Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Management of breast cancer with targeted agents: importance of heterogenicity

A Correction to this article was published on 01 April 2010

Abstract

Breast cancer is a heterogeneous disease with different molecular drivers regulating its growth, survival and response to therapy. Breast cancer is divided in three major subtypes based on the pattern of expression of hormone receptors and HER2: luminal tumors (or HR positive), HER2 amplified tumors, and the remaining subtypes being collectively referred to as triple-negative breast cancer. While tumors within these subtypes have similar gene-expression patterns, clinical outcomes, and response to therapy, this division is far from perfect and subgroups within these groups are beginning to be identified. In terms of therapy, an increasingly rational drug development effort has resulted in agents against new molecular targets that are active against only those tumors with the targeted molecular alteration or phenotype. These agents include receptor and non-receptor tyrosine kinase inhibitors (HER1, HER2, HER3, insulin-like growth factor receptor, c-met, fibroblast growth factor receptor and HSP 90 inhibitors), intracellular signaling pathways (PI3K, AKT, mTOR), angiogenesis inhibitors and agents that interfere with DNA repair (PARP inhibitors). Thus, the overall management of breast cancer will increasingly require an understanding of breast cancer heterogeneicity, the biological nature of any given tumor as well the existence of increased personalized treatment options.

Key Points

  • Breast cancer is a heteregenous disease divided in three major subtypes: HR positive, HER2 amplified, and triple negative; the clinical outcomes and treatments are different for each subgroup

  • The estrogen receptor, receptor tyrosine kinase and DNA repair pathways are key to understanding the growth and progression of invasive breast cancer and how interference of these pathways results in anti-cancer activity

  • A high number of molecular targeted agents are under clinical development and combinatorial approaches will probably become the norm

  • Targeted agents currently used in clinical practice are the anti-HER2 monoclonal antibody trastuzumab, the dual HER1/HER2 tyrosine kinase inhibitor lapatinib, and the anti-VEGF antibody bevacizumab

  • Studies with compounds targeting non-receptor tyrosine kinase (src), signaling pathways downstream of growth factor receptors (mTOR, PI3K, HSP90), and DNA repair mechanisms (PARP) have shown promising clinical activity

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Targeted therapeutics against HR-positive breast cancer.

Similar content being viewed by others

References

  1. Perou, C. et al. Molecular portraits of human breast tumours. Nature 406, 747–752 (2000).

    Article  CAS  Google Scholar 

  2. Mauri, D., Pavlidis, N., Polyzos, N. P. & Ioannidis, J. P. Survival with aromatase inhibitors and inactivators versus standard hormonal therapy in advanced breast cancer: meta-analysis. J. Natl Cancer Inst. 98, 1285–1291 (2006).

    Article  CAS  Google Scholar 

  3. The Breast International Group 1–98 Collaborative Group et al. A comparison of letrozole and tamoxifen in postmenopausal women with early breast cancer. N. Engl. J. Med. 353, 2747–2757 (2005).

  4. Forbes, J. F. et al. Effect of anastrozole and tamoxifen as adjuvant treatment for early-stage breast cancer: 100-month analysis of the ATAC trial. Lancet Oncol. 9, 45–53 (2008).

    Article  Google Scholar 

  5. Chia, S. et al. Double-blind, randomized placebo controlled trial of fulvestrant compared with exemestane after prior nonsteroidal aromatase inhibitor therapy in postmenopausal women with hormone receptor-positive, advanced breast cancer: results from EFECT. J. Clin. Oncol. 26, 1664–1670 (2008).

    Article  CAS  Google Scholar 

  6. Martin, L. A., Farmer, I., Johnston, S. R., Ali, S. & Dowsett, M. Elevated ERK1/ERK2/estrogen receptor cross-talk enhances estrogen-mediated signaling during long-term estrogen deprivation. Endocr. Relat. Cancer 12 (Suppl. 1), S75–S84 (2005).

    Article  CAS  Google Scholar 

  7. Bergh, J. et al. First results from FACT—An open-label, randomized phase III study investigating loading dose of fulvestrant combined with anastrozole versus anastrozole at first relapse in hormone receptor positive breast cancer [abstract]. Cancer Res. 69 (Suppl. 3), S490 a23 (2009).

    Google Scholar 

  8. Klijn, J. G. et al. Combined tamoxifen and luteinizing hormone-releasing hormone (LHRH) agonist versus LHRH agonist alone in premenopausal advanced breast cancer: a meta-analysis of four randomized trials. J. Clin. Oncol. 19, 343–353 (2001).

    Article  CAS  Google Scholar 

  9. Rouzier, R. et al. Breast cancer molecular subtypes respond differently to preoperative chemotherapy. Clin. Cancer Res. 11, 5678–5685 (2005).

    Article  CAS  Google Scholar 

  10. Prat, A. & Baselga, J. The role of hormonal therapy in the management of hormonal-receptor-positive breast cancer with co-expression of HER2. Nat. Clin. Pract. Oncol. 5, 531–542 (2008).

    Article  CAS  Google Scholar 

  11. De Laurentiis, M. et al. A meta-analysis on the interaction between HER-2 expression and response to endocrine treatment in advanced breast cancer. Clin. Cancer Res. 11, 4741–4748 (2005).

    Article  CAS  Google Scholar 

  12. Kaufman, B. et al. Trastuzumab plus anastrozole versus anastrozole alone for the treatment of postmenopausal women with human epidermal growth factor receptor 2-positive, hormone-receptor-positive metastatic breast cancer: Results from the randomized phase III TAnDEM study. J. Clin. Oncol. 27, 5529–5537 (2009).

    Article  CAS  Google Scholar 

  13. Johnston, S. et al. Lapatinib combined with letrozole vs letrozole and placebo as first-line therapy for postmenopausal hormone receptor-positive metastatic breast cancer. J Clin. Oncol. 27, 5538–5546 (2009).

    Article  CAS  Google Scholar 

  14. Baselga, J. et al. Phase II and tumor pharmacodynamic study of gefitinib in patients with advanced breast cancer. J. Clin. Oncol. 23, 5323–5333 (2005).

    Article  CAS  Google Scholar 

  15. Green, M. D. et al. Gefitinib treatment in hormone-resistant and hormone receptor-negative advanced breast cancer. Ann. Oncol. 20, 1813–1817 (2009).

    Article  CAS  Google Scholar 

  16. Agrawal, A. et al. Efficacy and tolerability of gefitinib in oestrogen receptor negative and tamoxifen resistant oestrogen receptor positive locally advanced or metastatic breast cancer. Breast Cancer Res. Treat. 94 (Suppl. 1), S61 (2005).

    Google Scholar 

  17. Osborne, K. et al. Randomized phase II study of gefitinib (IRESSA) or placebo in combination with tamoxifen in patients with hormone receptor positive metastatic breast cancer. Breast Cancer Res. Treat. 106 (Suppl. 1), S107 (2007).

    Google Scholar 

  18. Cantley, L. C. The phosphoinositide 3-kinase pathway. Science 296, 1655–1657 (2002).

    Article  CAS  Google Scholar 

  19. Stemke-Hale, K. et al. An integrative genomic and proteomic analysis of PIK3CA, PTEN, and AKT mutations in breast cancer. Cancer Res. 68, 6084–6091 (2008).

    Article  CAS  Google Scholar 

  20. Serra, V. et al. NVP-BEZ235, a dual PI3K/mTOR inhibitor, prevents PI3K signaling and inhibits the growth of cancer cells with activating PI3K mutations. Cancer Res. 68, 8022–8030 (2008).

    Article  CAS  Google Scholar 

  21. Markman, B., Atzori, F., Perez-Garcia, J., Tabernero, J. & Baselga, J. Status of PI3K inhibition and biomarker development in cancer therapeutics. Ann. Oncol. doi:10.1093/annonc/mdp347.

  22. Baselga, J. et al. Phase II randomized study of neoadjuvant everolimus plus letrozole compared with placebo plus letrozole in patients with estrogen receptor-positive breast cancer. J. Clin. Oncol. 27, 2630–2637 (2009).

    Article  CAS  Google Scholar 

  23. Chow, L. et al. Phase 3 study of temsirolimus with letrozole or letrozole alone in postmenopausal women with locally advanced or metastatic breast cancer [abstract]. Breast Cancer Res. Treat. 100 (Suppl. 1), a6091 (2006).

    Google Scholar 

  24. Tabernero, J. et al. Dose- and schedule-dependent inhibition of the mammalian target of rapamycin pathway with everolimus: a phase I tumor pharmacodynamic study in patients with advanced solid tumors. J. Clin. Oncol. 26, 1603–1610 (2008).

    Article  CAS  Google Scholar 

  25. Di Cosimo, S. et al. Combination of the mammalian target of rapamycin (mTOR) inhibitor everolimus (E) with the insulin like growth factor-1-receptor (IGF-1-R) inhibitor NVP-AEW-541: a mechanistic based anti-tumor strategy [abstract]. J. Clin. Oncol. 23, a3112 (2005).

    Article  Google Scholar 

  26. Di Cosimo, S. et al. The PI3-K/AKT/mTOR pathway as a target for breast cancer therapy. J. Clin. Oncol. 25 (Suppl. 18), 3511 (2007).

    Google Scholar 

  27. Slamon, D. J. et al. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235, 177–182 (1987).

    Article  CAS  Google Scholar 

  28. Baselga, J. & Swain, S. M. Novel anticancer targets: revisiting ERBB2 and discovering ERBB3. Nat. Rev. Cancer 9, 463–475 (2009).

    Article  CAS  Google Scholar 

  29. von Minckwitz, G. et al. Trastuzumab beyond progression in human epidermal growth factor receptor 2-positive advanced breast cancer: a german breast group 26/breast international group 03–05 study. J. Clin. Oncol. 27, 1999–2006 (2009).

    Article  CAS  Google Scholar 

  30. Franklin, M. et al. Insights into ErbB signaling from the structure of the ErbB2-pertuzumab complex. Cancer Cell 5, 317–328 (2004).

    Article  CAS  Google Scholar 

  31. Cho, H. S. et al. Structure of the extracellular region of HER2 alone and in complex with the Herceptin Fab. Nature 421, 756–760 (2003).

    Article  CAS  Google Scholar 

  32. Mendoza, N., Phillips, G. L., Silva, J., Schwall, R. & Wickramasinghe, D. Inhibition of ligand-mediated HER2 activation in androgen-independent prostate cancer. Cancer Res. 62, 5485–5488 (2002).

    CAS  PubMed  Google Scholar 

  33. Agus, D. B. et al. Targeting ligand-activated ErbB2 signaling inhibits breast and prostate tumor growth. Cancer Cell 2, 127–137 (2002).

    Article  CAS  Google Scholar 

  34. Portera, C. C. et al. Cardiac toxicity and efficacy of trastuzumab combined with pertuzumab in patients with [corrected] human epidermal growth factor receptor 2-positive metastatic breast cancer. Clin. Cancer Res. 14, 2710–2716 (2008).

    Article  CAS  Google Scholar 

  35. Baselga, J. et al. A phase II trial of pertuzumab and trastuzumab in patients with HER2-positive metastatic breast cancer that had progressed during prior trastuzumab therapy. J. Clin. Oncol. (in press).

  36. Lewis Phillips, G. D. et al. Targeting HER2-positive breast cancer with trastuzumab-DM1, an antibody-cytotoxic drug conjugate. Cancer Res. 68, 9280–9290 (2008).

    Article  CAS  Google Scholar 

  37. Vogel, C. et al. Trastuzumab-DM1 (T-DM1), a HER2 antibody drug conjugate (ADC), in patients (pts) with HER2+ metastatic breast cancer (MBC): Final results [abstract]. J. Clin. Oncol. 27 (Suppl.), a1017 (2009).

    Google Scholar 

  38. Modi, S. et al. Combination of trastuzumab and tanespimycin (17-AAG, KOS-953) is safe and active in trastuzumab-refractory HER-2 overexpressing breast cancer: a phase I dose-escalation study. J. Clin. Oncol. 25, 5410–5417 (2007).

    Article  CAS  Google Scholar 

  39. Berns, K. et al. A functional genetic approach identifies the PI3K pathway as a major determinant of trastuzumab resistance in breast cancer. Cancer Cell 12, 395–402 (2007).

    Article  CAS  Google Scholar 

  40. Eichhorn, P. J. et al. Phosphatidylinositol 3-kinase hyperactivation results in lapatinib resistance that is reversed by the mTOR/phosphatidylinositol 3-kinase inhibitor NVP-BEZ235. Cancer Res. 68, 9221–9230 (2008).

    Article  CAS  Google Scholar 

  41. Hurtitz, S. et al. Everolimus (RAD001) in combination with weekly paclitaxel and trastuzumab in patients (pts) with HER2-overexpressing metastatic breast cancer (MBC) with prior resistance to trastuzumab: a multicenter phase I clinical trial [abstract]. Eur. J. Cancer 7 (Suppl.), a267 (2009).

    Article  Google Scholar 

  42. Cardoso, F. et al. Multicenter phase I clinical trial of daily and weekly everolimus (RAD001) in combination with vinorelbine and trastuzumab in patients with HER-2-overexpressing metastatic breast cancer (MBC) with prior resistance to trastuzumab [abstract]. Eur. J. Cancer 7 (Suppl.) O-5004 (2009).

    Google Scholar 

  43. Scaltriti, M. et al. Expression of p95HER2, a truncated form of the HER2 receptor, and response to anti-HER2 therapies in breast cancer. J. Natl Cancer Inst. 99, 628–638 (2007).

    Article  CAS  Google Scholar 

  44. Lin, N., Dieras, V. & Paul, D. EGF105084, a phase II study of lapatinib for brain metastases in patients (pts) with HER2+ breast cancer following trastuzumab (H) based systemic therapy and cranial radiotherapy (RT) [abstract]. J. Clin. Oncol. 25 (Suppl.), a1012 (2007).

    Google Scholar 

  45. Burstein, H. et al. Neratinib (HKI-272), an irreversible pan erbB receptor tyrosine kinase inhibitor: phase 2 results in patients with advanced HER2+ breast cancer [abstract]. Cancer Res. 69, (Suppl.) a37 (2008).

    Google Scholar 

  46. Anders, C. & Carey, L. A. Understanding and treating triple-negative breast cancer. Oncology (Williston Park) 22, 1233–1240 (2008).

    Google Scholar 

  47. Sparano, J. A. et al. Weekly paclitaxel in the adjuvant treatment of breast cancer. N. Engl. J. Med. 358, 1663–1671 (2008).

    Article  CAS  Google Scholar 

  48. Carey, L. A. et al. The triple negative paradox: primary tumor chemosensitivity of breast cancer subtypes. Clin. Cancer Res. 13, 2329–2334 (2007).

    Article  CAS  Google Scholar 

  49. Lee, F. Y. et al. Preclinical studies of ixabepilone (BMS-247550) demonstrate optimal antitumor activity against both chemotherapy-sensitive and resistant tumor types [abstract]. Cancer Res. 47, a503 (2006).

    Google Scholar 

  50. Thomas, E. S. et al. Ixabepilone plus capecitabine for metastatic breast cancer progressing after anthracycline and taxane treatment. J. Clin. Oncol. 25, 5210–5217 (2007).

    Article  CAS  Google Scholar 

  51. Baselga, J. et al. Phase II genomics study of ixabepilone as neoadjuvant treatment for breast cancer. J. Clin. Oncol. 27, 526–534 (2009).

    Article  CAS  Google Scholar 

  52. Carey, L. A. et al. TBCRC 001: EGFR inhibition with cetuximab added to carboplatin in metastatic triple-negative (basal-like) breast cancer [abstract]. J. Clin. Oncol. 26 (Suppl.), a1009 (2008).

    Article  Google Scholar 

  53. O'Shaughnessy, J. et al. Preliminary results of a randomized phase II study of weekly irinotecan/carboplatin with or without cetuximab in patients with metastatic breast cancer [abstract]. Breast Cancer Res. Treat. 106, S308 (2007).

    Google Scholar 

  54. Fong, P. C. et al. Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N. Engl. J. Med. 361, 123–134 (2009).

    Article  CAS  Google Scholar 

  55. Tutt, A. et al. Phase II trial of the oral PARP inhibitor olaparib in BRCA-deficient advanced breast cancer [abstract]. J. Clin. Oncol. 27 (Suppl. 18), a501 (2009).

    Article  Google Scholar 

  56. Virág, L. & Szabó, C. The therapeutic potential of poly(ADP-ribose) polymerase inhibitors. Pharmacol. Rev. 54, 375–429 (2002).

    Article  Google Scholar 

  57. Farmer, H. et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434, 917–921 (2005).

    Article  CAS  Google Scholar 

  58. O'Shaughnessy, J. et al. Efficacy of BSI-201, a poly (ADP-ribose) polymerase-1 (PARP1) inhibitor, in combination with gemcitabine/carboplatin (G/C) in patients with metastatic triple-negative breast cancer (TNBC): Results of a randomized phase II trial. J. Clin. Oncol. 27 (Suppl. 18) a3 (2009).

    Article  Google Scholar 

  59. Miller, K. D. et al. Randomized phase III trial of capecitabine compared with bevacizumab plus capecitabine in patients with previously treated metastatic breast cancer. J. Clin. Oncol. 23, 792–799 (2005).

    Article  CAS  Google Scholar 

  60. Miller, K. et al. Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breast cancer. N. Engl. J. Med. 357, 2666–2676 (2007).

    Article  CAS  Google Scholar 

  61. Miles, D. et al. Randomized, double-blind, placebo-controlled, phase III study of bevacizumab with docetaxel or docetaxel with placebo as first-line therapy for patients with locally recurrent or metastatic breast cancer (mBC): AVADO [abstract]. J. Clin. Oncol. 26 (Suppl.), a1011 (2008).

    Article  Google Scholar 

  62. Pàez-Ribes, M. et al. Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell 15, 220–231 (2009).

    Article  Google Scholar 

  63. Ebos, J. M. et al. Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. Cancer Cell 15, 232–239 (2009).

    Article  CAS  Google Scholar 

  64. Robert, N. J. et al. RIBBON-1: Randomized, double-blind, placebo-controlled, phase III trial of chemotherapy with or without bevacizumab (B) for first-line treatment of HER2-negative locally recurrent or metastatic breast cancer (MBC) [abstract]. J. Clin. Oncol. 27 (Suppl. 15), a1005 (2009).

    Google Scholar 

  65. Deprimo, S. et al. Effect of treatment with sunitinib malate, a multitargeted tyrosine kinase inhibitor, on circulating plasma levels of VEGF, soluble VEGF receptors 2 and 3, and soluble KIT in patients with metastatic breast cancer [abstract]. J. Clin. Oncol. 24, a578 (2006).

    Google Scholar 

  66. Miller, K. et al. Phase II study of SU11248, a multitargeted receptor tyrosine kinase inhibitor (TKI), in patients (pts) with previously treated metastatic breast cancer (MBC) [abstract]. J. Clin. Oncol. 23 (Suppl.), a563 (2005).

    Article  Google Scholar 

  67. Wilhelm, S. M. et al. BAY 43–9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res. 64, 7099–7109 (2004).

    Article  CAS  Google Scholar 

  68. Baselga, J. et al. SOLTI-0701: A double-blind, randomized phase 2b study evaluating the efficacy and safety of sorafenib (SOR) compared to placebo (PL) when administered in combination with capecitabine (CAP) in patients (pts) with locally advanced (adv) or metastatic (met) breast cancer (BC) [abstract]. Eur. J. Cancer 7 (Suppl.), 3LBA (2009).

    Article  Google Scholar 

  69. Martin, G. S. The hunting of the Src. Nat. Rev. Mol. Cell Biol. 2, 467–475 (2001).

    Article  CAS  Google Scholar 

  70. Thomas, S. M. & Brugge, J. S. Cellular functions regulated by Src family kinases. Annu. Rev. Cell. Dev. Biol. 13, 513–609 (1997).

    Article  CAS  Google Scholar 

  71. Yeatman, T. J. A renaissance for SRC. Nat. Rev. Cancer 4, 470–480 (2004).

    Article  CAS  Google Scholar 

  72. Bromann, P. A., Korkaya, H. & Courtneidge, S. A. The interplay between Src family kinases and receptor tyrosine kinases. Oncogene 23, 7957–7968 (2004).

    Article  CAS  Google Scholar 

  73. Avizienyte, E. & Frame, M. C. Src and FAK signalling controls adhesion fate and the epithelial-to-mesenchymal transition. Curr. Opin. Cell. Biol. 17, 542–547 (2005).

    Article  CAS  Google Scholar 

  74. Verbeek, B. S. et al. c-Src potein expression increased in human breast cancer. An immunohistochemical and biochemical analysis. J. Pathol. 180, 383–388 (1996).

    Article  CAS  Google Scholar 

  75. Ottenhoff-Kalff, A. E. et al. Characterization of protein tyrosine kinases from human breast cancer: involvement of the c-src oncogene product. Cancer Res. 52, 4773–4778 (1992).

    CAS  PubMed  Google Scholar 

  76. Guy, C. T., Muthuswamy, S. K., Cardiff, R. D., Soriano, P. & Muller, W. J. Activation of the c-Src tyrosine kinase is required for the induction of mammary tumors in transgenic mice. Genes Dev. 8, 23–32 (1994).

    Article  CAS  Google Scholar 

  77. Lombardo, L. J. et al. Discovery of N-(2-Chloro-6-methyl-phenyl)-2-(6-(4-(2-hydroxyethyl)- piperazin-1-yl)-2-methylpyrimidin-4-ylamino)thiazole-5-carboxamide (BMS-354825), a dual Src/Abl kinase inhibitor with potent antitumor activity in preclinical assays. J. Med. Chem. 47, 6658–6661 (2004).

    Article  CAS  Google Scholar 

  78. Hennequin, L. F. et al. N-(5-Chloro-1, 3-benzodioxol-4-yl)-7-[2-(4-methylpiperazin-1-yl)ethoxy]-5- (tetrahydro-2H-pyran-4-yloxy)quinazolin-4-amine, a novel, highly selective, orally available, dual-specific c-Src/Abl kinase inhibitor. J. Med. Chem. 49, 6465–6488 (2006).

    Article  CAS  Google Scholar 

  79. Tabernero, J. et al. Phase I study of AZD0530, an oral potent inhibitor of Src kinase: First demonstration of inhibition of Src activity in human cancers [abstract]. J. Clin. Oncol. 25 (Suppl.), a3520 (2007).

    Google Scholar 

  80. Elbauomy Elsheikh, S. et al. FGFR1 amplification in breast carcinomas: a chromogenic in situ hybridisation analysis. Breast Cancer Res. 9, R23 (2007).

    Article  Google Scholar 

  81. Ponzo, M. G. et al. Met induces mammary tumors with diverse histologies and is associated with poor outcome and human basal breast cancer. Proc. Natl Acad. Sci. USA 106, 12903–12908 (2009).

    Article  CAS  Google Scholar 

  82. Shattuck, D. L., Miller, J. K., Carraway, K. L. 3rd & Sweeney, C. Met receptor contributes to trastuzumab resistance of Her2-overexpressing breast cancer cells. Cancer Res. 68, 1471–1477 (2008).

    Article  CAS  Google Scholar 

  83. O'Shaughnessy, J. et al. A randomized study of lapatinib alone or in combination with trastuzumab in heavily pretreated HER2+ metastatic breast cancer progressing on trastuzumab therapy [abstract]. J. Clin. Oncol. 26 (Suppl.), a1015 (2008).

    Article  Google Scholar 

  84. Jerusalem, G. H. et al. Multicenter phase I clinical trial of daily and weekly RAD001 in combination with vinorelbine and trastuzumab in patients with HER2-overexpressing metastatic breast cancer with prior resistance to trastuzumab [abstract]. J. Clin. Oncol. 26 (Suppl.), a1057 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Baselga.

Ethics declarations

Competing interests

J. Baselga declares he is a Consultant for Exelixis, Merck, Novartis and Roche. S. Di Cosimo declares no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Di Cosimo, S., Baselga, J. Management of breast cancer with targeted agents: importance of heterogenicity. Nat Rev Clin Oncol 7, 139–147 (2010). https://doi.org/10.1038/nrclinonc.2009.234

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2009.234

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer