Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

The inverted pyramid of biomarker-driven trials

Abstract

In the past, clinical phase I trials often suffered from low response rates and inadequate experimental drug doses. Over the past decade, however, phase I trials have evolved from simple dose-finding studies to trials that might provide clinically relevant therapeutic opportunities for patients with advanced-stage cancer for which no standard therapies are available. In the future, the routine use of modern technologies such as large-scale genome sequencing will help to unravel the specific biology of a patient's cancer. Such tools will expand our knowledge about genetic aberrations and might provide opportunities for the development of novel, molecular targeted therapies for patients with refractory cancer. Increasingly, the focus will likely turn from carrying out large randomized trials in unselected patients to conducting smaller biomarker-driven trials in selected patients with known molecular aberrations. We expect that these new strategies will enhance response rates as appropriate patients are targeted, therefore sparing those patients who are unlikely to benefit.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: In large, randomized trials with unselected patients a dilution phenomenon is usually observed, as only a small subset of patients benefit from the tested treatment.

Similar content being viewed by others

References

  1. DiMasi, J. A. & Grabowski, H. G. Economics of new oncology drug development. J. Clin. Oncol. 25, 209–216 (2007).

    Article  Google Scholar 

  2. Kola, I. & Landis, J. Can the pharmaceutical industry reduce attrition rates? Nat. Rev. Drug Discov. 3, 711–715 (2004).

    Article  CAS  Google Scholar 

  3. Walker, I. & Newell, H. Do molecularly targeted agents in oncology have reduced attrition rates? Nat. Rev. Drug Discov. 8, 15–16 (2009).

    Article  CAS  Google Scholar 

  4. Horstmann, E. et al. Risks and benefits of phase 1 oncology trials, 1991 through 2002. N. Engl. J. Med. 352, 895–904 (2005).

    Article  CAS  Google Scholar 

  5. Kurzrock, R. & Benjamin, R. S. Risks and benefits of phase 1 oncology trials, revisited. N. Engl. J. Med. 352, 930–932 (2005).

    Article  CAS  Google Scholar 

  6. Postel-Vinay, S. et al. Clinical benefit in phase-I trials of novel molecularly targeted agents: does dose matter? Br. J. Cancer 100, 1373–1378 (2009).

    Article  CAS  Google Scholar 

  7. Druker, B. J. et al. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N. Engl. J. Med. 344, 1031–1037 (2001).

    Article  CAS  Google Scholar 

  8. Von Hoff, D. D. et al. Inhibition of the hedgehog pathway in advanced basal-cell carcinoma. N. Engl. J. Med. 361, 1164–1172 (2009).

    Article  CAS  Google Scholar 

  9. Flaherty, K. T. et al. Inhibition of mutated, activated BRAF in metastatic melanoma. N. Engl. J. Med. 363, 809–819 (2010).

    Article  CAS  Google Scholar 

  10. Fong, P. C. et al. Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N. Engl. J. Med. 361, 123–134 (2009).

    Article  CAS  Google Scholar 

  11. Kwak, E. L. et al. Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N. Engl. J. Med. 363, 1693–1703 (2010).

    Article  CAS  Google Scholar 

  12. Moore, M. J. et al. Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: a phase III trial of the National Cancer Institute of Canada Clinical Trials Group. J. Clin. Oncol. 25, 1960–1966 (2007).

    Article  CAS  Google Scholar 

  13. Miller, K. et al. Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breast cancer. N. Engl. J. Med. 357, 2666–2676 (2007).

    Article  CAS  Google Scholar 

  14. Sandler, A. et al. Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N. Engl. J. Med. 355, 2542–2550 (2006).

    Article  CAS  Google Scholar 

  15. Janku, F. et al. Outcomes of phase II clinical trials in advanced metastatic non-small-cell lung cancer published within the last decade [abstract]. Ann. Oncol. 21 (8 Suppl.), viii127 (2010).

    Google Scholar 

  16. Gupta, S. et al. Dose of the molecularly targeted agents in phase 1 trials correlates with clinical benefit. Presented at the 22nd EORTC-NCI-2011 AACR Symp. on Molecular Targets and Cancer Therapeutics.

  17. Janku, F. et al. PIK3CA mutations in patients with advanced cancers treated with PI3K/AKT/mTOR axis inhibitors. Mol. Cancer Ther. 10, 558–565 (2011).

    Article  CAS  Google Scholar 

  18. Von Hoff, D. D. et al. Pilot study using molecular profiling of patients' tumors to find potential targets and select treatments for their refractory cancers. J. Clin. Oncol. 28, 4877–4883 (2010).

    Article  CAS  Google Scholar 

  19. Doroshow, J. H. Selecting systemic cancer therapy one patient at a time: is there a role for molecular profiling of individual patients with advanced solid tumors? J. Clin. Oncol. 28, 4869–4871 (2010).

    Article  Google Scholar 

  20. Gray, R. et al. Phase II clinical trial design: methods in translational research from the Genitourinary Committee at the Eastern Cooperative Oncology Group. Clin. Cancer Res. 12, 1966–1969 (2006).

    Article  CAS  Google Scholar 

  21. Stewart, D. J. & Kurzrock, R. Cancer: the road to Amiens. J. Clin. Oncol. 27, 328–333 (2009).

    Article  Google Scholar 

  22. El-Maraghi, R. H. & Eisenhauer, E. A. Review of phase II trial designs used in studies of molecular targeted agents: outcomes and predictors of success in phase III. J. Clin. Oncol. 26, 1346–1354 (2008).

    Article  Google Scholar 

  23. Chapman, P. B. et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N. Engl. J. Med. 364, 2507–2516 (2011).

    Article  CAS  Google Scholar 

  24. Bonadonna, G. & Valagussa, P. Dose-response effect of adjuvant chemotherapy in breast cancer. N. Engl. J. Med. 304, 10–15 (1981).

    Article  CAS  Google Scholar 

  25. Budman, D. R. et al. Dose and dose intensity as determinants of outcome in the adjuvant treatment of breast cancer. The Cancer and Leukemia Group B. J. Natl Cancer Inst. 90, 1205–1211 (1998).

    Article  CAS  Google Scholar 

  26. Feldman, D. R. et al. TI-CE high-dose chemotherapy for patients with previously treated germ cell tumors: results and prognostic factor analysis. J. Clin. Oncol. 28, 1706–1713 (2010).

    Article  CAS  Google Scholar 

  27. Stadtmauer, E. A. et al. Conventional-dose chemotherapy compared with high-dose chemotherapy plus autologous hematopoietic stem-cell transplantation for metastatic breast cancer. Philadelphia Bone Marrow Transplant Group. N. Engl. J. Med. 342, 1069–1076 (2000).

    Article  CAS  Google Scholar 

  28. Bengala, C. et al. High-dose chemotherapy with autologous haemopoietic support for advanced ovarian cancer in first complete remission: retrospective analysis from the Solid Tumour Registry of the European Group for Blood and Marrow Transplantation (EBMT). Bone Marrow Transplant. 36, 25–31 (2005).

    Article  CAS  Google Scholar 

  29. Jain, R. K. et al. Phase I oncology studies: evidence that in the era of targeted therapies patients on lower doses do not fare worse. Clin. Cancer Res. 16, 1289–1297 (2010).

    Article  CAS  Google Scholar 

  30. Tanaka, C. et al. Identifying optimal biologic doses of everolimus (RAD001) in patients with cancer based on the modeling of preclinical and clinical pharmacokinetic and pharmacodynamic data. J. Clin. Oncol. 26, 1596–1602 (2008).

    Article  CAS  Google Scholar 

  31. Adjei, A. A. What is the right dose? The elusive optimal biologic dose in phase I clinical trials. J. Clin. Oncol. 24, 4054–4055 (2006).

    Article  CAS  Google Scholar 

  32. Kantarjian, H. M. et al. Dose escalation of imatinib mesylate can overcome resistance to standard-dose therapy in patients with chronic myelogenous leukemia. Blood 101, 473–475 (2003).

    Article  CAS  Google Scholar 

  33. Quintela-Fandino, M. et al. Phase I combination of sorafenib and erlotinib therapy in solid tumors: safety, pharmacokinetic, and pharmacodynamic evaluation from an expansion cohort. Mol. Cancer Ther. 9, 751–760 (2010).

    Article  CAS  Google Scholar 

  34. Goulart, B. H. et al. Trends in the use and role of biomarkers in phase I oncology trials. Clin. Cancer Res. 13, 6719–6726 (2007).

    Article  CAS  Google Scholar 

  35. Postel-Vinay, S. et al. Phase I trials of molecularly targeted agents: should we pay more attention to late toxicities? J. Clin. Oncol. 29, 1728–1735 (2011).

    Article  Google Scholar 

  36. Garrido-Laguna, I. et al. Patients with advanced head and neck cancers have similar progression-free survival on phase I trials and their last food and drug administration-approved treatment. Clin. Cancer Res. 16, 4031–4037 (2010).

    Article  CAS  Google Scholar 

  37. Hidalgo, M. et al. Phase I and pharmacologic study of OSI-774, an epidermal growth factor receptor tyrosine kinase inhibitor, in patients with advanced solid malignancies. J. Clin. Oncol. 19, 3267–3279 (2001).

    Article  CAS  Google Scholar 

  38. Paez, J. G. et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 304, 1497–1500 (2004).

    Article  CAS  Google Scholar 

  39. Lynch, T. J. et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N. Engl. J. Med. 350, 2129–2139 (2004).

    Article  CAS  Google Scholar 

  40. Druker, B. J. et al. Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome. N. Engl. J. Med. 344, 1038–1042 (2001).

    Article  CAS  Google Scholar 

  41. Van Cutsem, E. et al. Cetuximab plus irinotecan, fluorouracil, and leucovorin as first-line treatment for metastatic colorectal cancer: updated analysis of overall survival according to tumor KRAS and BRAF mutation status. J. Clin. Oncol. 29, 2011–2019 (2011).

    Article  CAS  Google Scholar 

  42. Carracedo, A. et al. Inhibition of mTORC1 leads to MAPK pathway activation through a PI3K-dependent feedback loop in human cancer. J. Clin. Invest. 118, 3065–3074 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Iadevaia, S., Lu, Y., Morales, F. C., Mills, G. B. & Ram, P. T. Identification of optimal drug combinations targeting cellular networks: integrating phosphoproteomics and computational network analysis. Cancer Res. 70, 6704–6714 (2010).

    Article  CAS  Google Scholar 

  44. Van den Abbeele, A. D. The lessons of GIST—PET and PET/CT: a new paradigm for imaging. Oncologist 13, 8–13 (2008).

    Article  Google Scholar 

  45. Ma, W. W. et al. [18F]fluorodeoxyglucose positron emission tomography correlates with Akt pathway activity but is not predictive of clinical outcome during mTOR inhibitor therapy. J. Clin. Oncol. 27, 2697–2704 (2009).

    Article  CAS  Google Scholar 

  46. Olive, K. P. et al. Inhibition of hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science 324, 1457–1461 (2009).

    Article  CAS  Google Scholar 

  47. D. D. Von Hoff, R. et al. SPARC correlation with response to gemcitabine (G) plus nab-paclitaxel (nab-P) in patients with advanced metastatic pancreatic cancer: A phase I/II study [abstract]. J. Clin. Oncol. 27 (15 Suppl.), 4525 (2009).

    Google Scholar 

  48. Wood, L. D. et al. The genomic landscapes of human breast and colorectal cancers. Science 318, 1108–1113 (2007).

    Article  CAS  Google Scholar 

  49. Jones, S. et al. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 321, 1801–1806 (2008).

    Article  CAS  Google Scholar 

  50. Parsons, D. W. et al. An integrated genomic analysis of human glioblastoma multiforme. Science 321, 1807–1812 (2008).

    Article  CAS  Google Scholar 

  51. Parsons, D. W. et al. The genetic landscape of the childhood cancer medulloblastoma. Science 331, 435–439 (2011).

    Article  CAS  Google Scholar 

  52. Meyerson, M., Gabriel, S. & Getz, G. Advances in understanding cancer genomes through second-generation sequencing. Nat. Rev. Genet. 11, 685–696 (2010).

    Article  CAS  Google Scholar 

  53. Thomas, R. K. et al. High-throughput oncogene mutation profiling in human cancer. Nat. Genet. 39, 347–351 (2007).

    Article  CAS  Google Scholar 

  54. Barretina, J. et al. Subtype-specific genomic alterations define new targets for soft-tissue sarcoma therapy. Nat. Genet. 42, 715–721 (2010).

    Article  CAS  Google Scholar 

  55. Berger, M. F. et al. The genomic complexity of primary human prostate cancer. Nature 470, 214–220 (2011).

    Article  CAS  Google Scholar 

  56. Palanisamy, N. et al. Rearrangements of the RAF kinase pathway in prostate cancer, gastric cancer and melanoma. Nat. Med. 16, 793–798 (2010).

    Article  CAS  Google Scholar 

  57. Dupont Jensen, J. et al. PIK3CA mutations may be discordant between primary and corresponding metastatic disease in breast cancer. Clin. Cancer Res. 17, 667–677 (2011).

    Article  CAS  Google Scholar 

  58. Kan, Z. et al. Diverse somatic mutation patterns and pathway alterations in human cancers. Nature 466, 869–873 (2010).

    Article  CAS  Google Scholar 

  59. Maemondo, M. et al. Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR. N. Engl. J. Med. 362, 2380–2388 (2010).

    Article  CAS  Google Scholar 

  60. Demetri, G. D. et al. Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors. N. Engl. J. Med. 347, 472–480 (2002).

    Article  CAS  Google Scholar 

  61. Slamon, D. J. et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N. Engl. J. Med. 344, 783–792 (2001).

    Article  CAS  Google Scholar 

  62. Villarroel, M. C. et al. Personalizing cancer treatment in the age of global genomic analyses: PALB2 gene mutations and the response to DNA damaging agents in pancreatic cancer. Mol. Cancer Ther. 10, 3–8 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

We thank Joann Aaron (The University of Texas MD Anderson Cancer Center, USA) for scientific editing of this article.

Author information

Authors and Affiliations

Authors

Contributions

I. Garrido-Laguna researched the data for this article. All authors contributed to the discussion of content, writing, and editing/reviewing of this article before submission and during the editing process.

Corresponding author

Correspondence to Ignacio Garrido-Laguna.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garrido-Laguna, I., Hidalgo, M. & Kurzrock, R. The inverted pyramid of biomarker-driven trials. Nat Rev Clin Oncol 8, 562–566 (2011). https://doi.org/10.1038/nrclinonc.2011.113

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2011.113

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer