Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Translating p53 into the clinic

A Correction to this article was published on 30 September 2011

This article has been updated

Abstract

Mutations in the TP53 gene are a feature of 50% of all reported cancer cases. In the other 50% of cases, the TP53 gene itself is not mutated but the p53 pathway is often partially inactivated. Cancer therapies that target specific mutant genes are proving to be highly active and trials assessing agents that exploit the p53 system are ongoing. Many trials are aimed at stratifying patients on the basis of TP53 status. In another approach, TP53 is delivered as a gene therapy; this is the only currently approved p53-based treatment. The p53 protein is overexpressed in many cancers and p53-based vaccines are undergoing trials. Processed cell-surface p53 is being exploited as a target for protein–drug conjugates, and small-molecule drugs that inhibit the activity of MDM2, the E3 ligase that regulates p53 levels, have been developed by several companies. The first MDM2 inhibitors are being trialed in both hematologic and solid malignancies. Finally, the first agent found to restore the active function of mutant TP53 has just entered the clinic. Here we discuss the basis of these trials and the future of p53-based therapy.

Key Points

  • 151 trials exploiting the p53 pathway have been conducted

  • TP53 gene therapy (Gendicine) using an adenovirus vector was approved by the Chinese State Food and Drug Administration (SFDA) in 2003

  • Small-molecule inhibitors of the p53–MDM2 interaction are efficacious in animal models and are in clinical trials for the treatment of solid and hematologic malignancies

  • Cyclotherapy—using a p53 activator to protect normal tissue from cytotoxic drugs and increase the therapeutic index in the treatment of TP53-mutant cancer—was effective in animal studies

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Clinical trials involving p53.
Figure 2: Inactivation of p53 responses in cancers.
Figure 3: Interactions between MDM2 and p53 peptides.
Figure 4: Schematic representation of the domain structure of p53, MDM2 and MDM4.
Figure 5: Comparative interactions of peptides and small molecules with MDM2 and MDM4.
Figure 6: Enhancing nutlin-dependent apoptosis in cancer cells.
Figure 7: Principles of cyclotherapy.

Change history

  • 23 August 2011

    In the version of this article initially published online a software error resulted in several incorrect citations and two missing references: National Cancer Institute http://seer.cancer.gov/ (2010) and Met, O. et al. Breast Cancer Res. Treat. 125, 395–406 (2011). The errors have been corrected for the HTML and PDF versions of the article.

References

  1. 1

    Stegmeier, F., Warmuth, M., Sellers, W. R. & Dorsch, M. Targeted cancer therapies in the twenty-first century: lessons from imatinib. Clin. Pharmacol. Ther. 87, 543–552 (2010).

    CAS  PubMed  Google Scholar 

  2. 2

    Fesik, S. W. Promoting apoptosis as a strategy for cancer drug discovery. Nat. Rev. Cancer 5, 876–885 (2005).

    CAS  PubMed  Google Scholar 

  3. 3

    Tse, C. et al. ABT-263: a potent and orally bioavailable Bcl-2 family inhibitor. Cancer Res. 68, 3421–3428 (2008).

    CAS  Google Scholar 

  4. 4

    Lord, C. J. & Ashworth, A. Targeted therapy for cancer using PARP inhibitors. Curr. Opin. Pharmacol. 8, 363–369 (2008).

    CAS  PubMed  Google Scholar 

  5. 5

    Ferrara, N., Hillan, K. J., Gerber, H. P. & Novotny, W. Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat. Rev. Drug Discov. 3, 391–400 (2004).

    CAS  PubMed  Google Scholar 

  6. 6

    National Cancer Institute. Surveilance Epidemiology and End Results [online], (2010).

  7. 7

    Brown, C. J., Lain, S., Verma, C. S., Fersht, A. R. & Lane, D. P. Awakening guardian angels: drugging the p53 pathway. Nat. Rev. Cancer 9, 862–873 (2009).

    CAS  PubMed  Google Scholar 

  8. 8

    Lane, D. P., Cheok, C. F. & Lain, S. p53-based cancer therapy. Cold Spring Harb. Perspect. Biol. 2, a001222 (2010).

    PubMed  PubMed Central  Google Scholar 

  9. 9

    Nemunaitis, J. et al. Biomarkers predict p53 gene therapy efficacy in recurrent squamous cell carcinoma of the head and neck. Clin. Cancer Res. 15, 7719–7725 (2009).

    CAS  PubMed  Google Scholar 

  10. 10

    Roth, J. A. et al. Retrovirus-mediated wild-type p53 gene transfer to tumors of patients with lung cancer. Nat. Med. 2, 985–991 (1996).

    CAS  PubMed  Google Scholar 

  11. 11

    Zeimet, A. G. & Marth, C. Why did p53 gene therapy fail in ovarian cancer? Lancet Oncol. 4, 415–422 (2003).

    CAS  PubMed  Google Scholar 

  12. 12

    Senzer, N. et al. p53 therapy in a patient with Li-Fraumeni syndrome. Mol. Cancer Ther. 6, 1478–1482 (2007).

    CAS  PubMed  Google Scholar 

  13. 13

    Shi, J. & Zheng, D. An update on gene therapy in China. Curr. Opin. Mol. Ther. 11, 547–553 (2009).

    CAS  PubMed  Google Scholar 

  14. 14

    Ulasov, I. V., Tyler, M. A., Han, Y., Glasgow, J. N. & Lesniak, M. S. Novel recombinant adenoviral vector that targets the interleukin-13 receptor alpha2 chain permits effective gene transfer to malignant glioma. Hum. Gene Ther. 18, 118–129 (2007).

    CAS  PubMed  Google Scholar 

  15. 15

    Bischoff, J. R. et al. An adenovirus mutant that replicates selectively in p53-deficient human tumor cells. Science 274, 373–376 (1996).

    CAS  PubMed  Google Scholar 

  16. 16

    Khuri, F. R. et al. A controlled trial of intratumoral ONYX-015, a selectively-replicating adenovirus, in combination with cisplatin and 5-fluorouracil in patients with recurrent head and neck cancer. Nat. Med. 6, 879–885 (2000).

    CAS  PubMed  Google Scholar 

  17. 17

    O'Shea, C. C. et al. Late viral RNA export, rather than p53 inactivation, determines ONYX-015 tumor selectivity. Cancer Cell 6, 611–623 (2004).

    CAS  PubMed  Google Scholar 

  18. 18

    Ladjemi, M. Z., Jacot, W., Chardes, T., Pelegrin, A. & Navarro-Teulon, I. Anti-HER2 vaccines: new prospects for breast cancer therapy. Cancer Immunol. Immunother. 59, 1295–1312 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19

    Peggs, K. S., Quezada, S. A. & Allison, J. P. Cancer immunotherapy: co-stimulatory agonists and co-inhibitory antagonists. Clin. Exp. Immunol. 157, 9–19 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20

    O'Day, S. J. et al. Efficacy and safety of ipilimumab monotherapy in patients with pretreated advanced melanoma: a multicenter single-arm phase II study. Ann. Oncol. 21, 1712–1717 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21

    Hodi, F. S. et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 363, 711–723 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22

    Ku, G. Y. et al. Single-institution experience with ipilimumab in advanced melanoma patients in the compassionate use setting: lymphocyte count after 2 doses correlates with survival. Cancer 116, 1767–1775 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23

    DeLeo, A. B. p53-based immunotherapy of cancer. Crit. Rev. Immunol. 18, 29–35 (1998).

    CAS  PubMed  Google Scholar 

  24. 24

    Hoffmann, T. K. et al. Frequencies of tetramer+ T cells specific for the wild-type sequence p53264–272 peptide in the circulation of patients with head and neck cancer. Cancer Res. 62, 3521–3529 (2002).

    CAS  PubMed  Google Scholar 

  25. 25

    Sangrajrang, S., Sornprom, A., Chernrungroj, G. & Soussi, T. Serum p53 antibodies in patients with lung cancer: correlation with clinicopathologic features and smoking. Lung Cancer 39, 297–301 (2003).

    PubMed  Google Scholar 

  26. 26

    Vojtesek, B. et al. Absence of p53 autoantibodies in a significant proportion of breast cancer patients. Br. J. Cancer 71, 1253–1256 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27

    Met, O., Balsev, E., Flyger, H. & Svane, I. M. High immunogenic potential of p53 mRNA-transfected dendritic cells in patients with primary breast cancer. Breast Cancer Res. Treat. 125, 395–406 (2011).

    CAS  PubMed  Google Scholar 

  28. 28

    Speetjens, F. M. et al. Induction of p53-specific immunity by a p53 synthetic long peptide vaccine in patients treated for metastatic colorectal cancer. Clin. Cancer Res. 15, 1086–1095 (2009).

    CAS  PubMed  Google Scholar 

  29. 29

    van der Burg, S. H. et al. Long lasting p53-specific T cell memory responses in the absence of anti-p53 antibodies in patients with resected primary colorectal cancer. Eur. J. Immunol. 31, 146–155 (2001).

    CAS  PubMed  Google Scholar 

  30. 30

    van der Burg, S. H. et al. Magnitude and polarization of P53-specific T-helper immunity in connection to leukocyte infiltration of colorectal tumors. Int. J. Cancer 107, 425–433 (2003).

    CAS  PubMed  Google Scholar 

  31. 31

    Nijman, H. W., Lambeck, A., van der Burg, S. H., van der Zee, A. G. & Daemen, T. Immunologic aspect of ovarian cancer and p53 as tumor antigen. J. Transl. Med. 3, 34 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32

    Chiappori, A. A., Soliman, H., Janssen, W. E., Antonia, S. J. & Gabrilovich, D. I. INGN-225: a dendritic cell-based p53 vaccine (Ad.p53-DC) in small cell lung cancer: observed association between immune response and enhanced chemotherapy effect. Expert Opin. Biol. Ther. 10, 983–991 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33

    Haupt, Y., Maya, R., Kazaz, A. & Oren, M. Mdm2 promotes the rapid degradation of p53. Nature 387, 296–299 (1997).

    CAS  Google Scholar 

  34. 34

    Allende-Vega, N. & Saville, M. K. Targeting the ubiquitin-proteasome system to activate wild-type p53 for cancer therapy. Semin. Cancer Biol. 20, 29–39 (2010).

    CAS  PubMed  Google Scholar 

  35. 35

    Wade, M., Wang, Y. V. & Wahl, G. M. The p53 orchestra: Mdm2 and Mdmx set the tone. Trends Cell Biol. 20, 299–309 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36

    Linke, K. et al. Structure of the MDM2/MDMX RING domain heterodimer reveals dimerization is required for their ubiquitylation in trans. Cell Death Differ. 15, 841–848 (2008).

    CAS  PubMed  Google Scholar 

  37. 37

    Gu, J. et al. Mutual dependence of MDM2 and MDMX in their functional inactivation of p53. J. Biol. Chem. 277, 19251–19254 (2002).

    CAS  PubMed  Google Scholar 

  38. 38

    Weber, J. D. et al. Cooperative signals governing ARF-mdm2 interaction and nucleolar localization of the complex. Mol. Cell Biol. 20, 2517–2528 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39

    Pomerantz, J. et al. The Ink4a tumor suppressor gene product, p19Arf, interacts with MDM2 and neutralizes MDM2's inhibition of p53. Cell 92, 713–723 (1998).

    CAS  PubMed  Google Scholar 

  40. 40

    Weber, J. D., Taylor, L. J., Roussel, M. F., Sherr, C. J. & Bar-Sagi, D. Nucleolar Arf sequesters Mdm2 and activates p53. Nat. Cell Biol. 1, 20–26 (1999).

    CAS  PubMed  Google Scholar 

  41. 41

    Jackson, M. W., Lindstrom, M. S. & Berberich, S. J. MdmX binding to ARF affects Mdm2 protein stability and p53 transactivation. J. Biol. Chem. 276, 25336–25341 (2001).

    CAS  PubMed  Google Scholar 

  42. 42

    Maestro, R. et al. Twist is a potential oncogene that inhibits apoptosis. Genes Dev. 13, 2207–2217 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43

    Jacobs, J. J. et al. Senescence bypass screen identifies TBX2, which represses Cdkn2a (p19(ARF)) and is amplified in a subset of human breast cancers. Nat. Genet. 26, 291–299 (2000).

    CAS  PubMed  Google Scholar 

  44. 44

    Smith, K. S. et al. Bmi-1 regulation of INK4A-ARF is a downstream requirement for transformation of hematopoietic progenitors by E2a-Pbx1. Mol. Cell 12, 393–400 (2003).

    CAS  PubMed  Google Scholar 

  45. 45

    Bruggeman, S. W. et al. Ink4a and Arf differentially affect cell proliferation and neural stem cell self-renewal in Bmi1-deficient mice. Genes Dev. 19, 1438–1443 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46

    Molofsky, A. V., He, S., Bydon, M., Morrison, S. J. & Pardal, R. Bmi-1 promotes neural stem cell self-renewal and neural development but not mouse growth and survival by repressing the p16Ink4a and p19Arf senescence pathways. Genes Dev. 19, 1432–1437 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47

    Marine, J. C. & Lozano, G. Mdm2-mediated ubiquitylation: p53 and beyond. Cell Death Differ. 17, 93–102 (2010).

    CAS  Google Scholar 

  48. 48

    Sharpless, N. E. & DePinho, R. A. The INK4A/ARF locus and its two gene products. Curr. Opin. Genet. Dev. 9, 22–30 (1999).

    CAS  PubMed  Google Scholar 

  49. 49

    Vassilev, L. T. et al. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303, 844–848 (2004).

    CAS  PubMed  Google Scholar 

  50. 50

    Böttger, A. et al. Design of a synthetic Mdm2-binding mini protein that activates the p53 response in vivo. Curr. Biol. 7, 860–869 (1997).

    PubMed  Google Scholar 

  51. 51

    Dickens, M. P., Fitzgerald, R. & Fischer, P. M. Small-molecule inhibitors of MDM2 as new anticancer therapeutics. Semin. Cancer Biol. 20, 10–18 (2010).

    CAS  PubMed  Google Scholar 

  52. 52

    Kojima, K. et al. MDM2 antagonists induce p53-dependent apoptosis in AML: implications for leukemia therapy. Blood 106, 3150–3159 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53

    Secchiero, P., di Iasio, M. G., Gonelli, A. & Zauli, G. The MDM2 inhibitor Nutlins as an innovative therapeutic tool for the treatment of haematological malignancies. Curr. Pharm. Des. 14, 2100–2110 (2008).

    CAS  PubMed  Google Scholar 

  54. 54

    Arts, J. et al. JNJ-26481585, a novel “second-generation” oral histone deacetylase inhibitor, shows broad-spectrum preclinical antitumoral activity. Clin. Cancer Res. 15, 6841–6851 (2009).

    CAS  PubMed  Google Scholar 

  55. 55

    Shangary, S. et al. Temporal activation of p53 by a specific MDM2 inhibitor is selectively toxic to tumors and leads to complete tumor growth inhibition. Proc. Natl Acad. Sci. USA 105, 3933–3938 (2008).

    CAS  PubMed  Google Scholar 

  56. 56

    Issaeva, N. et al. Small molecule RITA binds to p53, blocks p53-HDM-2 interaction and activates p53 function in tumors. Nat. Med. 10, 1321–1328 (2004).

    CAS  PubMed  Google Scholar 

  57. 57

    Grinkevich, V. V. et al. Ablation of key oncogenic pathways by RITA-reactivated p53 is required for efficient apoptosis. Cancer Cell 15, 441–453 (2009).

    CAS  PubMed  Google Scholar 

  58. 58

    Gu, L., Zhu, N., Findley, H. W. & Zhou, M. MDM2 antagonist nutlin-3 is a potent inducer of apoptosis in pediatric acute lymphoblastic leukemia cells with wild-type p53 and overexpression of MDM2. Leukemia 22, 730–739 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. 59

    Secchiero, P. et al. Functional integrity of the p53-mediated apoptotic pathway induced by the nongenotoxic agent nutlin-3 in B-cell chronic lymphocytic leukemia (B-CLL). Blood 107, 4122–4129 (2006).

    CAS  PubMed  Google Scholar 

  60. 60

    Secchiero, P. et al. The oncogene DEK promotes leukemic cell survival and is downregulated by both Nutlin-3 and chlorambucil in B-chronic lymphocytic leukemic cells. Clin. Cancer Res. 16, 1824–1833 (2010).

    CAS  PubMed  Google Scholar 

  61. 61

    Stühmer, T. et al. Nongenotoxic activation of the p53 pathway as a therapeutic strategy for multiple myeloma. Blood 106, 3609–3617 (2005).

    PubMed  Google Scholar 

  62. 62

    Jones, S. N., Roe, A. E., Donehower, L. A. & Bradley, A. Rescue of embryonic lethality in Mdm2-deficient mice by absence of p53. Nature 378, 206–208 (1995).

    CAS  PubMed  Google Scholar 

  63. 63

    Montes de Oca Luna, R., Wagner, D. S. & Lozano, G. Rescue of early embryonic lethality in mdm2-deficient mice by deletion of p53. Nature 378, 203–206 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. 64

    Ringshausen, I., O'Shea, C. C., Finch, A. J., Swigart, L. B. & Evan, G. I. Mdm2 is critically and continuously required to suppress lethal p53 activity in vivo. Cancer Cell 10, 501–514 (2006).

    CAS  PubMed  Google Scholar 

  65. 65

    Coutts, A. S., Boulahbel, H., Graham, A. & La Thangue, N. B. Mdm2 targets the p53 transcription cofactor JMY for degradation. EMBO Rep. 8, 84–90 (2007).

    CAS  PubMed  Google Scholar 

  66. 66

    Brenkman, A. B., de Keizer, P. L., van den Broek, N. J., Jochemsen, A. G. & Burgering, B. M. Mdm2 induces mono-ubiquitination of FOXO4. PLoS ONE 3, e2819 (2008).

    PubMed  PubMed Central  Google Scholar 

  67. 67

    Yang, J. Y. et al. ERK promotes tumorigenesis by inhibiting FOXO3a via MDM2-mediated degradation. Nat. Cell Biol. 10, 138–148 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. 68

    Fu, W. et al. MDM2 acts downstream of p53 as an E3 ligase to promote FOXO ubiquitination and degradation. J. Biol. Chem. 284, 13987–14000 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. 69

    Efeyan, A. et al. Induction of p53-dependent senescence by the MDM2 antagonist nutlin-3a in mouse cells of fibroblast origin. Cancer Res. 67, 7350–7357 (2007).

    CAS  PubMed  Google Scholar 

  70. 70

    Zauli, G. et al. MDM2 antagonist Nutlin-3 suppresses the proliferation and differentiation of human pre-osteoclasts through a p53-dependent pathway. J. Bone Miner. Res. 22, 1621–1630 (2007).

    CAS  PubMed  Google Scholar 

  71. 71

    Vousden, K. H. & Ryan, K. M. p53 and metabolism. Nat. Rev. Cancer 9, 691–700 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. 72

    Carter, B. Z. et al. Simultaneous activation of p53 and inhibition of XIAP enhance the activation of apoptosis signaling pathways in AML. Blood 115, 306–314 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. 73

    Van Maerken, T. et al. Antitumor activity of the selective MDM2 antagonist nutlin-3 against chemoresistant neuroblastoma with wild-type p53. J. Natl Cancer Inst. 101, 1562–1574 (2009).

    CAS  PubMed  Google Scholar 

  74. 74

    Tovar, C. et al. Small-molecule MDM2 antagonists reveal aberrant p53 signaling in cancer: implications for therapy. Proc. Natl Acad. Sci. USA 103, 1888–1893 (2006).

    CAS  PubMed  Google Scholar 

  75. 75

    Michaelis, M. et al. Reversal of P-glycoprotein-mediated multidrug resistance by the murine double minute 2 antagonist nutlin-3. Cancer Res. 69, 416–421 (2009).

    CAS  PubMed  Google Scholar 

  76. 76

    Cheok, C. F., Dey, A. & Lane, D. P. Cyclin-dependent kinase inhibitors sensitize tumor cells to nutlin-induced apoptosis: a potent drug combination. Mol. Cancer Res. 5, 1133–1145 (2007).

    CAS  PubMed  Google Scholar 

  77. 77

    Ribas, J., Boix, J. & Meijer, L. (R)-roscovitine (CYC202, Seliciclib) sensitizes SH-SY5Y neuroblastoma cells to nutlin-3-induced apoptosis. Exp. Cell Res. 312, 2394–2400 (2006).

    CAS  PubMed  Google Scholar 

  78. 78

    Cheok, C. F., Kua, N., Kaldis, P. & Lane, D. P. Combination of nutlin-3 and VX-680 selectively targets p53 mutant cells with reversible effects on cells expressing wild-type p53. Cell Death Differ. 17, 1486–1500 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. 79

    Kojima, K., Konopleva, M., Tsao, T., Nakakuma, H. & Andreeff, M. Concomitant inhibition of Mdm2-p53 interaction and Aurora kinases activates the p53-dependent postmitotic checkpoints and synergistically induces p53-mediated mitochondrial apoptosis along with reduced endoreduplication in acute myelogenous leukemia. Blood 112, 2886–2895 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. 80

    Tabe, Y. et al. MDM2 antagonist nutlin-3 displays antiproliferative and proapoptotic activity in mantle cell lymphoma. Clin. Cancer Res. 15, 933–942 (2009).

    CAS  PubMed  Google Scholar 

  81. 81

    Coll-Mulet, L. et al. MDM2 antagonists activate p53 and synergize with genotoxic drugs in B-cell chronic lymphocytic leukemia cells. Blood 107, 4109–4114 (2006).

    CAS  PubMed  Google Scholar 

  82. 82

    Kojima, K. et al. Mdm2 inhibitor Nutlin-3a induces p53-mediated apoptosis by transcription-dependent and transcription-independent mechanisms and may overcome Atm-mediated resistance to fludarabine in chronic lymphocytic leukemia. Blood 108, 993–1000 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. 83

    Zheng, T. et al. Disruption of p73-MDM2 binding synergizes with gemcitabine to induce apoptosis in HuCCT1 cholangiocarcinoma cell line with p53 mutation. Tumour Biol. 31, 287–295 (2010).

    CAS  PubMed  Google Scholar 

  84. 84

    Supiot, S., Hill, R. P. & Bristow, R. G. Nutlin-3 radiosensitizes hypoxic prostate cancer cells independent of p53. Mol. Cancer Ther. 7, 993–999 (2008).

    CAS  PubMed  Google Scholar 

  85. 85

    Cao, C. et al. Radiosensitization of lung cancer by nutlin, an inhibitor of murine double minute 2. Mol. Cancer Ther. 5, 411–417 (2006).

    CAS  PubMed  Google Scholar 

  86. 86

    Secchiero, P., Vaccarezza, M., Gonelli, A. & Zauli, G. TNF-related apoptosis-inducing ligand (TRAIL): a potential candidate for combined treatment of hematological malignancies. Curr. Pharm. Des. 10, 3673–3681 (2004).

    CAS  PubMed  Google Scholar 

  87. 87

    Schlereth, K. et al. DNA binding cooperativity of p53 modulates the decision between cell-cycle arrest and apoptosis. Mol. Cell 38, 356–368 (2010).

    CAS  PubMed  Google Scholar 

  88. 88

    Cui, Y. X., Kerby, A., McDuff, F. K., Ye, H. & Turner, S. D. NPM-ALK inhibits the p53 tumor suppressor pathway in an MDM2 and JNK-dependent manner. Blood 113, 5217–5227 (2009).

    CAS  PubMed  Google Scholar 

  89. 89

    Secchiero, P. et al. Nutlin-3 up-regulates the expression of Notch1 in both myeloid and lymphoid leukemic cells, as part of a negative feedback antiapoptotic mechanism. Blood 113, 4300–4308 (2009).

    CAS  PubMed  Google Scholar 

  90. 90

    Mungamuri, S. K., Yang, X., Thor, A. D. & Somasundaram, K. Survival signaling by Notch1: mammalian target of rapamycin (mTOR)-dependent inhibition of p53. Cancer Res. 66, 4715–4724 (2006).

    CAS  PubMed  Google Scholar 

  91. 91

    Du, C., Fang, M., Li, Y., Li, L. & Wang, X. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102, 33–42 (2000).

    CAS  Google Scholar 

  92. 92

    Schimmer, A. D. et al. Phase I/II trial of AEG35156 X-linked inhibitor of apoptosis protein antisense oligonucleotide combined with idarubicin and cytarabine in patients with relapsed or primary refractory acute myeloid leukemia. J. Clin. Oncol. 27, 4741–4746 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. 93

    Alimonti, A. et al. A novel type of cellular senescence that can be enhanced in mouse models and human tumor xenografts to suppress prostate tumorigenesis. J. Clin. Invest. 120, 681–693 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. 94

    Xue, W. et al. Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 445, 656–660 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. 95

    Carvajal, D. et al. Activation of p53 by MDM2 antagonists can protect proliferating cells from mitotic inhibitors. Cancer Res. 65, 1918–1924 (2005).

    CAS  PubMed  Google Scholar 

  96. 96

    Kranz, D. & Dobbelstein, M. Nongenotoxic p53 activation protects cells against S-phase-specific chemotherapy. Cancer Res. 66, 10274–10280 (2006).

    CAS  PubMed  Google Scholar 

  97. 97

    Tokalov, S. V. & Abolmaali, N. D. Protection of p53 wild type cells from taxol by nutlin-3 in the combined lung cancer treatment. BMC Cancer 10, 57 (2010).

    PubMed  PubMed Central  Google Scholar 

  98. 98

    Jiang, M. et al. Nutlin-3 protects kidney cells during cisplatin therapy by suppressing Bax/Bak activation. J. Biol. Chem. 282, 2636–2645 (2007).

    CAS  PubMed  Google Scholar 

  99. 99

    Ding, K. et al. Structure-based design of spiro-oxindoles as potent, specific small-molecule inhibitors of the MDM2-p53 interaction. J. Med. Chem. 49, 3432–3435 (2006).

    CAS  PubMed  Google Scholar 

  100. 100

    Ding, K. et al. Structure-based design of potent non-peptide MDM2 inhibitors. J. Am. Chem. Soc. 127, 10130–10131 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. 101

    Shangary, S. et al. Reactivation of p53 by a specific MDM2 antagonist (MI-43) leads to p21-mediated cell cycle arrest and selective cell death in colon cancer. Mol. Cancer Ther. 7, 1533–1542 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. 102

    Mohammad, R. M. et al. An MDM2 antagonist (MI-319) restores p53 functions and increases the life span of orally treated follicular lymphoma bearing animals. Mol. Cancer 8, 115 (2009).

    PubMed  PubMed Central  Google Scholar 

  103. 103

    Canner, J. A. et al. MI-63: a novel small-molecule inhibitor targets MDM2 and induces apoptosis in embryonal and alveolar rhabdomyosarcoma cells with wild-type p53. Br. J. Cancer 101, 774–781 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. 104

    Azmi, A. S. et al. MDM2 inhibitor MI-319 in combination with cisplatin is an effective treatment for pancreatic cancer independent of p53 function. Eur. J. Cancer 46, 1122–1131 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. 105

    Sun, S. H., Zheng, M., Ding, K., Wang, S. & Sun, Y. A small molecule that disrupts Mdm2-p53 binding activates p53, induces apoptosis and sensitizes lung cancer cells to chemotherapy. Cancer Biol. Ther. 7, 845–852 (2008).

    CAS  PubMed  Google Scholar 

  106. 106

    Saddler, C. et al. Comprehensive biomarker and genomic analysis identifies p53 status as the major determinant of response to MDM2 inhibitors in chronic lymphocytic leukemia. Blood 111, 1584–1593 (2008).

    CAS  PubMed  Google Scholar 

  107. 107

    Long, J. et al. Multiple distinct molecular mechanisms influence sensitivity and resistance to MDM2 inhibitors in adult acute myelogenous leukemia. Blood 116, 71–80 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. 108

    Liu, W., He, L., Ramírez, J. & Ratain, M. J. Interactions between MDM2 and TP53 genetic alterations, and their impact on response to MDM2 inhibitors and other chemotherapeutic drugs in cancer cells. Clin. Cancer Res. 15, 7602–7607 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. 109

    Onel, K. & Cordon-Cardo, C. MDM2 and prognosis. Mol. Cancer Res. 2, 1–8 (2004).

    CAS  PubMed  Google Scholar 

  110. 110

    Blagosklonny, M. V. & Darzynkiewicz, Z. Cyclotherapy: protection of normal cells and unshielding of cancer cells. Cell Cycle 1, 375–382 (2002).

    CAS  PubMed  Google Scholar 

  111. 111

    Sur, S. et al. A panel of isogenic human cancer cells suggests a therapeutic approach for cancers with inactivated p53. Proc. Natl Acad. Sci. USA 106, 3964–3969 (2009).

    CAS  PubMed  Google Scholar 

  112. 112

    Choong, M. L., Yang, H., Lee, M. A. & Lane, D. P. Specific activation of the p53 pathway by low dose actinomycin D: a new route to p53 based cyclotherapy. Cell Cycle 8, 2810–2818 (2009).

    CAS  PubMed  Google Scholar 

  113. 113

    Belyi, V. A. & Levine, A. J. One billion years of p53/p63/p73 evolution. Proc. Natl Acad. Sci. USA 106, 17609–17610 (2009).

    CAS  PubMed  Google Scholar 

  114. 114

    Lau, L. M., Nugent, J. K., Zhao, X. & Irwin, M. S. HDM2 antagonist Nutlin-3 disrupts p73-HDM2 binding and enhances p73 function. Oncogene 27, 997–1003 (2008).

    CAS  PubMed  Google Scholar 

  115. 115

    Ambrosini, G. et al. Mouse double minute antagonist Nutlin-3a enhances chemotherapy-induced apoptosis in cancer cells with mutant p53 by activating E2F1. Oncogene 26, 3473–3481 (2007).

    CAS  PubMed  Google Scholar 

  116. 116

    Madhumalar, A., Lee, H. J., Brown, C. J., Lane, D. & Verma, C. Design of a novel MDM2 binding peptide based on the p53 family. Cell Cycle 8, 2828–2836 (2009).

    PubMed  Google Scholar 

  117. 117

    Peirce, S. K. & Findley, H. W. The MDM2 antagonist nutlin-3 sensitizes p53-null neuroblastoma cells to doxorubicin via E2F1 and TAp73. Int. J. Oncol. 34, 1395–1402 (2009).

    CAS  PubMed  Google Scholar 

  118. 118

    Kitagawa, M., Aonuma, M., Lee, S. H., Fukutake, S. & McCormick, F. E2F-1 transcriptional activity is a critical determinant of Mdm2 antagonist-induced apoptosis in human tumor cell lines. Oncogene 27, 5303–5314 (2008).

    CAS  PubMed  Google Scholar 

  119. 119

    Watson, I. R., Blanch, A., Lin, D. C., Ohh, M. & Irwin, M. S. Mdm2-mediated NEDD8 modification of TAp73 regulates its transactivation function. J. Biol. Chem. 281, 34096–34103 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. 120

    Melino, G., Knight, R. A. & Cesareni, G. Degradation of p63 by Itch. Cell Cycle 5, 1735–1739 (2006).

    CAS  Google Scholar 

  121. 121

    Müller, M. et al. One, two, three—p53, p63, p73 and chemosensitivity. Drug Resist. Updat. 9, 288–306 (2006).

    PubMed  Google Scholar 

  122. 122

    Calabrò, V. et al. Inhibition of p63 transcriptional activity by p14ARF: functional and physical link between human ARF tumor suppressor and a member of the p53 family. Mol. Cell Biol. 24, 8529–8540 (2004).

    PubMed  PubMed Central  Google Scholar 

  123. 123

    Wang, W., Kim, S. H. & El-Deiry, W. S. Small-molecule modulators of p53 family signaling and antitumor effects in p53-deficient human colon tumor xenografts. Proc. Natl Acad. Sci. USA 103, 11003–11008 (2006).

    CAS  PubMed  Google Scholar 

  124. 124

    Irwin, M. S. et al. Chemosensitivity linked to p73 function. Cancer Cell 3, 403–410 (2003).

    CAS  PubMed  Google Scholar 

  125. 125

    Bergamaschi, D. et al. p53 polymorphism influences response in cancer chemotherapy via modulation of p73-dependent apoptosis. Cancer Cell 3, 387–402 (2003).

    CAS  PubMed  Google Scholar 

  126. 126

    Bensaad, K. et al. Change of conformation of the DNA-binding domain of p53 is the only key element for binding of and interference with p73. J. Biol. Chem. 278, 10546–10555 (2003).

    CAS  PubMed  Google Scholar 

  127. 127

    Strano, S. et al. Physical and functional interaction between p53 mutants and different isoforms of p73. J. Biol. Chem. 275, 29503–29512 (2000).

    CAS  PubMed  Google Scholar 

  128. 128

    Joerger, A. C. et al. Structural evolution of p53, p63, and p73: implication for heterotetramer formation. Proc. Natl Acad. Sci. USA 106, 17705–17710 (2009).

    CAS  PubMed  Google Scholar 

  129. 129

    Kravchenko, J. E. et al. Small-molecule RETRA suppresses mutant p53-bearing cancer cells through a p73-dependent salvage pathway. Proc. Natl Acad. Sci. USA 105, 6302–6307 (2008).

    CAS  PubMed  Google Scholar 

  130. 130

    Davison, T. S. et al. p73 and p63 are homotetramers capable of weak heterotypic interactions with each other but not with p53. J. Biol. Chem. 274, 18709–18714 (1999).

    CAS  PubMed  Google Scholar 

  131. 131

    Abdel-Fatah, T. M. et al. The biological, clinical and prognostic implications of p53 transcriptional pathways in breast cancers. J. Pathol. 220, 419–434 (2010).

    CAS  PubMed  Google Scholar 

  132. 132

    Muller, P. A. et al. Mutant p53 drives invasion by promoting integrin recycling. Cell 139, 1327–1341 (2009).

    PubMed  Google Scholar 

  133. 133

    Walensky, L. D. et al. Activation of apoptosis in vivo by a hydrocarbon-stapled BH3 helix. Science 305, 1466–1470 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. 134

    Moellering, R. E. et al. Direct inhibition of the NOTCH transcription factor complex. Nature 462, 182–188 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. 135

    Gavathiotis, E. et al. BAX activation is initiated at a novel interaction site. Nature 455, 1076–1081 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. 136

    Bernal, F., Tyler, A. F., Korsmeyer, S. J., Walensky, L. D. & Verdine, G. L. Reactivation of the p53 tumor suppressor pathway by a stapled p53 peptide. J. Am. Chem. Soc. 129, 2456–2457 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. 137

    Joseph, T. L., Lane, D. & Verma, C. S. Stapled peptides in the p53 pathway: computer simulations reveal novel interactions of the staples with the target protein. Cell Cycle (in press).

  138. 138

    Stewart, M. L., Fire, E., Keating, A. E. & Walensky, L. D. The MCL-1 BH3 helix is an exclusive MCL-1 inhibitor and apoptosis sensitizer. Nat. Chem. Biol. 6, 595–601 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. 139

    Hu, B., Gilkes, D. M., Farooqi, B., Sebti, S. M. & Chen, J. MDMX overexpression prevents p53 activation by the MDM2 inhibitor Nutlin. J. Biol. Chem. 281, 33030–33035 (2006).

    CAS  PubMed  Google Scholar 

  140. 140

    Phan, J. et al. Structure-based design of high affinity peptides inhibiting the interaction of p53 with MDM2 and MDMX. J. Biol. Chem. 285, 2174–2183 (2010).

    CAS  PubMed  Google Scholar 

  141. 141

    Reed, D. et al. Identification and characterization of the first small molecule inhibitor of MDMX. J. Biol. Chem. 285, 10786–10796 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. 142

    Popowicz, G. M., Czarna, A. & Holak, T. A. Structure of the human Mdmx protein bound to the p53 tumor suppressor transactivation domain. Cell Cycle 7, 2441–2443 (2008).

    CAS  PubMed  Google Scholar 

  143. 143

    PyMOL molecular graphics system (DeLano Scientific, San Carlos, CA, USA).

  144. 144

    Popowicz, G. M. et al. Structures of low molecular weight inhibitors bound to MDMX and MDM2 reveal new approaches for p53-MDMX/MDM2 antagonist drug discovery. Cell Cycle 9, 1104–1111 (2010).

    CAS  PubMed  Google Scholar 

  145. 145

    Li, C. et al. Systematic mutational analysis of peptide inhibition of the p53-MDM2/MDMX interactions. J. Mol. Biol. 398, 200–213 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

C. F. Cheok and D. P. Lane are adjunct at the Department of Biochemistry, Yong Loo Lin School of Medicine (National University of Singapore); C. S. Verma is adjunct at the Department of Biological Sciences (National University of Singapore) and the School of Biological Sciences (Nanyang Technological University); J. Baselga is Director Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain. The authors thank T. L. Joseph for the models of MDM2 and MDM4.

Author information

Affiliations

Authors

Contributions

C. F. Cheok, C. S. Verma and D. P. Lane contributed to researching the data for the article discussions of the content, writing the article and to review and/or editing of the manuscript before submission. J. Baselga made a substantial contribution to the discussion of the content and the review and/or editing of the manuscript before submission.

Corresponding author

Correspondence to David P. Lane.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figure 1

Toggling MDM2 activity: minimizing toxic effects associated with MDM2 inhibition. (DOC 221 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cheok, C., Verma, C., Baselga, J. et al. Translating p53 into the clinic. Nat Rev Clin Oncol 8, 25–37 (2011). https://doi.org/10.1038/nrclinonc.2010.174

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing