Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Management of locally advanced breast cancer—perspectives and future directions

A Corrigendum to this article was published on 14 April 2015

This article has been updated

Key Points

  • The definition of locally advanced breast cancer (LABC) can be broadened to include large operable tumours, however, we commonly use this term to refer to inoperable cancers

  • The management of LABC constitutes an important clinical problem, particularly in developing countries and those without widely adapted awareness programmes

  • The optimal management of LABC requires a multidisciplinary approach and collaboration between medical, surgical and radiation oncologists

  • Few data exist on LABC systemic treatment; the majority of data are from studies including both large-operable and locally advanced inoperable tumours—posing many challenges in the management of LABC

  • Several new molecularly targeted agents are under clinical investigation aiming to improve the clinical outcome of patients with LABC

  • The negative results of the ALTTO trial after promising data from NeoALTTO advocate a reassessment of pathological complete response as a suitable surrogate marker for long-term outcome in breast cancer

Abstract

Locally advanced breast cancer (LABC) constitutes a heterogeneous entity that includes advanced-stage primary tumours, cancers with extensive nodal involvement and inflammatory breast carcinomas. Although the definition of LABC can be broadened to include some large operable breast tumours, we use this term to strictly refer to inoperable cancers that are included in the above-mentioned categories. The prognosis of such tumours is often unfavourable; despite aggressive treatment, many patients eventually develop distant metastases and die from the disease. Advances in systemic therapy, including radiation treatment, surgical techniques and the development of new targeted agents have significantly improved clinical outcomes for patients with this disease. Notwithstanding these advances, LABC remains an important clinical problem, particularly in developing countries and those without widely adapted breast cancer awareness programmes. The optimal management of LABC requires a multidisciplinary approach, a well-coordinated treatment schedule and close cooperation between medical, surgical and radiation oncologists. In this Review, we discuss the current state of the art and possible future treatment strategies for patients with LABC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Current management approach for patients with LABC and IBC.

Similar content being viewed by others

Change history

  • 14 April 2015

    In the version of this article originally published online and in print, the word 'radiotherapy' was missing in figure 1 from one of the boxes. Additionally, several of the boxes had been merged, which meant the order of treatments was unclear. The figure has now been corrected for the HTML and PDF versions of the article published online.

References

  1. Giordano, S. H. Update on locally advanced breast cancer. Oncologist 8, 521–530 (2003).

    Article  PubMed  Google Scholar 

  2. International Union Against Cancer. TNM classification of malignant tumours 7th edn (Wiley-Blackwell, 2009).

  3. Taghian, A., El-Ghamry, M. & Merajver, S. Overview in the treatment of newly diagnosed, non- metastatic breast cancer. Uptodate [online], (2013).

    Google Scholar 

  4. NCCN. Management Guidelines for breast cancer [online], (2013).

  5. Yamauchi, H. et al. Inflammatory breast cancer: what we know and what we need to learn. Oncologist 17, 891–899 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kesson, E. M., Allardice, G. M., George, W. D., Burns, H. J. & Morrison, D. S. Effects of multidisciplinary team working on breast cancer survival: retrospective, comparative, interventional cohort study of 13,722 women. BMJ 344, e2718 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Jemal, A. et al. Cancer statistics. CA Cancer J. Clin. 59, 225–249 (2009).

    Article  PubMed  Google Scholar 

  8. Newman, L. A. Epidemiology of locally advanced breast cancer. Semin. Radiat. Oncol. 19, 195–203 (2009).

    Article  PubMed  Google Scholar 

  9. Allemani, C. et al. Breast cancer survival in the US and Europe: a CONCORD high-resolution study. Int. J. Cancer 132, 1170–1181 (2013).

    Article  CAS  PubMed  Google Scholar 

  10. Seidman, H., Gelb, S. K., Silverberg, E., LaVerda, N. & Lubera, J. A. Survival experience in the Breast Cancer Detection Demonstration Project. CA Cancer J. Clin. 37, 258–290 (1987).

    Article  CAS  PubMed  Google Scholar 

  11. American College of Surgeons. National Cancer Database [online], (2014).

  12. El Saghir, N. S. et al. Breast cancer management in low resource countries (LRCs): consensus statement from the Breast Health Global Initiative. Breast 20 (Suppl. 2), S3–S11 (2011).

    Article  PubMed  Google Scholar 

  13. Berg, J. W. & Hutter, R. V. Breast cancer. Cancer 75, 257–269 (1995).

    Article  CAS  PubMed  Google Scholar 

  14. Chang, S., Parker, S. L., Pham, T., Buzdar, A. U. & Hursting, S. D. Inflammatory breast carcinoma incidence and survival: the surveillance, epidemiology, and end results programme of the National Cancer Institute, 1975–1992. Cancer 82, 2366–2372 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Bonnefoi, H. et al. TP53 status for prediction of sensitivity to taxane versus non-taxane neoadjuvant chemotherapy in breast cancer (EORTC 10994/BIG 1–00): a randomised phase 3 trial. Lancet Oncol. 12, 527–539 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Buzdar, A. U. et al. Combined modality treatment of stage III and inflammatory breast cancer. MD Anderson Cancer Center experience. Surg. Oncol. Clin. N. Am. 4, 715–734 (1995).

    Article  CAS  PubMed  Google Scholar 

  17. Dawood, S. et al. Differences in survival among women with stage III inflammatory and noninflammatory locally advanced breast cancer appear early: a large population-based study. Cancer 117, 1819–1826 (2011).

    Article  PubMed  Google Scholar 

  18. Tai, P. et al. Short- and long-term cause-specific survival of patients with inflammatory breast cancer. BMC Cancer 5, 137 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Dawood, S. et al. Survival of women with inflammatory breast cancer: a large population-based studydagger. Ann. Oncol. 25, 1143–1151 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dawood, S. et al. International expert panel on inflammatory breast cancer: consensus statement for standardized diagnosis and treatment. Ann. Oncol. 22, 515–523 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. Le, M. G. et al. Are risk factors for breast cancer similar in women with inflammatory breast cancer and in those with non-inflammatory breast cancer? Breast 15, 355–362 (2006).

    Article  PubMed  Google Scholar 

  22. Hance, K. W., Anderson, W. F., Devesa, S. S., Young, H. A. & Levine, P. H. Trends in inflammatory breast carcinoma incidence and survival: the surveillance, epidemiology, and end results programme at the National Cancer Institute. J. Natl Cancer Inst. 97, 966–975 (2005).

    Article  PubMed  Google Scholar 

  23. Diab, S. G., Elledge, R. M. & Clark, G. M. Tumour characteristics and clinical outcome of elderly women with breast cancer. J. Natl Cancer Inst. 92, 550–556 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Yancik, R., Ries, L. G. & Yates, J. W. Breast cancer in aging women. A population-based study of contrasts in stage, surgery, and survival. Cancer 63, 976–981 (1989).

    Article  CAS  PubMed  Google Scholar 

  25. Bonnefoi, H. et al. Locally advanced/inflammatory breast cancers treated with intensive epirubicin-based neoadjuvant chemotherapy: are there molecular markers in the primary tumour that predict for 5-year clinical outcome? Ann. Oncol. 14, 406–413 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Kleer, C. G., van Golen, K. L. & Merajver, S. D. Molecular biology of breast cancer metastasis. Inflammatory breast cancer: clinical syndrome and molecular determinants. Breast Cancer Res. 2, 423–429 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wu, M. & Merajver, S. D. Molecular biology of inflammatory breast cancer: applications to diagnosis, prognosis, and therapy. Breast Dis. 22, 25–34 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Nguyen, D. M. et al. Molecular heterogeneity of inflammatory breast cancer: a hyperproliferative phenotype. Clin. Cancer Res. 12, 5047–5054 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Van der Auwera, I. et al. Increased angiogenesis and lymphangiogenesis in inflammatory versus noninflammatory breast cancer by real-time reverse transcriptase-PCR gene expression quantification. Clin. Cancer Res. 10, 7965–7971 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Shirakawa, K. et al. Tumour-infiltrating endothelial cells and endothelial precursor cells in inflammatory breast cancer. Int. J. Cancer 99, 344–351 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Skobe, M. et al. Induction of tumour lymphangiogenesis by VEGF-C promotes breast cancer metastasis. Nat. Med. 7, 192–198 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Stacker, S. A. et al. VEGF-D promotes the metastatic spread of tumour cells via the lymphatics. Nat. Med. 7, 186–191 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Kurebayashi, J. et al. Expression of vascular endothelial growth factor (VEGF) family members in breast cancer. Jpn J. Cancer Res. 90, 977–981 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Robbins, G. F., Shah, J., Rosen, P., Chu, F. & Taylor, J. Inflammatory carcinoma of the breast. Surg. Clin. N. Am. 54, 801–810 (1974).

    Article  CAS  PubMed  Google Scholar 

  35. van Golen, C. M. & van Golen, K. L. Inflammatory breast cancer stem cells: contributors to aggressiveness, metastatic spread and dormancy. J. Mol. Biomarkers Diagn. http://dx.doi.org/10.4172/2155-9929.S8-002 (2012).

  36. van Golen, K. L., Wu, Z. F., Qiao, X. T., Bao, L. W. & Merajver, S. D. RhoC GTPase, a novel transforming oncogene for human mammary epithelial cells that partially recapitulates the inflammatory breast cancer phenotype. Cancer Res. 60, 5832–5838 (2000).

    CAS  PubMed  Google Scholar 

  37. Kleer, C. G. et al. WISP3 is a novel tumour suppressor gene of inflammatory breast cancer. Oncogene 21, 3172–3180 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Bertucci, F. et al. Gene expression profiles of inflammatory breast cancer: correlation with response to neoadjuvant chemotherapy and metastasis-free survival. Ann. Oncol. 25, 358–365 (2014).

    Article  CAS  PubMed  Google Scholar 

  39. Van, L. S. et al. Distinct molecular signature of inflammatory breast cancer by cDNA microarray analysis. Breast Cancer Res. Treat. 93, 237–246 (2005).

    Article  CAS  Google Scholar 

  40. Van Laere, S. J. et al. Uncovering the molecular secrets of inflammatory breast cancer biology: an integrated analysis of three distinct affymetrix gene expression datasets. Clin. Cancer Res. 19, 4685–4693 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kleer, C. G., van Golen, K. L., Braun, T. & Merajver, S. D. Persistent E-cadherin expression in inflammatory breast cancer. Mod. Pathol. 14, 458–464 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Colpaert, C. G. et al. Inflammatory breast cancer shows angiogenesis with high endothelial proliferation rate and strong E-cadherin expression. Br. J. Cancer 88, 718–725 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Qureshi, H. S., Linden, M. D., Divine, G. & Raju, U. B. E-cadherin status in breast cancer correlates with histologic type but does not correlate with established prognostic parameters. Am. J. Clin. Pathol. 125, 377–385 (2006).

    Article  PubMed  Google Scholar 

  44. Moll, U. M., Riou, G. & Levine, A. J. Two distinct mechanisms alter p53 in breast cancer: mutation and nuclear exclusion. Proc. Natl Acad. Sci. USA 89, 7262–7266 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Davidoff, A. M., Humphrey, P. A., Iglehart, J. D. & Marks, J. R. Genetic basis for p53 overexpression in human breast cancer. Proc. Natl Acad. Sci. USA 88, 5006–5010 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gonzalez-Angulo, A. M. et al. p53 expression as a prognostic marker in inflammatory breast cancer. Clin. Cancer Res. 10, 6215–6221 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Senkus, E. et al. Primary breast cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 24 (Suppl. 6), vi7–vi23 (2013).

    PubMed  Google Scholar 

  48. Symmans, W. F. et al. Measurement of residual breast cancer burden to predict survival after neoadjuvant chemotherapy. J. Clin. Oncol. 25, 4414–4422 (2007).

    Article  PubMed  Google Scholar 

  49. Nahleh, Z., Sivasubramaniam, D., Dhaliwal, S., Sundarajan, V. & Komrokji, R. Residual cancer burden in locally advanced breast cancer: a superior tool. Curr. Oncol. 15, 271–278 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Cortazar, P. et al. Pathological complete response and long-term clinical benefit in breast cancer: the CTNeoBC pooled analysis. Lancet 384, 164–172 (2014).

    Article  PubMed  Google Scholar 

  51. von Minckwitz, G. et al. Definition and impact of pathologic complete response on prognosis after neoadjuvant chemotherapy in various intrinsic breast cancer subtypes. J. Clin. Oncol. 30, 1796–1804 (2012).

    Article  PubMed  Google Scholar 

  52. de Lena, M., Zucali, R., Viganotti, G., Valagussa, P. & Bonadonna, G. Combined chemotherapy-radiotherapy approach in locally advanced (T3b-T4) breast cancer. Cancer Chemother. Pharmacol. 1, 53–59 (1978).

    Article  CAS  PubMed  Google Scholar 

  53. Swain, S. M. et al. Neoadjuvant chemotherapy in the combined modality approach of locally advanced nonmetastatic breast cancer. Cancer Res. 47, 3889–3894 (1987).

    CAS  PubMed  Google Scholar 

  54. Hortobagyi, G. N. et al. Multimodal treatment of locoregionally advanced breast cancer. Cancer 51, 763–768 (1983).

    Article  CAS  PubMed  Google Scholar 

  55. Powles, T. J. et al. Randomized trial of chemoendocrine therapy started before or after surgery for treatment of primary breast cancer. J. Clin. Oncol. 13, 547–552 (1995).

    Article  CAS  PubMed  Google Scholar 

  56. Fisher, B. et al. Effect of preoperative chemotherapy on the outcome of women with operable breast cancer. J. Clin. Oncol. 16, 2672–2685 (1998).

    Article  CAS  PubMed  Google Scholar 

  57. Semiglazov, V. F. et al. Primary (neoadjuvant) chemotherapy and radiotherapy compared with primary radiotherapy alone in stage IIb-IIIa breast cancer. Ann. Oncol. 5, 591–595 (1994).

    Article  CAS  PubMed  Google Scholar 

  58. Rueth, N. M. et al. Underuse of trimodality treatment affects survival for patients with inflammatory breast cancer: an analysis of treatment and survival trends from the National Cancer Database. J. Clin. Oncol. 32, 2018–2024 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Cardoso, F. 2nd. International concensus guidelines for advanced breast cancer (ABC2). Ann. Oncol. 25, 1871–1888 (2014); Breast 23, 489–502 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Heys, S. D. et al. Neoadjuvant docetaxel in breast cancer: 3-year survival results from the Aberdeen trial. Clin. Breast Cancer 3 (Suppl. 2), S69–S74 (2002).

    Article  PubMed  Google Scholar 

  61. Smith, I. C. et al. Neoadjuvant chemotherapy in breast cancer: significantly enhanced response with docetaxel. J. Clin. Oncol. 20, 1456–1466 (2002).

    Article  CAS  PubMed  Google Scholar 

  62. Eiermann, W. et al. Phase III study of doxorubicin/cyclophosphamide with concomitant versus sequential docetaxel as adjuvant treatment in patients with human epidermal growth factor receptor 2-normal, node-positive breast cancer: BCIRG-005 trial. J. Clin. Oncol. 29, 3877–3884 (2011).

    Article  CAS  PubMed  Google Scholar 

  63. Earl, H. M. et al. Effects of the addition of gemcitabine, and paclitaxel-first sequencing, in neoadjuvant sequential epirubicin, cyclophosphamide, and paclitaxel for women with high-risk early breast cancer (Neo-tAnGo): an open-label, 2x2 factorial randomised phase 3 trial. Lancet Oncol. 15, 201–212 (2014).

    Article  CAS  PubMed  Google Scholar 

  64. von Minckwitz, G. et al. Response-guided neoadjuvant chemotherapy for breast cancer. J. Clin. Oncol. 31, 3623–3630 (2013).

    Article  CAS  PubMed  Google Scholar 

  65. von Minckwitz, G. et al. Intensified neoadjuvant chemotherapy in early-responding breast cancer: phase III randomized GeparTrio study. J. Natl Cancer Inst. 100, 552–562 (2008).

    Article  CAS  PubMed  Google Scholar 

  66. Costa, S. D. et al. Neoadjuvant chemotherapy shows similar response in patients with inflammatory or locally advanced breast cancer when compared with operable breast cancer: a secondary analysis of the GeparTrio trial data. J. Clin. Oncol. 28, 83–91 (2010).

    Article  CAS  PubMed  Google Scholar 

  67. Byrski, T. et al. Response to neoadjuvant therapy with cisplatin in BRCA1-positive breast cancer patients. Breast Cancer Res. Treat. 115, 359–363 (2009).

    Article  CAS  PubMed  Google Scholar 

  68. Sikov, W. M., Berry, D. A. & Perou C. M. Impact of the addition of carboplatin and/or bevacizumab to neoadjuvant weekly paclitaxel followeed by dose-dense AC on pathologic complete response in triple-negative breast cancer (TNBC): CALGB 40603 [abstract]. San Antonio Breast Cancer Symposium S5-01 (2013).

  69. Sikov, W. M. et al. Impact of the addition of carboplatin and/or bevacizumab to neoadjuvant once-per-week paclitaxel followed by dose-dense doxorubicin and cyclophosphamide on pathologic complete response rates in stage II to III triple-negative breast cancer: CALGB 40603 (Alliance). J. Clin. Oncol. 33, 13–21 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. von Minckwitz, G., Schneeweiss, A. & Salata, C. A randomized phase II trial investigating the addition of carboplatin to neoadjuvant therapy for triple- negative and HER2 positive early breast cancer (GeparSixto). J. Clin. Oncol. 15, 747–756 (2014).

    CAS  Google Scholar 

  71. Petrelli, F. et al. The value of platinum agents as neoadjuvant chemotherapy in triple-negative breast cancers: a systematic review and meta-analysis. Breast Cancer Res. Treat. 144, 223–232 (2014).

    Article  CAS  PubMed  Google Scholar 

  72. von Minckwitz, G., Hahnen, E. & Fasching, P. Pathological complete response (p CR) rates after carboplatin-containing neoadjuvant chemotherapy in patients with germline BRCA (gBRCA) mutation and triple- negative breast cancer (TNBC):Results from GeparSixto [abstract]. J. Clin. Oncol. 32 (Suppl.), 1005 (2014).

    Article  Google Scholar 

  73. Limentani, S. A., Brufsky, A. M., Erban, J. K., Jahanzeb, M. & Lewis, D. Phase II study of neoadjuvant docetaxel, vinorelbine, and trastuzumab followed by surgery and adjuvant doxorubicin plus cyclophosphamide in women with human epidermal growth factor receptor 2-overexpressing locally advanced breast cancer. J. Clin. Oncol. 25, 1232–1238 (2007).

    Article  CAS  PubMed  Google Scholar 

  74. Horiguchi, J. et al. Neoadjuvant weekly paclitaxel with and without trastuzumab in locally advanced or metastatic breast cancer. Anticancer Res. 29, 517–524 (2009).

    CAS  PubMed  Google Scholar 

  75. Gianni, L. et al. Neoadjuvant chemotherapy with trastuzumab followed by adjuvant trastuzumab versus neoadjuvant chemotherapy alone, in patients with HER2-positive locally advanced breast cancer (the NOAH trial): a randomised controlled superiority trial with a parallel HER2-negative cohort. Lancet 375, 377–384 (2010).

    Article  CAS  PubMed  Google Scholar 

  76. Untch, M. et al. Neoadjuvant treatment with trastuzumab in HER2-positive breast cancer: results from the GeparQuattro study. J. Clin. Oncol. 28, 2024–2031 (2010).

    Article  CAS  PubMed  Google Scholar 

  77. Untch, M. et al. Pathologic complete response after neoadjuvant chemotherapy plus trastuzumab predicts favourable survival in human epidermal growth factor receptor 2-overexpressing breast cancer: results from the TECHNO trial of the AGO and GBG study groups. J. Clin. Oncol. 29, 3351–3357 (2011).

    Article  CAS  PubMed  Google Scholar 

  78. Baselga, J. et al. Lapatinib with trastuzumab for HER2-positive early breast cancer (NeoALTTO): a randomised, open-label, multicentre, phase 3 trial. Lancet 379, 633–640 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Robidoux, A. et al. Lapatinib as a component of neoadjuvant therapy for HER2-positive operable breast cancer (NSABP protocol B-41): an open-label, randomised phase 3 trial. Lancet Oncol. 14, 1183–1192 (2013).

    Article  CAS  PubMed  Google Scholar 

  80. Hurvitz, S., Miller, J. & Dichman, R. Final analysis of a phase II, 3-arm, randomized trial of neoadjuvant trastuzumab or lapatinib or the combination of trastuzumab and lapatinib, followed by 6 cycles of docetaxel and carboplatin with trastuzumab and/or lapatinib in patients with HER2+ breast cancer (TRIO-US B07) [abstract]. San Antonio Breast Cancer Symposium S1-02 (2013).

  81. Untch, M. et al. Lapatinib versus trastuzumab in combination with neoadjuvant anthracycline-taxane-based chemotherapy (GeparQuinto, GBG 44): a randomised phase 3 trial. Lancet Oncol. 13, 135–144 (2012).

    Article  CAS  PubMed  Google Scholar 

  82. Piccart, M., Holmes, A. P. & Baselga, J. First results from the phase III ALTTO trial (BIG 2–06; NCCTG [Alliance] N063D) comparing one year of anti-HER2 therapy with lapatinib alone (L) [abstract]. J. Clin. Oncol. 32 (Suppl.), LBA4 (2014).

    Article  Google Scholar 

  83. Guarneri, V. et al. Preoperative chemotherapy plus trastuzumab, lapatinib, or both in human epidermal growth factor receptor 2-positive operable breast cancer: results of the randomized phase II CHER-LOB study. J. Clin. Oncol. 30, 1989–1995 (2012).

    Article  CAS  PubMed  Google Scholar 

  84. Piccart, M. J., Holmes, A. P. & de Azambuja, E. The association between event- free survival and pathological complete response to neoadjuvant lapatinib, trastuzumab or their combination in HER2 positive breast cancer. Survival follow-up analysis of the Neo ALTTO study (BIG 1–06) [abstract]. San Antonio Breast Cancer Symposium S1–01 (2013).

  85. Carey, L., Berry, D. & Ollila, D. Clinical and translational results of CALGB 40601: A neoadjuvant phase III trial of weekly paclitaxel and trastuzumab with or without lapatinib for HER2-positive breast cancer. J. Clin. Oncol. 31 (Suppl.), 500 (2013).

    Google Scholar 

  86. Zardavas, D., Bozovic-Spasojevic, I. & de Azambuja, E. Dual human epidermal growth factor receptor 2 blockade: another step forward in treating patients with human epidermal growth factor receptor 2-positive breast cancer. Curr. Opin. Oncol. 24, 612–622 (2012).

    Article  CAS  PubMed  Google Scholar 

  87. Rimawi, M. F. et al. Multicentre phase II study of neoadjuvant lapatinib and trastuzumab with hormonal therapy and without chemotherapy in patients with human epidermal growth factor receptor 2-overexpressing breast cancer: TBCRC 006. J. Clin. Oncol. 31, 1726–1731 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Kuerer, H. M. et al. Clinical course of breast cancer patients with complete pathologic primary tumour and axillary lymph node response to doxorubicin-based neoadjuvant chemotherapy. J. Clin. Oncol. 17, 460–469 (1999).

    Article  CAS  PubMed  Google Scholar 

  89. Gianni, L. et al. Efficacy and safety of neoadjuvant pertuzumab and trastuzumab in women with locally advanced, inflammatory, or early HER2-positive breast cancer (NeoSphere): a randomised multicentre, open-label, phase 2 trial. Lancet Oncol. 13, 25–32 (2012).

    Article  CAS  PubMed  Google Scholar 

  90. Schneeweiss, A. et al. Pertuzumab plus trastuzumab in combination with standard neoadjuvant anthracycline-containing and anthracycline-free chemotherapy regimens in patients with HER2-positive early breast cancer: a randomized phase II cardiac safety study (TRYPHAENA). Ann. Oncol. 24, 2278–2284 (2013).

    Article  CAS  PubMed  Google Scholar 

  91. Bear, H. D. et al. Bevacizumab added to neoadjuvant chemotherapy for breast cancer. N. Engl. J. Med. 366, 310–320 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. von Minckwitz, G. et al. Neoadjuvant chemotherapy and bevacizumab for HER2-negative breast cancer. N. Engl. J. Med. 366, 299–309 (2012).

    Article  CAS  PubMed  Google Scholar 

  93. Earl, H., Hiller, L. & Blenkinshop C. ARTemis: a randomized trial of bevacizumab with neo-adjuvant chemotherapy (NACT) for patients with HER2 negative early breast cancer- primary endpoint, pathological complete response (p CR) [abstract]. J. Clin. Oncol. 32 (Suppl.), 1014 (2014).

    Article  Google Scholar 

  94. Cardoso, F. et al. 1st International consensus guidelines for advanced breast cancer (ABC 1). Breast 21, 242–252 (2012).

    Article  CAS  PubMed  Google Scholar 

  95. Cristiciello, C., Alkalay, M. & Fumagali, L. Identification of a specific gene signature predictive of response to bevacizumab in patients with triple- negative inflammatory breast cancer [abstract]. Ann. Oncol. 24 (Suppl. 3), 30P (2013).

    Google Scholar 

  96. Wedam, S. B. et al. Anti-angiogenic and antitumour effects of bevacizumab in patients with inflammatory and locally advanced breast cancer. J. Clin. Oncol. 24, 769–777 (2006).

    Article  CAS  PubMed  Google Scholar 

  97. Overmoyer, B. et al. Inflammatory breast cancer as a model disease to study tumour angiogenesis: results of a phase IB trial of combination SU5416 and doxorubicin. Clin. Cancer Res. 13, 5862–5868 (2007).

    Article  CAS  PubMed  Google Scholar 

  98. Pierga, J. Y. et al. Neoadjuvant bevacizumab, trastuzumab, and chemotherapy for primary inflammatory HER2-positive breast cancer (BEVERLY-2): an open-label, single-arm phase 2 study. Lancet Oncol. 13, 375–384 (2012).

    Article  CAS  PubMed  Google Scholar 

  99. Yardley, D. A. et al. Phase II study of neoadjuvant weekly nab-paclitaxel and carboplatin, with bevacizumab and trastuzumab, as treatment for women with locally advanced HER2+ breast cancer. Clin. Breast Cancer 11, 297–305 (2011).

    Article  CAS  PubMed  Google Scholar 

  100. Coudert, B., Pierga, J.-Y. & Mouret-Reynier, M.-A. AVATAXHER: A n open- label, randomized, multicentre study investigating the addition of bevacizumab (B) to neoadjuvant trastuzumab (T) plus docetaxel (D) in patients with early stage HER2 positive breast cancer (HER2+ BC) stratified according to PET change after one therapy cycle [abstract]. J. Clin. Oncol. 32 (Suppl.), 507 (2014).

    Article  Google Scholar 

  101. Bozovic-Spasojevic, I. et al. Neoadjuvant anthracycline and trastuzumab for breast cancer: is concurrent treatment safe? Lancet Oncol. 12, 209–211 (2011).

    Article  PubMed  Google Scholar 

  102. Buzdar, A. U., Suman, V. & Bernstam F. ACOSOG Z1041 (Alliance): Definitive analysis of randomized neoadjuvant trial comparing FEC followed by paclitaxel plus trastuzumab with paclitaxel plus trastuzumab followed by FEC plus trastuzumab in HER2+ operable breast cancer. Lancet Oncol. 14, 1317 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Ewer, M., Suman, V. & Buzdar, A. ACOSOG Z1041 (Alliance): cardiac events (CE) among those receiving neoadjuvant antracyclines (A) and taxanes with trastuzumab (T) for HER2+ breast cancer[abstract]. J. Clin. Oncol. 31 (Suppl.), 526 (2013).

    Google Scholar 

  104. Ellis, M. J. et al. Outcome prediction for oestrogen receptor-positive breast cancer based on postneoadjuvant endocrine therapy tumour characteristics. J. Natl Cancer Inst. 100, 1380–1388 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Semiglazov, V. F. et al. Phase 2 randomized trial of primary endocrine therapy versus chemotherapy in postmenopausal patients with oestrogen receptor-positive breast cancer. Cancer 110, 244–254 (2007).

    Article  CAS  PubMed  Google Scholar 

  106. Alba, E. et al. Chemotherapy (CT) and hormonotherapy (HT) as neoadjuvant treatment in luminal breast cancer patients: results from the GEICAM/2006–03, a multicentre, randomized, phase-II study. Ann. Oncol. 23, 3069–3074 (2012).

    Article  CAS  PubMed  Google Scholar 

  107. Masuda, N. et al. Neoadjuvant anastrozole versus tamoxifen in patients receiving goserelin for premenopausal breast cancer (STAGE): a double-blind, randomised phase 3 trial. Lancet Oncol. 13, 345–352 (2012).

    Article  CAS  PubMed  Google Scholar 

  108. Torrisi, R. et al. Letrozole plus GnRH analogue as preoperative and adjuvant therapy in premenopausal women with ER positive locally advanced breast cancer. Breast Cancer Res. Treat. 126, 431–441 (2011).

    Article  CAS  PubMed  Google Scholar 

  109. Ellis, M. J. et al. Randomized phase II neoadjuvant comparison between letrozole, anastrozole, and exemestane for postmenopausal women with oestrogen receptor-rich stage 2 to 3 breast cancer: clinical and biomarker outcomes and predictive value of the baseline PAM50-based intrinsic subtype—ACOSOG Z1031. J. Clin. Oncol. 29, 2342–2349 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Krainick-Strobel, U. E. et al. Neoadjuvant letrozole in postmenopausal oestrogen and/or progesterone receptor positive breast cancer: a phase IIb/III trial to investigate optimal duration of preoperative endocrine therapy. BMC Cancer 8, 62 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Goldhirsch, A. et al. Personalizing the treatment of women with early breast cancer: highlights of the St Gallen International Expert Consensus on the primary therapy of early breast cancer 2013. Ann. Oncol. 24, 2206–2223 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Touboul, E. et al. Possibility of conservative local treatment after combined chemotherapy and preoperative irradiation for locally advanced noninflammatory breast cancer. Int. J. Radiat. Oncol. Biol. Phys. 34, 1019–1028 (1996).

    Article  CAS  PubMed  Google Scholar 

  113. Rastogi, P. et al. Preoperative chemotherapy: updates of National Surgical Adjuvant Breast and Bowel Project Protocols B-18 and B-27. J. Clin. Oncol. 26, 778–785 (2008).

    Article  PubMed  Google Scholar 

  114. Thompson, A. M. & Moulder-Thompson, S. L. Neoadjuvant treatment of breast cancer. Ann. Oncol. 23 (Suppl. 10), x231–x236 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Whitman, G. J. & Strom, E. A. Workup and staging of locally advanced breast cancer. Semin. Radiat. Oncol. 19, 211–221 (2009).

    Article  PubMed  Google Scholar 

  116. Bogusevicius, A., Cepuliene, D. & Sepetauskiene, E. The integrated evaluation of the results of oncoplastic surgery for locally advanced breast cancer. Breast J. 20, 53–60 (2014).

    Article  PubMed  Google Scholar 

  117. Zucca Matthes, A. G. et al. Feasibility of oncoplastic techniques in the surgical management of locally advanced breast cancer. Int. J. Surg. 10, 500–505 (2012).

    Article  PubMed  Google Scholar 

  118. Lim, W. et al. Oncological safety of skin sparing mastectomy followed by immediate reconstruction for locally advanced breast cancer. J. Surg. Oncol. 102, 39–42 (2010).

    Article  PubMed  Google Scholar 

  119. Kuehn, T. et al. Sentinel-lymph-node biopsy in patients with breast cancer before and after neoadjuvant chemotherapy (SENTINA): a prospective, multicentre cohort study. Lancet Oncol. 14, 609–618 (2013).

    Article  PubMed  Google Scholar 

  120. Boughey, J. C. et al. The role of sentinel lymph node surgery in patients presenting with node positive breast cancer (T0-T4, N1–2) who receive neoadjuvant chemotherapy-Results from the ACOSOG Z1071 trial [abstract]. Cancer Res. 72, S2-1 (2012).

    Google Scholar 

  121. Kell, M. R. & Morrow, M. Surgical aspects of inflammatory breast cancer. Breast Dis. 22, 67–73 (2005).

    Article  PubMed  Google Scholar 

  122. Perez, C. A. et al. Management of locally advanced carcinoma of the breast. II. Inflammatory carcinoma. Cancer 74, 466–476 (1994).

    Article  CAS  PubMed  Google Scholar 

  123. Panades, M. et al. Evolving treatment strategies for inflammatory breast cancer: a population-based survival analysis. J. Clin. Oncol. 23, 1941–1950 (2005).

    Article  PubMed  Google Scholar 

  124. Newman, L. A. et al. Feasibility of immediate breast reconstruction for locally advanced breast cancer. Ann. Surg. Oncol. 6, 671–675 (1999).

    Article  CAS  PubMed  Google Scholar 

  125. Slavin, S. A., Love, S. M. & Goldwyn, R. M. Recurrent breast cancer following immediate reconstruction with myocutaneous flaps. Plast. Reconstr. Surg. 93, 1191–1204 (1994).

    Article  CAS  PubMed  Google Scholar 

  126. Olson, J. E. et al. The role of radiotherapy in the management of operable locally advanced breast carcinoma: results of a randomized trial by the Eastern Cooperative Oncology Group. Cancer 79, 1138–1149 (1997).

    Article  CAS  PubMed  Google Scholar 

  127. Overgaard, M. et al. Postoperative radiotherapy in high-risk premenopausal women with breast cancer who receive adjuvant chemotherapy. Danish Breast Cancer Cooperative Group 82b Trial. N. Engl. J. Med. 337, 949–955 (1997).

    Article  CAS  PubMed  Google Scholar 

  128. Overgaard, M. et al. Postoperative radiotherapy in high-risk postmenopausal breast-cancer patients given adjuvant tamoxifen: Danish Breast Cancer Cooperative Group DBCG 82c randomised trial. Lancet 353, 1641–1648 (1999).

    Article  CAS  PubMed  Google Scholar 

  129. Recht, A. et al. Locoregional failure 10 years after mastectomy and adjuvant chemotherapy with or without tamoxifen without irradiation: experience of the Eastern Cooperative Oncology Group. J. Clin. Oncol. 17, 1689–1700 (1999).

    Article  CAS  PubMed  Google Scholar 

  130. Taghian, A. et al. Patterns of locoregional failure in patients with operable breast cancer treated by mastectomy and adjuvant chemotherapy with or without tamoxifen and without radiotherapy: results from five National Surgical Adjuvant Breast and Bowel Project randomized clinical trials. J. Clin. Oncol. 22, 4247–4254 (2004).

    Article  PubMed  Google Scholar 

  131. Katz, A. et al. Locoregional recurrence patterns after mastectomy and doxorubicin-based chemotherapy: implications for postoperative irradiation. J. Clin. Oncol. 18, 2817–2827 (2000).

    Article  CAS  PubMed  Google Scholar 

  132. Toonkel, L. M., Fix, I., Jacobson, L. H. & Wallach, C. B. The significance of local recurrence of carcinoma of the breast. Int. J. Radiat. Oncol. Biol. Phys. 9, 33–39 (1983).

    Article  CAS  PubMed  Google Scholar 

  133. Ragaz, J. et al. Adjuvant radiotherapy and chemotherapy in node-positive premenopausal women with breast cancer. N. Engl. J. Med. 337, 956–962 (1997).

    Article  CAS  PubMed  Google Scholar 

  134. Ragaz, J. et al. Locoregional radiation therapy in patients with high-risk breast cancer receiving adjuvant chemotherapy: 20-year results of the British Columbia randomized trial. J. Natl Cancer Inst. 97, 116–126 (2005).

    Article  PubMed  Google Scholar 

  135. Huang, E. H. et al. Postmastectomy radiation improves local-regional control and survival for selected patients with locally advanced breast cancer treated with neoadjuvant chemotherapy and mastectomy. J. Clin. Oncol. 22, 4691–4699 (2004).

    Article  PubMed  Google Scholar 

  136. Mamounas, E. P. et al. Predictors of locoregional recurrence after neoadjuvant chemotherapy: results from combined analysis of National Surgical Adjuvant Breast and Bowel Project B-18 and B-27. J. Clin. Oncol. 30, 3960–3966 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Kaufmann, M., Morrow, M., von Minckwitz, G. & Harris, J. R. Locoregional treatment of primary breast cancer: consensus recommendations from an International Expert Panel. Cancer 116, 1184–1191 (2010).

    Article  PubMed  Google Scholar 

  138. McGale, P. et al. Effect of radiotherapy after mastectomy and axillary surgery on 10-year recurrence and 20-year breast cancer mortality: meta-analysis of individual patient data for 8,135 women in 22 randomised trials. Lancet 383, 2127–2135 (2014).

    Article  CAS  PubMed  Google Scholar 

  139. Bentzen, S. M. et al. The UK Standardisation of Breast Radiotherapy (START) Trial A of radiotherapy hypofractionation for treatment of early breast cancer: a randomised trial. Lancet Oncol. 9, 331–341 (2008).

    Article  CAS  PubMed  Google Scholar 

  140. Bentzen, S. M. et al. The UK Standardisation of Breast Radiotherapy (START) Trial B of radiotherapy hypofractionation for treatment of early breast cancer: a randomised trial. Lancet 371, 1098–1107 (2008).

    Article  CAS  PubMed  Google Scholar 

  141. Whelan, T. J. et al. Long-term results of hypofractionated radiation therapy for breast cancer. N. Engl. J. Med. 362, 513–520 (2010).

    Article  CAS  PubMed  Google Scholar 

  142. Bartelink, H. et al. Recurrence rates after treatment of breast cancer with standard radiotherapy with or without additional radiation. N. Engl. J. Med. 345, 1378–1387 (2001).

    Article  CAS  PubMed  Google Scholar 

  143. Budach, W., Kammers, K., Boelke, E. & Matuschek, C. Adjuvant radiotherapy of regional lymph nodes in breast cancer - a meta-analysis of randomized trials. Radiat. Oncol. 8, 267 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Calitchi, E. et al. Long-term results of neoadjuvant radiation therapy for breast cancer. Int. J. Cancer 96, 253–259 (2001).

    Article  CAS  PubMed  Google Scholar 

  145. Vernon, C. C. et al. Radiotherapy with or without hyperthermia in the treatment of superficial localized breast cancer: results from five randomized controlled trials. International Collaborative Hyperthermia Group. Int J. Radiat. Oncol. Biol. Phys. 35, 731–744 (1996).

    Article  CAS  PubMed  Google Scholar 

  146. Wust, P. et al. Hyperthermia in combined treatment of cancer. Lancet Oncol. 3, 487–497 (2002).

    Article  CAS  PubMed  Google Scholar 

  147. Zagar, T. M. et al. Durable palliation of breast cancer chest wall recurrence with radiation therapy, hyperthermia, and chemotherapy. Radiother Oncol. 97, 535–540 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Jones, E. L. et al. Thermochemoradiotherapy improves oxygenation in locally advanced breast cancer. Clin. Cancer Res. 10, 4287–4293 (2004).

    Article  CAS  PubMed  Google Scholar 

  149. Zardavas, D., Baselga, J. & Piccart, M. Emerging targeted agents in metastatic breast cancer. Nat. Rev. Clin. Oncol. 10, 191–210 (2013).

    Article  CAS  PubMed  Google Scholar 

  150. Simoncini, T. et al. Interaction of oestrogen receptor with the regulatory subunit of phosphatidylinositol-3-OH kinase. Nature 407, 538–541 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Baselga, J. et al. Everolimus in postmenopausal hormone-receptor-positive advanced breast cancer. N. Engl. J. Med. 366, 520–529 (2012).

    Article  CAS  PubMed  Google Scholar 

  152. Piccart, M. et al. Everolimus plus exemestane for hormone-receptor-positive, human epidermal growth factor receptor-2-negative advanced breast cancer: overall survival results from BOLERO-2. Ann. Oncol. 25, 2357–2362 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Baselga, J. et al. Phase II randomized study of neoadjuvant everolimus plus letrozole compared with placebo plus letrozole in patients with oestrogen receptor-positive breast cancer. J. Clin. Oncol. 27, 2630–2637 (2009).

    Article  CAS  PubMed  Google Scholar 

  154. US National Library of Medicine. ClinicalTrials.gov [online], (2014).

  155. US National Library of Medicine. ClinicalTrials.gov [online], (2013).

  156. US National Library of Medicine. ClinicalTrials.gov [online], (2012).

  157. Zardavas, D., Fumagalli, D. & Loi, S. Phosphatidylinositol 3-kinase/AKT/mammalian target of rapamycin pathway inhibition: a breakthrough in the management of luminal (ER+/HER2-) breast cancers? Curr. Opin. Oncol. 24, 623–634 (2012).

    Article  CAS  PubMed  Google Scholar 

  158. Zardavas, D., Phillips, W. A. & Loi, S. PIK3CA mutations in breast cancer: reconciling findings from preclinical and clinical data. Breast Cancer Res. 16, 201 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  159. US National Library of Medicine. ClinicalTrials.gov [online], (2014).

  160. Caldon, C. E. et al. Cyclin E2 overexpression is associated with endocrine resistance but not insensitivity to CDK2 inhibition in human breast cancer cells. Mol. Cancer Ther. 11, 1488–1499 (2012).

    Article  CAS  PubMed  Google Scholar 

  161. Finn, R. E. A. Final results of a randomized Phase II study of PD 0332991, a cyclin-dependent kinase (CDK)-4/6 inhibitor, in combination with letrozole vs letrozole alone for first-line treatment of ER+/HER2- advanced breast cancer (PALOMA-1; TRIO-18) [abstract]. Cancer Res. 74, CT101 (2014).

    Google Scholar 

  162. US National Library of Medicine. ClinicalTrials.gov [online], (2014).

  163. Tu, Y., Hershman, D. & Pellegrino, C. Phase I–II study of the histone deacetylase inhibitor vorinostat plus sequential weekly paclitaxel and doxorubicin- cyclophosphamide in locally advanced breast cancer. Breast Cancer Res. Treat. 146, 145–152 (2014).

    Article  CAS  PubMed  Google Scholar 

  164. Rugo, H. S., Olopade, O. & De Michele, A. Veliparib/carboplatin plus standard neoadjuvant therapy for high-risk breast cancer: First efficacy results from the I-SPY 2 TRIAL [abstract]. San Antonio Breast Cancer Symposium, S5-02 (2013).

  165. Gianni, L. et al. Gene expression profiles in paraffin-embedded core biopsy tissue predict response to chemotherapy in women with locally advanced breast cancer. J. Clin. Oncol. 23, 7265–7277 (2005).

    Article  CAS  PubMed  Google Scholar 

  166. Beitsch, P., Stork, L. & Snoo, F. Biomarker panel (TheraPrint) analysed as a predictor of response to neoadjuvant chemotherapy in patients with locally advanced breast cancer [abstract]. J. Clin. Oncol. 32 (Suppl.), 1026 (2014).

    Article  Google Scholar 

  167. Fernandez, S. V. et al. Inflammatory breast cancer (IBC): clues for targeted therapies. Breast Cancer Res. Treat. 140, 23–33 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Tuma, R. S. ALK gene amplified in most inflammatory breast cancers. J. Natl Cancer Inst. 104, 87–88 (2012).

    Article  CAS  PubMed  Google Scholar 

  169. Gonzalez-Angulo, A. M., Hennessy, B. T. & Mills, G. B. Future of personalized medicine in oncology: a systems biology approach. J. Clin. Oncol. 28, 2777–2783 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Burock, S., Meunier, F. & Lacombe, D. How can innovative forms of clinical research contribute to deliver affordable cancer care in an evolving health care environment? Eur. J. Cancer 49, 2777–2783 (2013).

    Article  PubMed  Google Scholar 

  171. Gampenrieder, S. P., Rinnerthaler, G. & Greil, R. Neoadjuvant chemotherapy and targeted therapy in breast cancer: past, present, and future. J. Oncol. 2013, 732047 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Prowell, T. M. & Pazdur, R. Pathological complete response and accelerated drug approval in early breast cancer. N. Engl. J. Med. 366, 2438–2441 (2012).

    Article  CAS  PubMed  Google Scholar 

  173. Mohsin, S. K. et al. Neoadjuvant trastuzumab induces apoptosis in primary breast cancers. J. Clin. Oncol. 23, 2460–2468 (2005).

    Article  CAS  PubMed  Google Scholar 

  174. Buzdar, A. U. et al. Neoadjuvant therapy with paclitaxel followed by 5-fluorouracil, epirubicin, and cyclophosphamide chemotherapy and concurrent trastuzumab in human epidermal growth factor receptor 2-positive operable breast cancer: an update of the initial randomized study population and data of additional patients treated with the same regimen. Clin. Cancer Res. 13, 228–233 (2007).

    Article  CAS  PubMed  Google Scholar 

  175. Coudert, B. P. et al. Multicentre phase II trial of neoadjuvant therapy with trastuzumab, docetaxel, and carboplatin for human epidermal growth factor receptor-2-overexpressing stage II or III breast cancer: results of the GETN(A)-1 trial. J. Clin. Oncol. 25, 2678–2684 (2007).

    Article  CAS  PubMed  Google Scholar 

  176. Cataliotti, L. et al. Comparison of anastrozole versus tamoxifen as preoperative therapy in postmenopausal women with hormone receptor-positive breast cancer: the Pre-Operative 'Arimidex' Compared to Tamoxifen (PROACT) trial. Cancer 106, 2095–2103 (2006).

    Article  CAS  PubMed  Google Scholar 

  177. Ellis, M. J. & Ma, C. Letrozole in the neoadjuvant setting: the P024 trial. Breast Cancer Res. Treat. 105 (Suppl. 1), 33–43 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Smith, I. E. et al. Neoadjuvant treatment of postmenopausal breast cancer with anastrozole, tamoxifen, or both in combination: the Immediate Preoperative Anastrozole, Tamoxifen, or Combined with Tamoxifen (IMPACT) multicentre double-blind randomized trial. J. Clin. Oncol. 23, 5108–5116 (2005).

    Article  CAS  PubMed  Google Scholar 

  179. Ellis, M. J. et al. Randomized phase II neoadjuvant comparison between letrozole, anastrozole, and exemestane for postmenopausal women with oestrogen receptor-rich stage 2 to 3 breast cancer: clinical and biomarker outcomes and predictive value of the baseline PAM50-based intrinsic subtype—ACOSOG Z1031. J. Clin. Oncol. 29, 2342–2349 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

K.T. has received grants from FOCA (Fonds Cancer-Belgium) and the Hellenic Society of Medical Oncology (HeSMO).

Author information

Authors and Affiliations

Authors

Contributions

K.T., E.S., M.J.C. and F.C. researched data for article, reviewed and edited the manuscript before submission, provided substantial contribution to discussion of content and wrote the manuscript.

Corresponding author

Correspondence to Fatima Cardoso.

Ethics declarations

Competing interests

E.S. is an advisory board member for Roche, has received travel support from Novartis and belongs to the speakers' bureau for AstraZeneca, GSK and Roche. F.C. has received Consultant/honouraria and is an advisory board member for Astellas, Astra-Zeneca, Celgene, Daiichi-Sankyo, Eisai, Genentech/Roche, GE Oncology, GlaxoSmithKline, Merck-Sharp, Merus, Novartis, Pfizer, and Sanofi. K.T. and M.J.C. have no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tryfonidis, K., Senkus, E., Cardoso, M. et al. Management of locally advanced breast cancer—perspectives and future directions. Nat Rev Clin Oncol 12, 147–162 (2015). https://doi.org/10.1038/nrclinonc.2015.13

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2015.13

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer