Muzzio, P. C. & Zattoni, F. Utility of choline positron emission tomography/computed tomography for lymph node involvement identification in intermediate- to high-risk prostate cancer: a systematic literature review and meta-analysis. Eur. Urol. 63, 1040–1048 (2013).

    PubMed  Google Scholar 

  95. Hovels, A. M. et al. The diagnostic accuracy of CT and MRI in the staging of pelvic lymph nodes in patients with prostate cancer: a meta-analysis. Clin. Radiol 63, 387–395 (2008).

    CAS  PubMed  Google Scholar 

  96. Maurer, T. et al. Diagnostic efficacy of 68gallium-PSMA positron emission tomography compared to conventional imaging for lymph node staging of 130 consecutive patients with intermediate to high risk prostate cancer. J. Urol. 195, 1436–1443 (2016).

    PubMed  Google Scholar 

  97. Kulshrestha, R. K., Vinjamuri, S., England, A., Nightingale, J. & Hogg, P. The role of 18F-sodium fluoride PET/CT bone scans in the diagnosis of metastatic bone disease from breast and prostate cancer. J. Nucl. Med. Technol. 44, 217–222 (2016).

    PubMed  Google Scholar 

  98. Vargas, H. A. et al. Bone metastases in castration-resistant prostate cancer: associations between morphologic CT patterns, glycolytic activity, and androgen receptor expression on PET and overall survival. Radiology 271, 220–229 (2014).

    PubMed  Google Scholar 

  99. Robertson, N. L. et al. Combined whole-body and multi-parametric prostate MRI as a single-step approach for the simultaneous assessment of local recurrence and metastatic disease after radical prostatectomy. J. Urol. 198, 65–70 (2017).

    PubMed  PubMed Central  Google Scholar 

  100. Gillessen, S. et al. Management of patients with advanced prostate cancer: the report of the Advanced Prostate Cancer Consensus Conference APCCC 2017. Eur. Urol. http://dx.doi.org/10.1016/j.eururo.2017.06.002 (2017).

  101. Kim, M. Y. et al. Tumor self-seeding by circulating cancer cells. Cell 139, 1315–1326 (2009).

    PubMed  PubMed Central  Google Scholar 

  102. Abdollah, F. et al. Impact of adjuvant radiotherapy on survival of patients with node-positive prostate cancer. J. Clin. Oncol. 32, 3939–3947 (2014).

    PubMed  Google Scholar 

  103. Bolla, M. et al. Postoperative radiotherapy after radical prostatectomy for high-risk prostate cancer: long-term results of a randomised controlled trial (EORTC trial 22911). Lancet 380, 2018–2027 (2012).

    PubMed  Google Scholar 

  104. Cortazar, P. et al. Pathological complete response and long-term clinical benefit in breast cancer: the CTNeoBC pooled analysis. Lancet 384, 164–172 (2014).

    PubMed  Google Scholar 

  105. Robinson, D. et al. Integrative clinical genomics of advanced prostate cancer. Cell 161, 1215–1228 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER). Guidance for industry pathological complete response in neoadjuvant treatment of high-risk early-stage breast cancer: use as an endpoint to support accelerated approval. U.S. Food and Drug Administration http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM305501.pdf (2014)

  107. Abida, W. et al. Prospective genomic profiling of prostate cancer across disease states reveals germline and somatic alterations that may impact clinical decision making. JCO Precis. Oncol. http://dx.doi.org/10.1200/PO.17.00029 (2017).

  108. Jones, C. U. et al. Radiotherapy and short-term androgen deprivation for localized prostate cancer. N. Engl. J. Med. 365, 107–118 (2011).

    CAS  PubMed  Google Scholar 

  109. Warde, P. et al. Combined androgen deprivation therapy and radiation therapy for locally advanced prostate cancer: a randomised, phase 3 trial. Lancet 378, 2104–2111 (2011).

    PubMed  PubMed Central  Google Scholar 

  110. Labrie, F. et al. Neoadjuvant hormonal therapy: the Canadian experience. Urology 49, 56–64 (1997).

    CAS  PubMed  Google Scholar 

  111. van der Kwast, T. H. et al. Prolonged neoadjuvant combined androgen blockade leads to a further reduction of prostatic tumor volume: three versus six months of endocrine therapy. Urology 53, 523–529 (1999).

    CAS  PubMed  Google Scholar 

  112. Gleave, M. E. et al. Randomized comparative study of 3 versus 8-month neoadjuvant hormonal therapy before radical prostatectomy: biochemical and pathological effects. J. Urol. 166, 500–507 (2001).

    CAS  PubMed  Google Scholar 

  113. Klotz, L. H. et al. Long-term followup of a randomized trial of 0 versus 3 months of neoadjuvant androgen ablation before radical prostatectomy. J. Urol. 170, 791–794 (2003).

    CAS  PubMed  Google Scholar 

  114. Mostaghel, E. A. et al. Targeted androgen pathway suppression in localized prostate cancer: a pilot study. J. Clin. Oncol. 32, 229–237 (2014).

    PubMed  Google Scholar 

  115. Montgomery, B. et al. Neoadjuvant enzalutamide prior to prostatectomy. Clin. Cancer Res. 23, 2169–2176 (2017).

    CAS  PubMed  Google Scholar 

  116. Efstathiou, E. et al. Neoadjuvant enzalutamide (ENZA) and abiraterone acetate (AA) plus leuprolide acetate (LHRHa) versus AA+ LHRHa in localized high-risk prostate cancer (LHRPC) [abstract]. J. Clin. Oncol. 34 (Suppl.), 5002 (2016).

    Google Scholar 

  117. National Comprehensive Cancer Network. Prostate Cancer Guidelines (Version 2.2017). https://www.nccn.org/professionals/physician_gls/pdf/prostate.pdf. (2017).

  118. Thompson, I. et al. Guideline for the management of clinically localized prostate cancer: 2007 update. J. Urol. 177, 2106–2131 (2007).

    PubMed  Google Scholar 

  119. Mottet, N. et al. EAU-ESTRO-SIOG guidelines on prostate cancer. Part 1: screening, diagnosis, and local treatment with curative intent. Eur. Urol. 71, 618–629 (2017).

    PubMed  Google Scholar 

  120. Roach, M. et al. Four prognostic groups predict long-term survival from prostate cancer following radiotherapy alone on Radiation Therapy Oncology Group clinical trials. Int. J. Radiat. Oncol. Biol. Phys. 47, 609–615 (2000).

    CAS  PubMed  Google Scholar 

  121. Narang, A. K. et al. Very high-risk localized prostate cancer: outcomes following definitive radiation. Int. J. Radiat. Oncol. Biol. Phys. 94, 254–262 (2016)

    PubMed  Google Scholar 

  122. Sundi, D. et al. Identification of men with the highest risk of early disease recurrence after radical prostatectomy. Prostate 74, 628–636 (2014).

    PubMed  PubMed Central  Google Scholar 

  123. Joniau, S. et al. Stratification of high-risk prostate cancer into prognostic categories: a European multi-institutional study. Eur. Urol. 67, 157–164 (2015).

    PubMed  Google Scholar 

  124. Cooperberg, M. R. et al. The University of California, San Francisco Cancer of the Prostate Risk Assessment score: a straightforward and reliable preoperative predictor of disease recurrence after radical prostatectomy. J. Urol. 173, 1938–1942 (2005).

    PubMed  PubMed Central  Google Scholar 

  125. Stephenson, A. J. et al. Prostate cancer-specific mortality after radical prostatectomy for patients treated in the prostate-specific antigen era. J. Clin. Oncol. 27, 4300–4305 (2009).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support from the Department of Defense Prostate Cancer Research Program (PC121111 and PC131984), the NIH/NCI (Cancer Center Support Grant P30-CA008748, P50-CA92629 SPORE in Prostate Cancer), the Prostate Cancer Foundation, and the Sidney Kimmel Center for Prostate and Urologic Cancers.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to all aspects of the preparation of this manuscript.

Corresponding author

Correspondence to Howard I. Scher.

Ethics declarations

Competing interests

H.I.S. declares that he is a member of the board of directors of Asterias Biotherapeutics, has served as a compensated consultant of Blue Earth Diagnostics, Sanofi Aventis, and WCG Oncology, and has served as an uncompensated consultant of Ferring Pharmaceuticals, Janssen Research & Development, LLC and Medivation. M.Y.T., M.J.O., S.M.M. and H.A.V. declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teo, M., O'Shaughnessy, M., McBride, S. et al. Drug development for noncastrate prostate cancer in a changed therapeutic landscape. Nat Rev Clin Oncol 15, 168–182 (2018). https://doi.org/10.1038/nrclinonc.2017.160

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2017.160

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing