Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

MRI biomarkers in neuro-oncology

Abstract

The central role of MRI in neuro-oncology is undisputed. The technique is used, both in clinical practice and in clinical trials, to diagnose and monitor disease activity, support treatment decision-making, guide the use of focused treatments and determine response to treatment. Despite recent substantial advances in imaging technology and image analysis techniques, clinical MRI is still primarily used for the qualitative subjective interpretation of macrostructural features, as opposed to quantitative analyses that take into consideration multiple pathophysiological features. However, the field of quantitative imaging and imaging biomarker development is maturing. The European Imaging Biomarkers Alliance (EIBALL) and Quantitative Imaging Biomarkers Alliance (QIBA) are setting standards for biomarker development, validation and implementation, as well as promoting the use of quantitative imaging and imaging biomarkers by demonstrating their clinical value. In parallel, advanced imaging techniques are reaching the clinical arena, providing quantitative, commonly physiological imaging parameters that are driving the discovery, validation and implementation of quantitative imaging and imaging biomarkers in the clinical routine. Additionally, computational analysis techniques are increasingly being used in the research setting to convert medical images into objective high-dimensional data and define radiomic signatures of disease states. Here, I review the definition and current state of MRI biomarkers in neuro-oncology, and discuss the clinical potential of quantitative image analysis techniques.

Key points

  • Imaging biomarkers offer the opportunity to move precision diagnostics forward, enabling better informed medical decision-making and tracking of biological changes before, during and after brain tumour treatment.

  • Guidelines and standards for data acquisition, image processing and validation processes for the development and eventual implementation of imaging biomarkers are provided by the European Society of Radiology and the Radiological Society of North America.

  • Radiomics is a rapidly emerging field of imaging research delivering an almost limitless supply of potential imaging biomarkers for improved patient and disease characterization.

  • The currently available evidence on imaging biomarkers and radiomics is still mostly at the discovery level; rigorous technical, biological and clinical validation are needed for clinical application.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Diffusion MRI.
Fig. 2: Perfusion MRI.
Fig. 3: Radiomics pipeline.

References

  1. Eckel-Passow, J. E. et al. Glioma groups based on 1p/19q, IDH, and TERT promoter mutations in tumors. N. Engl. J. Med. 372, 2499–2508 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Louis, D. N. et al. WHO classification of tumours of the central nervous system. Acta Neuropathol. 131, 803–820 (2016).

    Article  PubMed  Google Scholar 

  3. Suzuki, H. et al. Mutational landscape and clonal architecture in grade II and III gliomas. Nat. Genet. 47, 458–468 (2015).

    Article  CAS  PubMed  Google Scholar 

  4. Wijnenga, M. M. J. et al. The impact of surgery in molecularly defined low-grade glioma: an integrated clinical, radiological, and molecular analysis. Neuro Oncol. 20, 103–112 (2018).

    Article  CAS  PubMed  Google Scholar 

  5. Albert, N. L. et al. Response Assessment in Neuro-Oncology working group and European Association for Neuro-Oncology recommendations for the clinical use of PET imaging in gliomas. Neuro Oncol. 18, 1199–1208 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Galldiks, N. et al. PET imaging in patients with meningioma–report of the RANO/PET Group. Neuro Oncol. 19, 1576–1587 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Galldiks, N. et al. PET imaging in patients with brain metastasis–report of the RANO/PET group. Neuro Oncol. 21, 585–595 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Kessler, L. G. et al. The emerging science of quantitative imaging biomarkers terminology and definitions for scientific studies and regulatory submissions. Stat. Methods Med. Res. 24, 9–26 (2015). Introduction to imaging biomarkers and associated terminology.

    Article  PubMed  Google Scholar 

  9. FDA-NIH Biomarker Working Group. BEST (Biomarkers, EndpointS, and other Tools) Resource (FDA, 2021).

  10. O’Connor, J. P. et al. Imaging biomarker roadmap for cancer studies. Nat. Rev. Clin. Oncol. 14, 169–186 (2017). Outline and recommendations for development and introduction of imaging biomarkers for cancer.

    Article  PubMed  CAS  Google Scholar 

  11. Law, I. et al. Joint EANM/EANO/RANO practice guidelines/SNMMI procedure standards for imaging of gliomas using PET with radiolabelled amino acids and [18F]FDG: version 1.0. Eur. J. Nucl. Med. Mol. Imaging 46, 540–557 (2019).

    Article  CAS  PubMed  Google Scholar 

  12. Sullivan, D. C. et al. Metrology standards for quantitative imaging biomarkers. Radiology 277, 813–825 (2015). Introduction and outline of metrology in the context of imaging biomarkers.

    Article  PubMed  Google Scholar 

  13. deSouza, N. M. et al. Validated imaging biomarkers as decision-making tools in clinical trials and routine practice: current status and recommendations from the EIBALL* subcommittee of the European Society of Radiology (ESR). Insights Imaging 10, 87 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Fournier, L. et al. Incorporating radiomics into clinical trials: expert consensus on considerations for data-driven compared to biologically driven quantitative biomarkers. Eur. Radiol. https://doi.org/10.1007/s00330-020-07598-8 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  15. European Society of Radiology. ESR statement on the validation of imaging biomarkers. Insights Imaging 11, 76 (2020).

    Article  Google Scholar 

  16. European Medicines Agency. Guideline on bioanalytical method validation (EMA, 2011).

  17. Alberich-Bayarri, A., Neri, E. & Martí-Bonmatí, L. in Artificial Intelligence in Medical Imaging: Opportunities, Applications and Risks Ch. 10 (eds Ranschaert, E. R., Morozov, S. & Algra, P. R.) 119–128 (Springer, 2019).

  18. Obuchowski, N. A. et al. Statistical issues in testing conformance with the Quantitative Imaging Biomarker Alliance (QIBA) profile claims. Acad. Radiol. 23, 496–506 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Huang, E. P. et al. Meta-analysis of the technical performance of an imaging procedure: guidelines and statistical methodology. Stat. Methods Med. Res. 24, 141–174 (2015).

    Article  PubMed  Google Scholar 

  20. Yankeelov, T. E. et al. Quantitative imaging in cancer clinical trials. Clin. Cancer Res. 22, 284–290 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Manfrini, E. et al. From research to clinical practice: a European neuroradiological survey on quantitative advanced MRI implementation. Eur. Radiol. https://doi.org/10.1007/s00330-020-07582-2 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Thust, S. C. et al. Glioma imaging in Europe: a survey of 220 centres and recommendations for best clinical practice. Eur. Radiol. 28, 3306–3317 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Erker, C. et al. Response assessment in paediatric high-grade glioma: recommendations from the Response Assessment in Pediatric Neuro-Oncology (RAPNO) working group. Lancet Oncol. 21, e317–e329 (2020).

    Article  CAS  PubMed  Google Scholar 

  24. Cha, S. Update on brain tumor imaging: from anatomy to physiology. AJNR 27, 475–487 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Sugahara, T. et al. Usefulness of diffusion-weighted MRI with echo-planar technique in the evaluation of cellularity in gliomas. J. Magn. Reson. Imaging 9, 53–60 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Higano, S. et al. Malignant astrocytic tumors: clinical importance of apparent diffusion coefficient in prediction of grade and prognosis. Radiology 241, 839–846 (2006).

    Article  PubMed  Google Scholar 

  27. Quantitative Imaging Biomarkers Alliance. QIBA Profile: Diffusion-weighted magnetic resonance imaging (DWI). Profile consensus (QIBA, 2019).

  28. Bonekamp, D. et al. Diffusion tensor imaging in children and adolescents: reproducibility, hemispheric, and age-related differences. Neuroimage 34, 733–742 (2007).

    Article  PubMed  Google Scholar 

  29. Paldino, M. J., Barboriak, D., Desjardins, A., Friedman, H. S. & Vredenburgh, J. J. Repeatability of quantitative parameters derived from diffusion tensor imaging in patients with glioblastoma multiforme. J. Magn. Reson. Imaging 29, 1199–1205 (2009).

    Article  PubMed  Google Scholar 

  30. Pfefferbaum, A., Adalsteinsson, E. & Sullivan, E. V. Replicability of diffusion tensor imaging measurements of fractional anisotropy and trace in brain. J. Magn. Reson. Imaging 18, 427–433 (2003).

    Article  PubMed  Google Scholar 

  31. Sanvito, F., Castellano, A. & Falini, A. Advancements in neuroimaging to unravel biological and molecular features of brain tumors. Cancers 13, 424 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Aliotta, E. et al. Automated apparent diffusion coefficient analysis for genotype prediction in lower grade glioma: association with the T2-FLAIR mismatch sign. J. Neurooncol. 149, 325–335 (2020).

    Article  CAS  PubMed  Google Scholar 

  33. Zhang, L. et al. The utility of diffusion MRI with quantitative ADC measurements for differentiating high-grade from low-grade cerebral gliomas: evidence from a meta-analysis. J. Neurol. Sci. 373, 9–15 (2017).

    Article  PubMed  Google Scholar 

  34. Wang, Q. P., Lei, D. Q., Yuan, Y. & Xiong, N. X. Accuracy of ADC derived from DWI for differentiating high-grade from low-grade gliomas: systematic review and meta-analysis. Medicine 99, e19254 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Hales, P. W. et al. Arterial spin labelling and diffusion-weighted imaging in paediatric brain tumours. Neuroimage Clin. 22, 101696 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Suh, C. H., Kim, H. S., Jung, S. C. & Kim, S. J. Diffusion-weighted imaging and diffusion tensor imaging for differentiating high-grade glioma from solitary brain metastasis: a systematic review and meta-analysis. AJNR 39, 1208–1214 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yu, Y. et al. Meta-analysis of the diagnostic performance of diffusion magnetic resonance imaging with apparent diffusion coefficient measurements for differentiating glioma recurrence from pseudoprogression. Medicine 99, e20270 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  38. van Dijken, B. R. J., van Laar, P. J., Holtman, G. A. & van der Hoorn, A. Diagnostic accuracy of magnetic resonance imaging techniques for treatment response evaluation in patients with high-grade glioma, a systematic review and meta-analysis. Eur. Radiol. 27, 4129–4144 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Zulfiqar, M., Yousem, D. M. & Lai, H. ADC values and prognosis of malignant astrocytomas: does lower ADC predict a worse prognosis independent of grade of tumor?–a meta-analysis. Am. J. Roentgenol. 200, 624–629 (2013).

    Article  Google Scholar 

  40. Suh, C. H., Kim, H. S., Jung, S. C., Choi, C. G. & Kim, S. J. Imaging prediction of isocitrate dehydrogenase (IDH) mutation in patients with glioma: a systemic review and meta-analysis. Eur. Radiol. 29, 745–758 (2019).

    Article  PubMed  Google Scholar 

  41. Aboian, M. S. et al. Imaging characteristics of pediatric diffuse midline gliomas with histone H3 K27M mutation. AJNR 38, 795–800 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Poussaint, T. Y. et al. Apparent diffusion coefficient histogram metrics correlate with survival in diffuse intrinsic pontine glioma: a report from the Pediatric Brain Tumor Consortium. Neuro Oncol. 18, 725–734 (2016).

    Article  CAS  PubMed  Google Scholar 

  43. Lober, R. M. et al. Diffusion-weighted MRI derived apparent diffusion coefficient identifies prognostically distinct subgroups of pediatric diffuse intrinsic pontine glioma. J. Neurooncol. 117, 175–182 (2014).

    Article  PubMed  Google Scholar 

  44. Tan, W. L. et al. Can diffusion tensor imaging noninvasively detect IDH1 gene mutations in astrogliomas? A retrospective study of 112 cases. AJNR 35, 920–927 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Aliotta, E. et al. Molecular subtype classification in lower-grade glioma with accelerated DTI. AJNR 40, 1458–1463 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Miloushev, V. Z., Chow, D. S. & Filippi, C. G. Meta-analysis of diffusion metrics for the prediction of tumor grade in gliomas. AJNR 36, 302–308 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Jiang, R. et al. The value of diffusion tensor imaging in differentiating high-grade gliomas from brain metastases: a systematic review and meta-analysis. PLoS ONE 9, e112550 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Abdalla, G. et al. The diagnostic role of diffusional kurtosis imaging in glioma grading and differentiation of gliomas from other intra-axial brain tumours: a systematic review with critical appraisal and meta-analysis. Neuroradiology 62, 791–802 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Zhang, H., Schneider, T., Wheeler-Kingshott, C. A. & Alexander, D. C. NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain. Neuroimage 61, 1000–1016 (2012).

    Article  PubMed  Google Scholar 

  50. Panagiotaki, E. et al. Noninvasive quantification of solid tumor microstructure using VERDICT MRI. Cancer Res. 74, 1902–1912 (2014).

    Article  CAS  PubMed  Google Scholar 

  51. Zaccagna, F. et al. Non-invasive assessment of glioma microstructure using VERDICT MRI: correlation with histology. Eur. Radiol. 29, 5559–5566 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Le Bihan, D. et al. MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology 161, 401–407 (1986).

    Article  PubMed  Google Scholar 

  53. Falk Delgado, A., Nilsson, M., van Westen, D. & Falk Delgado, A. Glioma grade discrimination with MR diffusion kurtosis imaging: a meta-analysis of diagnostic accuracy. Radiology 287, 119–127 (2018).

    Article  PubMed  Google Scholar 

  54. Li, W. F. et al. An evidence-based approach to assess the accuracy of intravoxel incoherent motion imaging for the grading of brain tumors. Medicine 97, e13217 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Kadota, Y. et al. Differentiation between glioblastoma and solitary brain metastasis using neurite orientation dispersion and density imaging. J. Neuroradiol. 47, 197–202 (2020).

    Article  PubMed  Google Scholar 

  56. Lefranc, M. et al. Perfusion MRI as a neurosurgical tool for improved targeting in stereotactic tumor biopsies. Stereotact. Funct. Neurosurg. 90, 240–247 (2012).

    Article  CAS  PubMed  Google Scholar 

  57. Chakhoyan, A. et al. Validation of vessel size imaging (VSI) in high-grade human gliomas using magnetic resonance imaging, image-guided biopsies, and quantitative immunohistochemistry. Sci. Rep. 9, 2846 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Smits, M. et al. Repeatability and reproducibility of relative cerebral blood volume measurement of recurrent glioma in a multicentre trial setting. Eur. J. Cancer 114, 89–96 (2019).

    Article  PubMed  Google Scholar 

  59. Shin, W. et al. Quantitative cerebral perfusion using dynamic susceptibility contrast MRI: evaluation of reproducibility and age- and gender-dependence with fully automatic image postprocessing algorithm. Magn. Reson. Med. 58, 1232–1241 (2007).

    Article  PubMed  Google Scholar 

  60. Caseiras, G. B. et al. Relative cerebral blood volume measurements of low-grade gliomas predict patient outcome in a multi-institution setting. Eur. J. Radiol. 73, 215–220 (2010).

    Article  PubMed  Google Scholar 

  61. Jafari-Khouzani, K. et al. Repeatability of cerebral perfusion using dynamic susceptibility contrast MRI in glioblastoma patients. Transl. Oncol. 8, 137–146 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Bell, L. C. et al. Evaluating multisite rCBV consistency from DSC-MRI imaging protocols and postprocessing software across the NCI quantitative imaging network sites using a digital reference object (DRO). Tomography 5, 110–117 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Milchenko, M. V. et al. Comparison of perfusion- and diffusion-weighted imaging parameters in brain tumor studies processed using different software platforms. Acad. Radiol. 21, 1294–1303 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Orsingher, L., Piccinini, S. & Crisi, G. Differences in dynamic susceptibility contrast MR perfusion maps generated by different methods implemented in commercial software. J. Comput. Assist. Tomogr. 38, 647–654 (2014).

    Article  PubMed  Google Scholar 

  65. Quantitative Imaging Biomarkers Alliance. QIBA Profile: Dynamic susceptibility contrast MRI (DSC-MRI). Stage 2: Consensus profile (QIBA, 2020).

  66. Delgado, A. F. & Delgado, A. F. Discrimination between glioma grades II and III using dynamic susceptibility perfusion MRI: a meta-analysis. AJNR 38, 1348–1355 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Abrigo, J. M. et al. Magnetic resonance perfusion for differentiating low-grade from high-grade gliomas at first presentation. Cochrane Database Syst. Rev. 1, CD011551 (2018).

    PubMed  Google Scholar 

  68. Xing, Z. et al. Noninvasive assessment of IDH mutational status in World Health Organization grade II and III astrocytomas using DWI and DSC-PWI combined with conventional MR imaging. AJNR 38, 1138–1144 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Chuang, M. T., Liu, Y. S., Tsai, Y. S., Chen, Y. C. & Wang, C. K. Differentiating radiation-induced necrosis from recurrent brain tumor using MR perfusion and spectroscopy: a meta-analysis. PLoS ONE 11, e0141438 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Wang, L. et al. Evaluation of perfusion MRI value for tumor progression assessment after glioma radiotherapy: a systematic review and meta-analysis. Medicine 99, e23766 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Patel, P. et al. MR perfusion-weighted imaging in the evaluation of high-grade gliomas after treatment: a systematic review and meta-analysis. Neuro Oncol. 19, 118–127 (2017).

    Article  PubMed  Google Scholar 

  72. Smits, M. Imaging of oligodendroglioma. Br. J. Radiol. 89, 1060 (2016).

    Article  Google Scholar 

  73. Suh, C. H., Kim, H. S., Jung, S. C., Choi, C. G. & Kim, S. J. Perfusion MRI as a diagnostic biomarker for differentiating glioma from brain metastasis: a systematic review and meta-analysis. Eur. Radiol. 28, 3819–3831 (2018).

    Article  PubMed  Google Scholar 

  74. Xu, W., Wang, Q., Shao, A., Xu, B. & Zhang, J. The performance of MR perfusion-weighted imaging for the differentiation of high-grade glioma from primary central nervous system lymphoma: a systematic review and meta-analysis. PLoS ONE 12, e0173430 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Choi, S. H. et al. Perfusion MRI as the predictive/prognostic and pharmacodynamic biomarkers in recurrent malignant glioma treated with bevacizumab: a systematic review and a time-to-event meta-analysis. J. Neurooncol. 128, 185–194 (2016).

    Article  CAS  PubMed  Google Scholar 

  76. Hoque, M. M. et al. The cerebral microvasculature: basic and clinical perspectives on stroke and glioma. Microcirculation 28, e12671 (2021).

    Article  PubMed  Google Scholar 

  77. Quantitative Imaging Biomarkers Alliance. QIBA Profile: DCE-MRI Quantification (DCEMRI-Q). Stage 1: public comment (QIBA, 2017).

  78. Shukla-Dave, A. et al. Quantitative Imaging Biomarkers Alliance (QIBA) recommendations for improved precision of DWI and DCE-MRI derived biomarkers in multicenter oncology trials. J. Magn. Reson. Imaging 49, e101–e121 (2019).

    Article  PubMed  Google Scholar 

  79. Okuchi, S. et al. Diagnostic accuracy of dynamic contrast-enhanced perfusion MRI in stratifying gliomas: a systematic review and meta-analysis. Cancer Med. 8, 5564–5573 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Alsop, D. C. et al. Recommended implementation of arterial spin-labeled perfusion MRI for clinical applications: a consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia. Magnetic Reson. Med. 73, 102–116 (2015).

    Article  Google Scholar 

  81. Quantitative Imaging Biomarkers Alliance. EIBIR/QIBA ASL Biomarker Committee (QIBA, 2019).

  82. Kong, L., Chen, H., Yang, Y. & Chen, L. A meta-analysis of arterial spin labelling perfusion values for the prediction of glioma grade. Clin. Radiol. 72, 255–261 (2017).

    Article  CAS  PubMed  Google Scholar 

  83. Brendle, C. et al. Glioma grading and determination of IDH mutation status and ATRX loss by DCE and ASL perfusion. Clin. Neuroradiol. 28, 421–428 (2018).

    Article  PubMed  Google Scholar 

  84. Yoo, R. E. et al. Arterial spin labeling perfusion-weighted imaging aids in prediction of molecular biomarkers and survival in glioblastomas. Eur. Radiol. 30, 1202–1211 (2020).

    Article  CAS  PubMed  Google Scholar 

  85. Bertholdo, D., Watcharakorn, A. & Castillo, M. Brain proton magnetic resonance spectroscopy: introduction and overview. Neuroimaging Clin. N. Am. 23, 359–380 (2013).

    Article  PubMed  Google Scholar 

  86. Wilson, M. et al. Methodological consensus on clinical proton MRS of the brain: review and recommendations. Magn. Reson. Med. 82, 527–550 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Howe, F. A. et al. Metabolic profiles of human brain tumors using quantitative in vivo 1H magnetic resonance spectroscopy. Magn. Reson. Med. 49, 223–232 (2003).

    Article  CAS  PubMed  Google Scholar 

  88. Choi, C. et al. 2-hydroxyglutarate detection by magnetic resonance spectroscopy in IDH-mutated patients with gliomas. Nat. Med. 18, 624–629 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Ishimaru, H. et al. Differentiation between high-grade glioma and metastatic brain tumor using single-voxel proton MR spectroscopy. Eur. Radiol. 11, 1784–1791 (2001).

    Article  CAS  PubMed  Google Scholar 

  90. Caivano, R. et al. 3 Tesla magnetic resonance spectroscopy: cerebral gliomas vs. metastatic brain tumors. Our experience and review of the literature. Int. J. Neurosci. 123, 537–543 (2013).

    Article  CAS  PubMed  Google Scholar 

  91. Esteve, F., Rubin, C., Grand, S., Kolodie, H. & Le Bas, J. F. Transient metabolic changes observed with proton MR spectroscopy in normal human brain after radiation therapy. Int. J. Radiat. Oncol. Biol. Phys. 40, 279–286 (1998).

    Article  CAS  PubMed  Google Scholar 

  92. Suh, C. H., Kim, H. S., Jung, S. C., Choi, C. G. & Kim, S. J. 2-Hydroxyglutarate MR spectroscopy for prediction of isocitrate dehydrogenase mutant glioma: a systemic review and meta-analysis using individual patient data. Neuro Oncol. 20, 1573–1583 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Andronesi, O. C. et al. Treatment response assessment in IDH-mutant glioma patients by noninvasive 3D functional spectroscopic mapping of 2-hydroxyglutarate. Clin. Cancer Res. 22, 1632–1641 (2016).

    Article  CAS  PubMed  Google Scholar 

  94. de la Fuente, M. I. et al. Integration of 2-hydroxyglutarate-proton magnetic resonance spectroscopy into clinical practice for disease monitoring in isocitrate dehydrogenase-mutant glioma. Neuro Oncol. 18, 283–290 (2016).

    Article  PubMed  CAS  Google Scholar 

  95. Choi, C. et al. Prospective longitudinal analysis of 2-hydroxyglutarate magnetic resonance spectroscopy identifies broad clinical utility for the management of patients with IDH-mutant glioma. J. Clin. Oncol. 34, 4030–4039 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Suh, C. H. et al. False-positive measurement at 2-hydroxyglutarate MR spectroscopy in isocitrate dehydrogenase wild-type glioblastoma: a multifactorial analysis. Radiology 291, 752–762 (2019).

    Article  PubMed  Google Scholar 

  97. Branzoli, F. et al. Cystathionine as a marker for 1p/19q codeleted gliomas by in vivo magnetic resonance spectroscopy. Neuro Oncol. 21, 765–774 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Gillies, R. J., Kinahan, P. E. & Hricak, H. Radiomics: images are more than pictures, they are data. Radiology 278, 563–577 (2016). Introduction to radiomics.

    Article  PubMed  Google Scholar 

  99. Lambin, P. et al. Radiomics: the bridge between medical imaging and personalized medicine. Nat. Rev. Clin. Oncol. 14, 749–762 (2017). Quality standards for radiomics studies.

    Article  PubMed  Google Scholar 

  100. Diehn, M. et al. Identification of noninvasive imaging surrogates for brain tumor gene-expression modules. Proc. Natl Acad. Sci. USA 105, 5213–5218 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. TCGA Glioma Phenotpye Research Group. VASARI research project. Cancer Imaging Archive https://wiki.cancerimagingarchive.net/display/Public/VASARI+Research+Project (2020)

  102. Gutman, D. A. et al. MR imaging predictors of molecular profile and survival: multi-institutional study of the TCGA glioblastoma data set. Radiology 267, 560–569 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Gevaert, O. et al. Glioblastoma multiforme: exploratory radiogenomic analysis by using quantitative image features. Radiology 273, 168–174 (2014).

    Article  PubMed  Google Scholar 

  104. Lohmann, P. et al. Radiomics in neuro-oncology: basics, workflow, and applications. Methods 188, 112–121 (2020). Comprehensive overview and explanation of radiomics.

    Article  PubMed  CAS  Google Scholar 

  105. Rudie, J. D., Rauschecker, A. M., Bryan, R. N., Davatzikos, C. & Mohan, S. Emerging applications of artificial intelligence in neuro-oncology. Radiology 290, 607–618 (2019). Overview of applications of radiomics and other computational methods in neuro-oncological imaging.

    Article  PubMed  Google Scholar 

  106. Starmans, M. P. A. et al. in Handbook of Medical Image Computing and Computer Assisted Intervention (eds Zhou, S. K., Rueckert, D. & Fichtinger, G.) 429–456 (Academic, 2020).

  107. Wang, Q., Lei, D., Yuan, Y. & Zhao, H. Accuracy of magnetic resonance imaging texture analysis in differentiating low-grade from high-grade gliomas: systematic review and meta-analysis. BMJ Open 9, e027144 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Yang, Y. et al. Glioma grading on conventional MR images: a deep learning study with transfer learning. Front. Neurosci. 12, 804 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Kim, J. Y. et al. Incorporating diffusion- and perfusion-weighted MRI into a radiomics model improves diagnostic performance for pseudoprogression in glioblastoma patients. Neuro Oncol. 21, 404–414 (2019).

    Article  PubMed  Google Scholar 

  110. Hu, X., Wong, K. K., Young, G. S., Guo, L. & Wong, S. T. Support vector machine multiparametric MRI identification of pseudoprogression from tumor recurrence in patients with resected glioblastoma. J. Magn. Reson. Imaging 33, 296–305 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Jang, B. S., Jeon, S. H., Kim, I. H. & Kim, I. A. Prediction of pseudoprogression versus progression using machine learning algorithm in glioblastoma. Sci. Rep. 8, 12516 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Lohmann, P. et al. FET PET radiomics for differentiating pseudoprogression from early tumor progression in glioma patients post-chemoradiation. Cancers 12, 3835 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  113. Kickingereder, P. et al. Radiomic profiling of glioblastoma: identifying an imaging predictor of patient survival with improved performance over established clinical and radiologic risk models. Radiology 280, 880–889 (2016).

    Article  PubMed  Google Scholar 

  114. Macyszyn, L. et al. Imaging patterns predict patient survival and molecular subtype in glioblastoma via machine learning techniques. Neuro Oncol. 18, 417–425 (2016).

    Article  PubMed  Google Scholar 

  115. Li, Q. et al. A fully-automatic multiparametric radiomics model: towards reproducible and prognostic imaging signature for prediction of overall survival in glioblastoma multiforme. Sci. Rep. 7, 14331 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Li, Y. et al. Radiomic features predict Ki-67 expression level and survival in lower grade gliomas. J. Neurooncol. 135, 317–324 (2017).

    Article  CAS  PubMed  Google Scholar 

  117. Chang, P. D. et al. A multiparametric model for mapping cellularity in glioblastoma using radiographically localized biopsies. AJNR 38, 890–898 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Goyal, A. et al. The T2-FLAIR-mismatch sign as an imaging biomarker for IDH and 1p/19q status in diffuse low-grade gliomas: a systematic review with a Bayesian approach to evaluation of diagnostic test performance. Neurosurg. Focus. 47, E13 (2019).

    Article  PubMed  Google Scholar 

  119. Smits, M. & van den Bent, M. J. Imaging correlates of adult glioma genotypes. Radiology 284, 316–331 (2017).

    Article  PubMed  Google Scholar 

  120. Chang, P. et al. Deep-learning convolutional neural networks accurately classify genetic mutations in gliomas. AJNR 39, 1201–1207 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Verma, R. et al. tumor habitat-derived radiomic features at pretreatment MRI that are prognostic for progression-free survival in glioblastoma are associated with key morphologic attributes at histopathologic examination: a feasibility study. Radiol. Artif. Intell. 2, e190168 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Zhao, J. et al. Diagnostic accuracy and potential covariates for machine learning to identify IDH mutations in glioma patients: evidence from a meta-analysis. Eur. Radiol. 30, 4664–4674 (2020).

    Article  CAS  PubMed  Google Scholar 

  123. Bhandari, A. P., Liong, R., Koppen, J., Murthy, S. V. & Lasocki, A. Noninvasive determination of IDH and 1p19q status of lower-grade gliomas using MRI radiomics: a systematic review. AJNR 42, 94–101 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. van der Voort, S. R. et al. Predicting the 1p/19q codeletion status of presumed low-grade glioma with an externally validated machine learning algorithm. Clin. Cancer Res. 25, 7455–7462 (2019).

    Article  PubMed  Google Scholar 

  125. Liu, X. et al. A radiomic signature as a non-invasive predictor of progression-free survival in patients with lower-grade gliomas. Neuroimage Clin. 20, 1070–1077 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Tong, E., McCullagh, K. L. & Iv, M. Advanced imaging of brain metastases: from augmenting visualization and improving diagnosis to evaluating treatment response. Front. Neurol. 11, 270 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Petrujkic, K. et al. Computational quantitative MR image features – a potential useful tool in differentiating glioblastoma from solitary brain metastasis. Eur. J. Radiol. 119, 108634 (2019).

    Article  PubMed  Google Scholar 

  128. Ortiz-Ramon, R., Larroza, A., Ruiz-Espana, S., Arana, E. & Moratal, D. Classifying brain metastases by their primary site of origin using a radiomics approach based on texture analysis: a feasibility study. Eur. Radiol. 28, 4514–4523 (2018).

    Article  PubMed  Google Scholar 

  129. Larroza, A. et al. Support vector machine classification of brain metastasis and radiation necrosis based on texture analysis in MRI. J. Magn. Reson. Imaging 42, 1362–1368 (2015).

    Article  PubMed  Google Scholar 

  130. Charron, O. et al. Automatic detection and segmentation of brain metastases on multimodal MR images with a deep convolutional neural network. Comput. Biol. Med. 95, 43–54 (2018).

    Article  PubMed  Google Scholar 

  131. Liu, Y. et al. A deep convolutional neural network-based automatic delineation strategy for multiple brain metastases stereotactic radiosurgery. PLoS ONE 12, e0185844 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Liu, Y. et al. Automatic metastatic brain tumor segmentation for stereotactic radiosurgery applications. Phys. Med. Biol. 61, 8440–8461 (2016).

    Article  PubMed  Google Scholar 

  133. Kickingereder, P. et al. Automated quantitative tumour response assessment of MRI in neuro-oncology with artificial neural networks: a multicentre, retrospective study. Lancet Oncol. 20, 728–740 (2019).

    Article  PubMed  Google Scholar 

  134. Kim, D. W., Jang, H. Y., Kim, K. W., Shin, Y. & Park, S. H. Design characteristics of studies reporting the performance of artificial intelligence algorithms for diagnostic analysis of medical images: results from recently published papers. Korean J. Radiol. 20, 405–410 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Park, J. E. et al. A systematic review reporting quality of radiomics research in neuro-oncology: toward clinical utility and quality improvement using high-dimensional imaging features. BMC Cancer 20, 29 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Ma, D. et al. Magnetic resonance fingerprinting. Nature 495, 187–192 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Zhou, J., Heo, H. Y., Knutsson, L., van Zijl, P. C. M. & Jiang, S. APT-weighted MRI: techniques, current neuro applications, and challenging issues. J. Magn. Reson. Imaging 50, 347–364 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Ladd, M. E. et al. Pros and cons of ultra-high-field MRI/MRS for human application. Prog. Nucl. Magn. Reson. Spectrosc. 109, 1–50 (2018).

    Article  CAS  PubMed  Google Scholar 

  139. Carre, A. et al. Standardization of brain MR images across machines and protocols: bridging the gap for MRI-based radiomics. Sci. Rep. 10, 12340 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Ellingson, B. M. et al. Consensus recommendations for a standardized Brain Tumor Imaging Protocol in clinical trials. Neuro Oncol. 17, 1188–1198 (2015).

    PubMed  PubMed Central  Google Scholar 

  141. Kaufmann, T. J. et al. Consensus recommendations for a standardized brain tumor imaging protocol for clinical trials in brain metastases. Neuro Oncol. 22, 757–772 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Boxerman, J. L. et al. Consensus recommendations for a dynamic susceptibility contrast MRI protocol for use in high-grade gliomas. Neuro Oncol. 22, 1262–1275 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Zwanenburg, A. et al. The image biomarker standardization initiative: standardized quantitative radiomics for high-throughput image-based phenotyping. Radiology 295, 328–338 (2020).

    Article  PubMed  Google Scholar 

  144. European Society of Radiology. ESR position paper on imaging biobanks. Insights Imaging 6, 403–410 (2015).

    Article  Google Scholar 

  145. Wilkinson, M. D. et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data 3, 160018 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Al-Mubarak, H. et al. Stacked in-plane histology for quantitative validation of non-invasive imaging biomarkers: application to an infiltrative brain tumour model. J. Neurosci. Methods 326, 108372 (2019).

    Article  CAS  PubMed  Google Scholar 

  147. Bakas, S. et al. Advancing The Cancer Genome Atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci. Data 4, 170117 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marion Smits.

Ethics declarations

Competing interests

M.S. declares speaker fees paid to her institution from GE Healthcare and honorarium paid to her institution from Parexel Ltd. for trial review of EORTC-1410.

Additional information

Peer review information

Nature Reviews Neurology thanks A. Waldman, who co-reviewed with G. Thompson, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

European Imaging Biomarkers Alliance (EIBALL): https://www.myesr.org/research/esr-research-committee

Open Source Initiative for Perfusion Imaging (OSIPI): https://www.osipi.org

Quantitative Imagine Biomarkers Alliance (QIBA): https://www.rsna.org/research/quantitative-imaging-biomarkers-alliance

Quantitative Imaging Biomarkers Alliance (QIBA) wiki: https://qibawiki.rsna.org/index.php/Main_Page

The Cancer Genome Atlas: https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga

The Cancer Imaging Archive: https://www.cancerimagingarchive.net

Glossary

Repeatability

The frequency with which the same measurement under the same conditions (for example, same scanner, participant and rater) provides the same result.

Reproducibility

The frequency with which the same measurement performed under different conditions (for example, on a different scanner or by a different rater) provides the same result.

Phantom

An artificial construct, either physical or digital, that provides a reference standard for validation and calibration.

Sensitivity

The proportion results from a given test that are true positives.

Specificity

The proportion results from a given test that are true negatives.

Brownian motion

The random motion of particles within a medium.

Ki-67 labelling index

A marker of cellular proliferation based on immunohistochemical assessment of the expression of the Ki-67 protein.

Mean kurtosis

An estimate of the non-gaussianity of water diffusion resulting from the presence of diffusion barriers and compartments within tissue structure; higher mean kurtosis indicates higher tissue microstructural complexity.

Deep learning

A class of machine learning based on artificial neural networks that are inspired by biological networks of learning and information processing; ‘deep’ refers to the use of multiple layers in the network.

Overfitting

A phenomenon that occurs when the match between the classification model and the data set is too perfect, resulting in a model that cannot be generalized to any other data set.

Dimensionality

The number of dimensions included in a computational model; in radiomics, this term relates primarily to the number of imaging features, each feature being one dimension.

Noise

The unexplained variation or randomness in a computational model.

Radiomics quality score

A score system used to assess the quality of radiomics studies; consists of 16 items covering methodology, reporting, clinical utility and contribution to open science.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smits, M. MRI biomarkers in neuro-oncology. Nat Rev Neurol 17, 486–500 (2021). https://doi.org/10.1038/s41582-021-00510-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41582-021-00510-y

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer