Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Pathology, imaging, and treatment of cardiac tumours

Key Points

  • Cardiac tumours (or masses) are rare, abnormal growths in the heart or heart valves that can be malignant or benign

  • Increasing awareness of the presenting and radiological features of cardiac growths, together with high-sensitivity diagnostic imaging modalities have improved recognition of these lesions

  • Among cardiac neoplasms, metastasis is substantially more common than primary cardiac malignancies

  • A number of cardiac neoplasms are associated with syndromes (such as Carney complex) for which patients should be appropriately evaluated, for both follow-up and counselling on hereditary implications

  • Molecular genetic testing of primary cardiac malignancies is becoming routine with the advent of targeted pharmacotherapy

Abstract

Cardiac tumours are a rare, but often devastating, clinical diagnosis. They encompass a broad set of lesions that include both neoplastic and non-neoplastic conditions. Cardiac tumours are often diagnosed incidentally during work-up for other conditions, or during ultrasound, CT, or MRI scans for unusual or nonspecific symptoms. In the past decade, important changes have been made in the nomenclature and the recommendations for diagnosis of cardiac tumours, as highlighted by the WHO's 2015 revision of the classification of cardiac tumours. Moreover, important advances in molecular genetics and therapeutics offer new approaches for the diagnosis and treatment of affected patients. In this Review, we provide an overview of the clinical, pathological, and imaging characteristics of all types of cardiac masses, including both benign and malignant primary cardiac neoplasms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mechanisms of metastatic growth in the heart.
Figure 2: Cardiac metastases.
Figure 3: Imaging characteristics of cardiac myxoma.
Figure 4: Gross and histopathological characteristics of cardiac myxoma.
Figure 5: Cardiac rhabdomyoma.
Figure 6: Cardiac fibroma.
Figure 7: Cardiac lipoma.
Figure 8: Cardiac angiosarcoma.
Figure 9: Macroscopic and imaging characteristics of papillary fibroelastomas.
Figure 10: Lipomatous hypertrophy of the atrial septum.
Figure 11: Atrial thrombus.
Figure 12: Cardiac gossypiboma.

Similar content being viewed by others

References

  1. International Agency for Research on Cancer. WHO Classification of Tumours of the Lung, Pleura, Thymus and Heart 4th edn (World Health Organization, 2015).

  2. Bussani, R., De-Giorgio, F., Abbate, A. & Silvestri, F. Cardiac metastases. J. Clin. Pathol. 60, 27–34 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Butany, J., Leong, S. W., Carmichael, K. & Komeda, M. A 30-year analysis of cardiac neoplasms at autopsy. Can. J. Cardiol. 21, 675–680 (2005).

    PubMed  Google Scholar 

  4. Burke, A., Tavora, F. R., Maleszewski, J. J. & Frazier, A. A. Tumors of the Heart and Great Vessels Vol. 22 (American Registry of Pathology, 2015).

    Google Scholar 

  5. Talukder, M. Q., Deo, S. V., Maleszewski, J. J. & Park, S. J. Late isolated metastasis of renal cell carcinoma in the left ventricular myocardium. Interact. Cardiovasc. Thorac. Surg. 11, 814–816 (2010).

    PubMed  Google Scholar 

  6. Tamin, S. S. et al. Prognostic and bioepidemiologic implications of papillary fibroelastomas. J. Am. Coll. Cardiol. 65, 2420–2429 (2015).

    PubMed  Google Scholar 

  7. Pinede, L., Duhaut, P. & Loire, R. Clinical presentation of left atrial cardiac myxoma. A series of 112 consecutive cases. Medicine (Baltimore) 80, 159–172 (2001).

    CAS  Google Scholar 

  8. Jain, D., Maleszewski, J. J. & Halushka, M. K. Benign cardiac tumors and tumorlike conditions. Ann. Diagn. Pathol. 14, 215–230 (2010).

    PubMed  Google Scholar 

  9. Correa, R., Salpea, P. & Stratakis, C. A. Carney complex: an update. Eur. J. Endocrinol. 173, M85–M97 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Burke, A. P. & Virmani, R. Cardiac myxoma. A clinicopathologic study. Am. J. Clin. Pathol. 100, 671–680 (1993).

    CAS  PubMed  Google Scholar 

  11. Seino, Y., Ikeda, U. & Shimada, K. Increased expression of interleukin 6 mRNA in cardiac myxomas. Br. Heart J. 69, 565–567 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Centofanti, P. et al. Primary cardiac tumors: early and late results of surgical treatment in 91 patients. Ann. Thorac. Surg. 68, 1236–1241 (1999).

    CAS  PubMed  Google Scholar 

  13. Lee, V. H., Connolly, H. M. & Brown, R. D. Jr. Central nervous system manifestations of cardiac myxoma. Arch. Neurol. 64, 1115–1120 (2007).

    PubMed  Google Scholar 

  14. Keeling, I. M. et al. Cardiac myxomas: 24 years of experience in 49 patients. Eur. J. Cardiothorac. Surg. 22, 971–977 (2002).

    CAS  PubMed  Google Scholar 

  15. Jain, S., Maleszewski, J. J., Stephenson, C. R. & Klarich, K. W. Current diagnosis and management of cardiac myxomas. Expert Rev. Cardiovasc. Ther. 13, 369–375 (2015).

    CAS  PubMed  Google Scholar 

  16. Maleszewski, J. J. et al. PRKAR1A in the development of cardiac myxoma: a study of 110 cases including isolated and syndromic tumors. Am. J. Surg. Pathol. 38, 1079–1087 (2014).

    PubMed  Google Scholar 

  17. Kirkpatrick, J. N. et al. Differential diagnosis of cardiac masses using contrast echocardiographic perfusion imaging. J. Am. Coll. Cardiol. 43, 1412–1419 (2004).

    PubMed  Google Scholar 

  18. Reeder, G. S., Khandheria, B. K., Seward, J. B. & Tajik, A. J. Transesophageal echocardiography and cardiac masses. Mayo Clin. Proc. 66, 1101–1109 (1991).

    CAS  PubMed  Google Scholar 

  19. Mehmood, F. et al. Live three-dimensional transthoracic echocardiographic assessment of left atrial tumors. Echocardiography 22, 137–143 (2005).

    PubMed  Google Scholar 

  20. Rodriguez, F. J. et al. Embolic atrial myxoma with neoplastic aneurysm formation and haemorrhage: a diagnostic challenge. Neuropathol. Appl. Neurobiol. 32, 213–216 (2006).

    CAS  PubMed  Google Scholar 

  21. Anavekar, N. S. et al. Computed tomography of cardiac pseudotumors and neoplasms. Radiol. Clin. North Am. 48, 799–816 (2010).

    PubMed  Google Scholar 

  22. Motwani, M. et al. MR imaging of cardiac tumors and masses: a review of methods and clinical applications. Radiology 268, 26–43 (2013).

    PubMed  Google Scholar 

  23. Basso, C., Valente, M., Poletti, A., Casarotto, D. & Thiene, G. Surgical pathology of primary cardiac and pericardial tumors. Eur. J. Cardiothorac. Surg. 12, 730–737 (1997).

    CAS  PubMed  Google Scholar 

  24. Garatti, A. et al. Surgical excision of cardiac myxomas: twenty years experience at a single institution. Ann. Thorac. Surg. 93, 825–831 (2012).

    PubMed  Google Scholar 

  25. Groves, A. M., Fagg, N. L., Cook, A. C. & Allan, L. D. Cardiac tumours in intrauterine life. Arch. Dis. Child. 67, 1189–1192 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Tworetzky, W. et al. Association between cardiac tumors and tuberous sclerosis in the fetus and neonate. Am. J. Cardiol. 92, 487–489 (2003).

    PubMed  Google Scholar 

  27. Kocabas, A. et al. Cardiac rhabdomyomas associated with tuberous sclerosis complex in 11 children: presentation to outcome. Pediatr. Hematol. Oncol. 30, 71–79 (2013).

    PubMed  Google Scholar 

  28. Beghetti, M. et al. Pediatric primary benign cardiac tumors: a 15-year review. Am. Heart J. 134, 1107–1114 (1997).

    CAS  PubMed  Google Scholar 

  29. Bosi, G., Lintermans, J. P., Pellegrino, P. A., Svaluto-Moreolo, G. & Vliers, A. The natural history of cardiac rhabdomyoma with and without tuberous sclerosis. Acta Paediatr. 85, 928–931 (1996).

    CAS  PubMed  Google Scholar 

  30. Atalay, S. et al. Fetal and neonatal cardiac rhabdomyomas: clinical presentation, outcome and association with tuberous sclerosis complex. Turk. J. Pediatr. 52, 481–487 (2010).

    PubMed  Google Scholar 

  31. Kiaffas, M. G., Powell, A. J. & Geva, T. Magnetic resonance imaging evaluation of cardiac tumor characteristics in infants and children. Am. J. Cardiol. 89, 1229–1233 (2002).

    PubMed  Google Scholar 

  32. Fieno, D. S. et al. Cardiovascular magnetic resonance of primary tumors of the heart: a review. J. Cardiovasc. Magn. Reson. 8, 839–853 (2006).

    PubMed  Google Scholar 

  33. Burke, A. P. & Virmani, R. Cardiac rhabdomyoma: a clinicopathologic study. Mod. Pathol. 4, 70–74 (1991).

    CAS  PubMed  Google Scholar 

  34. Stiller, B. et al. Primary cardiac tumours: when is surgery necessary? Eur. J. Cardiothorac. Surg. 20, 1002–1006 (2001).

    CAS  PubMed  Google Scholar 

  35. Hoshal, S. G., Samuel, B. P., Schneider, J. R., Mammen, L. & Vettukattil, J. J. Regression of massive cardiac rhabdomyoma on everolimus therapy. Pediatr. Int. 58, 397–399 (2016).

    PubMed  Google Scholar 

  36. Choudhry, S., Nguyen, H. H. & Anwar, S. Rapid resolution of cardiac rhabdomyomas following everolimus therapy. BMJ Case Rep. http://dx.doi.org/10.1136/bcr-2015-212946 (2015).

  37. ElBardissi, A. W. et al. Analysis of benign ventricular tumors: long-term outcome after resection. J. Thorac. Cardiovasc. Surg. 135, 1061–1068 (2008).

    PubMed  Google Scholar 

  38. Hoffmann, U. et al. Usefulness of magnetic resonance imaging of cardiac and paracardiac masses. Am. J. Cardiol. 92, 890–895 (2003).

    PubMed  Google Scholar 

  39. Luna, A., Ribes, R., Caro, P., Vida, J. & Erasmus, J. J. Evaluation of cardiac tumors with magnetic resonance imaging. Eur. Radiol. 15, 1446–1455 (2005).

    PubMed  Google Scholar 

  40. O'Donnell, D. H. et al. Cardiac tumors: optimal cardiac MR sequences and spectrum of imaging appearances. AJR Am. J. Roentgenol. 193, 377–387 (2009).

    PubMed  Google Scholar 

  41. Sparrow, P. J., Kurian, J. B., Jones, T. R. & Sivananthan, M. U. MR imaging of cardiac tumors. Radiographics 25, 1255–1276 (2005).

    PubMed  Google Scholar 

  42. Cho, J. M. et al. Surgical resection of ventricular cardiac fibromas: early and late results. Ann. Thorac. Surg. 76, 1929–1934 (2003).

    PubMed  Google Scholar 

  43. Valente, M. et al. Cardiac fibroma and heart transplantation. J. Thorac. Cardiovasc. Surg. 106, 1208–1212 (1993).

    CAS  PubMed  Google Scholar 

  44. Bapat, V. N. et al. Right-ventricular fibroma presenting as tricuspid stenosis — a case report. Thorac. Cardiovasc. Surg. 44, 152–154 (1996).

    CAS  PubMed  Google Scholar 

  45. Burke, A. P., Rosado- de-Christenson, M., Templeton, P. A. & Virmani, R. Cardiac fibroma: clinicopathologic correlates and surgical treatment. J. Thorac. Cardiovasc. Surg. 108, 862–870 (1994).

    CAS  PubMed  Google Scholar 

  46. Winterkorn, E. B., Dodd, J. D., Inglessis, I., Holmvang, G. & Thiele, E. A. Tuberous sclerosis complex and myocardial fat-containing lesions: a report of four cases. Clin. Genet. 71, 371–373 (2007).

    CAS  PubMed  Google Scholar 

  47. Hananouchi, G. I. & Goff, W. B. II. Cardiac lipoma: six-year follow-up with MRI characteristics, and a review of the literature. Magn. Reson. Imaging 8, 825–828 (1990).

    CAS  PubMed  Google Scholar 

  48. Araoz, P. A., Eklund, H. E., Welch, T. J. & Breen, J. F. CT and MR imaging of primary cardiac malignancies. Radiographics 19, 1421–1434 (1999).

    CAS  PubMed  Google Scholar 

  49. Mousseaux, E. et al. MR tissue characterization of a right atrial mass: diagnosis of a lipoma. J. Comput. Assist. Tomogr. 16, 148–151 (1992).

    CAS  PubMed  Google Scholar 

  50. Martinez Quesada, M., Trujillo Berraquero, F., Almendro Delia, M., Hidalgo Urbano, R. & Cruz Fernandez, J. M. Cardiac hamartoma. Case report and literature review [Spanish]. Rev. Esp. Cardiol. 58, 450–452 (2005).

    PubMed  Google Scholar 

  51. Sebenik, M. et al. Undifferentiated intimal sarcoma of large systemic blood vessels: report of 14 cases with immunohistochemical profile and review of the literature. Am. J. Surg. Pathol. 29, 1184–1193 (2005).

    PubMed  Google Scholar 

  52. Neuville, A. et al. Intimal sarcoma is the most frequent primary cardiac sarcoma: clinicopathologic and molecular retrospective analysis of 100 primary cardiac sarcomas. Am. J. Surg. Pathol. 38, 461–469 (2014).

    PubMed  Google Scholar 

  53. Maleszewski, J. J., Tavora, F. & Burke, A. P. Do “intimal” sarcomas of the heart exist? Am. J. Surg. Pathol. 38, 1158–1159 (2014).

    PubMed  Google Scholar 

  54. Simpson, L. et al. Malignant primary cardiac tumors: review of a single institution experience. Cancer 112, 2440–2446 (2008).

    PubMed  Google Scholar 

  55. Ramlawi, B. et al. Surgical treatment of primary cardiac sarcomas: review of a single-institution experience. Ann. Thorac. Surg. 101, 698–702 (2016).

    PubMed  Google Scholar 

  56. Orlandi, A., Ferlosio, A., Roselli, M., Chiariello, L. & Spagnoli, L. G. Cardiac sarcomas: an update. J. Thorac. Oncol. 5, 1483–1489 (2010).

    PubMed  Google Scholar 

  57. Ando, M. Medication therapy for soft tissue sarcoma (current status and future perspective) [Japanese]. Gan To Kagaku Ryoho 43, 27–32 (2016).

    CAS  PubMed  Google Scholar 

  58. Dickson, M. A. et al. Progression-free survival among patients with well-differentiated or dedifferentiated liposarcoma treated with CDK4 inhibitor palbociclib: a phase 2 clinical trial. JAMA Oncol. 2, 937–940 (2016).

    PubMed  PubMed Central  Google Scholar 

  59. Clark, A. S. et al. Palbociclib (PD0332991) — a selective and potent cyclin-dependent kinase inhibitor: a review of pharmacodynamics and clinical development. JAMA Oncol. 2, 253–260 (2016).

    PubMed  Google Scholar 

  60. VanArsdale, T., Boshoff, C., Arndt, K. T. & Abraham, R. T. Molecular pathways: targeting the cyclin D-CDK4/6 axis for cancer treatment. Clin. Cancer Res. 21, 2905–2910 (2015).

    CAS  PubMed  Google Scholar 

  61. Kollar, A. et al. Pazopanib in advanced vascular sarcomas: an EORTC Soft Tissue and Bone Sarcoma Group (STBSG) retrospective analysis. Acta Oncol. 56, 88–92 (2016).

    PubMed  Google Scholar 

  62. van der Graaf, W. T. Olaratumab in soft-tissue sarcomas. Lancet 388, 442–444 (2016).

    PubMed  Google Scholar 

  63. Judson, I. & van der Graaf, W. T. Sarcoma: olaratumab — really a breakthrough for soft-tissue sarcomas? Nat. Rev. Clin. Oncol. 13, 534–536 (2016).

    PubMed  Google Scholar 

  64. Tap, W. D. et al. Olaratumab and doxorubicin versus doxorubicin alone for treatment of soft-tissue sarcoma: an open-label phase 1b and randomised phase 2 trial. Lancet 388, 488–497 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. van der Graaf, W. T. et al. Pazopanib for metastatic soft-tissue sarcoma (PALETTE): a randomised, double-blind, placebo-controlled phase 3 trial. Lancet 379, 1879–1886 (2012).

    CAS  PubMed  Google Scholar 

  66. Brodowicz, T. Trabectedin in soft tissue sarcomas. Future Oncol. 10, s1–s5 (2014).

    CAS  PubMed  Google Scholar 

  67. D'Incalci, M. Trabectedin mechanism of action: what's new? Future Oncol. 9, 5–10 (2013).

    CAS  PubMed  Google Scholar 

  68. Leduc, C., Jenkins, S. M., Sukov, W. R., Rustin, J. G. & Maleszewski, J. J. Cardiac angiosarcoma: histopathologic, immunohistochemical, and cytogenetic analysis of 10 cases. Hum. Pathol. 60, 199–207 (2016).

    PubMed  Google Scholar 

  69. Zu, Y. et al. Chromosomal abnormalities and p53 gene mutation in a cardiac angiosarcoma. Appl. Immunohistochem. Mol. Morphol. 9, 24–28 (2001).

    CAS  PubMed  Google Scholar 

  70. Schuborg, C. et al. Cytogenetic analysis of four angiosarcomas from deep and superficial soft tissue. Cancer Genet. Cytogenet. 100, 52–56 (1998).

    CAS  PubMed  Google Scholar 

  71. Kupsky, D. F. et al. Echocardiographic features of cardiac angiosarcomas: the Mayo Clinic Experience (1976–2013). Echocardiography 33, 186–192 (2016).

    PubMed  Google Scholar 

  72. Bruna, J. & Lockwood, M. Primary heart angiosarcoma detected by computed tomography and magnetic resonance imaging. Eur. Radiol. 8, 66–68 (1998).

    CAS  PubMed  Google Scholar 

  73. Penel, N. et al. Phase II trial of weekly paclitaxel for unresectable angiosarcoma: the ANGIOTAX Study. J. Clin. Oncol. 26, 5269–5274 (2008).

    CAS  PubMed  Google Scholar 

  74. Byeon, S. et al. A Korean single-center, real-world, retrospective study of first-line weekly paclitaxel in patients with metastatic angiosarcoma. Clin. Sarcoma Res. 6, 8 (2016).

    PubMed  PubMed Central  Google Scholar 

  75. Gowda, R. M. & Khan, I. A. Clinical perspectives of primary cardiac lymphoma. Angiology 54, 599–604 (2003).

    PubMed  Google Scholar 

  76. Ikeda, H. et al. Primary lymphoma of the heart: case report and literature review. Pathol. Int. 54, 187–195 (2004).

    PubMed  Google Scholar 

  77. Nakagawa, Y. et al. Successful treatment of primary cardiac lymphoma with monoclonal CD20 antibody (rituximab). Circ. J. 68, 172–173 (2004).

    PubMed  Google Scholar 

  78. Rolla, G. et al. Primary lymphoma of the heart. A case report and review of the literature. Leuk. Res. 26, 117–120 (2002).

    PubMed  Google Scholar 

  79. Sun, J. P. et al. Clinical and echocardiographic characteristics of papillary fibroelastomas: a retrospective and prospective study in 162 patients. Circulation 103, 2687–2693 (2001).

    CAS  PubMed  Google Scholar 

  80. Klarich, K. W. et al. Papillary fibroelastoma: echocardiographic characteristics for diagnosis and pathologic correlation. J. Am. Coll. Cardiol. 30, 784–790 (1997).

    CAS  PubMed  Google Scholar 

  81. Ngaage, D. L. et al. Surgical treatment of cardiac papillary fibroelastoma: a single center experience with eighty-eight patients. Ann. Thorac. Surg. 80, 1712–1718 (2005).

    PubMed  Google Scholar 

  82. Burke, A. P., Litovsky, S. & Virmani, R. Lipomatous hypertrophy of the atrial septum presenting as a right atrial mass. Am. J. Surg. Pathol. 20, 678–685 (1996).

    CAS  PubMed  Google Scholar 

  83. Cale, R. et al. Lipomatous hypertrophy of the interatrial septum: report of two cases where histological examination and surgical intervention were unavoidable. Eur. J. Echocardiogr. 10, 876–879 (2009).

    PubMed  Google Scholar 

  84. Nadra, I., Dawson, D., Schmitz, S. A., Punjabi, P. P. & Nihoyannopoulos, P. Lipomatous hypertrophy of the interatrial septum: a commonly misdiagnosed mass often leading to unnecessary cardiac surgery. Heart 90, e66 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Pochis, W. T., Saeian, K. & Sagar, K. B. Usefulness of transesophageal echocardiography in diagnosing lipomatous hypertrophy of the atrial septum with comparison to transthoracic echocardiography. Am. J. Cardiol. 70, 396–398 (1992).

    CAS  PubMed  Google Scholar 

  86. Basu, S. et al. Lipomatous hypertrophy of the interatrial septum. Cardiovasc. Surg. 2, 229–231 (1994).

    CAS  PubMed  Google Scholar 

  87. McNamara, R. F., Taylor, A. E. & Panner, B. J. Superior vena caval obstruction by lipomatous hypertrophy of the right atrium. Clin. Cardiol. 10, 609–610 (1987).

    CAS  PubMed  Google Scholar 

  88. Cheezum, M. K., Jezior, M. R., Carbonaro, S. & Villines, T. C. Lipomatous hypertrophy presenting as superior vena cava syndrome. J. Cardiovasc. Comput. Tomogr. 8, 250–251 (2014).

    PubMed  Google Scholar 

  89. Breuer, M., Wippermann, J., Franke, U. & Wahlers, T. Lipomatous hypertrophy of the interatrial septum and upper right atrial inflow obstruction. Eur. J. Cardiothorac. Surg. 22, 1023–1025 (2002).

    PubMed  Google Scholar 

  90. Reynolds, C., Tazelaar, H. D. & Edwards, W. D. Calcified amorphous tumor of the heart (cardiac CAT). Hum. Pathol. 28, 601–606 (1997).

    CAS  PubMed  Google Scholar 

  91. Stoddard, M. F. Risk of thromboembolism in acute atrial fibrillation or atrial flutter. Echocardiography 17, 393–405 (2000).

    CAS  PubMed  Google Scholar 

  92. Paydarfar, D. et al. In vivo magnetic resonance imaging and surgical histopathology of intracardiac masses: distinct features of subacute thrombi. Cardiology 95, 40–47 (2001).

    CAS  PubMed  Google Scholar 

  93. Illman, J. E. et al. Multimodality imaging of foreign bodies in and around the heart. Future Cardiol. 12, 351–371 (2016).

    CAS  PubMed  Google Scholar 

  94. Bois, M. C., Bois, J. P., Mankad, S. V., Young, P. M. & Maleszewski, J. J. Retained surgical sponge. Cardiovasc. Pathol. 27, 43–44 (2017).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All the authors researched data for the article, discussed its content, wrote the manuscript, and reviewed/edited it before submission.

Corresponding author

Correspondence to Kyle W. Klarich.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maleszewski, J., Anavekar, N., Moynihan, T. et al. Pathology, imaging, and treatment of cardiac tumours. Nat Rev Cardiol 14, 536–549 (2017). https://doi.org/10.1038/nrcardio.2017.47

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2017.47

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer